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Abstract. Circumnavigation control is useful in real-world applications
such as entrapping a hostile target. In this paper, we consider a heteroge-
neous multi-robot system where robots have different physical properties,
such as maximum movement speeds. Instead of equal-spacing which is
assumed in many existing studies, dynamic spacing according to robots’
properties is proposed in this paper. For this purpose, two new concepts
- utility and formation guideline - are presented. Then a distributed cir-
cumnavigation control algorithm based on utilities and formation guide-
lines is designed for any number of mobile robots from random 3D posi-
tions to circumnavigate a target. Theoretical analysis and experimental
results are provided to prove the stability and effectiveness of the pro-
posed control algorithm.

1 Introduction

One of the most prominent research topics on distributed multi-robot system is
the formation control problem. Significant efforts have been made on the circular
formation control and circumnavigation control problems. In circular formation
control problem, robots remain in their positions after the formation is generated,
while in circumnavigation control problem, they still encircle around the target.
In this sense, circular formation control could be regarded as a special case of
circumnavigation control when the circumnavigation speed equals to zero.

There are already many studies on circumnavigation control (or circular for-
mation control) problems. Most of the existing studies only consider the case
where robots are distributed evenly on the formation (i.e., equal spacing), such
as [3,7,14]. In addition, the control algorithms proposed in these studies are
only applicable on the 2D plane. Nevertheless, [1] proposes algorithms which are
still effective in 3D space. The formation spacing, however, is fixed and equal.
Although this is effective for a homogeneous multi-robot system, it may not be
sufficient for a heterogeneous one where robots have different properties, such as
maximum movement speeds. [9] and [10] propose a distributed control law for a
multi-robot system to form a circular formation with any desired spacing among
robots. However, it assumes that the robots are placed initially on a prescribed
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circle and the control algorithm is not applicable in the 3D space. Another major
disadvantage is that the desired spacing, which is a global quantity, should be
specified for each robot beforehand. If the specified spacing does not sum up to
2π, or if robots are informed of inconsistent specified spacing, they will form
an erroneous formation. Moreover, to the best of our knowledge, there are no
studies concerning dynamic spacing for a heterogeneous multi-robot system.

In this study, we suppose that mobile robots are heterogeneous in terms of
their kinematics abilities, such as maximum locomotion speeds, etc. In a scenario
where these mobile robots need to entrap a hostile target, their inter-robot spac-
ing should be different for better performance; those robots with lower mobility
are supposed to gather together with smaller spacing than those with higher
mobility, so the probability for the target to flee away from the formation is
lower. We also consider the deterioration of individual performance due to phys-
ical worn-out or damage. Therefore, their spacing should be varied in a dynamic
way during the circumnavigation process. Based on this, the goal of this paper
is to propose a new distributed circumnavigation control algorithm which is able
to control a group of heterogeneous mobile robots from any initial positions to
circumnavigate a target with dynamic spacing in the 3D space.

The main contribution of this work is twofold. First, this paper proposes the
concept of utility and formation guideline. Based on these two new concepts, we
design a distributed circumnavigation control algorithm which enables robots
to adjust their spacing dynamically according to the local variations of their
utilities; a pre-specified desired spacing is not necessary (but it is necessary for
studies such as [1,9,10]). The control algorithm is distributed and applicable for
a heterogeneous multi-robot system of arbitrary size. Second, the distributed
control algorithm does not require robots to be placed initially on a prescribed
circular trajectory (but it is required in [9,10]). Their initial positions can be
arbitrarily chosen in the 3D space rather than being restricted on a 2D plane
(which is the case in [9,10]). In addition, the control algorithm can respond
effectively to the situation where robots quit or join the circumnavigation process
(but it is not studied in much literature such as [3,8–10]).

The remainder of this paper is organized as follows. Section 2 introduces the
circumnavigation control problem based on utilities and derives its correspond-
ing mathematical formulation. Section 3 proposes the circumnavigation control
algorithm. In Sect. 4, simulation and real-robot experiments are performed and
results are analysed. Finally, Sect. 5 concludes the paper and summarizes the
future work.

2 Problem Formulation

The research question is that a group of n (n ≥ 2) mobile robots, denoted by
ri, i = 1, ... , n, encircle a target in 3D space with dynamic spacing on a circular
formation. Note that ri is only used to represent the ith robot for convenience
of narration; it does not correspond to any physical quantities. Suppose each
mobile robot is modelled by a 3D kinematic point:



376 W. Yao et al.

Fig. 1. The body reference
frame with the target S as the
origin.

Fig. 2. Robots’ projec-
tions and the target S
on the XSY plane.

Fig. 3. The interpretation
of the formation guideline.

ṗi(t) = ui(t), i = 1, ... , n, (1)

where ui(t) is the control input to the robot ri and pi(t) ∈ R
3 is its position

in the world reference frame W. In this problem, robots are required to main-
tain on the same plane with the encircled target which is modelled by another
kinematic point. Therefore, a (target) body reference frame B centred at the
target S is introduced (see Fig. 1). In addition, the cylindrical coordinate sys-
tem is preferred to the commonly used Cartesian coordinate system since the
former itself embodies three elements of interest: the distance between the pro-
jection of the robot on the XSY plane to the target (ρ), the height relative to
the XSY plane (z) and the angle between the X-axis and the line joining the
projection of the robot on the XSY plane with the target (ϕ). The cylindrical
coordinates for ri is denoted by qi = (ρi, ϕi, zi)T (see Fig. 1). To relate the cylin-
drical coordinates with the Cartesian coordinates, a vector function is defined
as q(p) = (ρ(p), ϕ(p), z(p))T , where p ∈ R

3 is a generic vector with components
px, py, pz. ρ(p) =

√
p2x + p2y, ϕ(p) = tan−1(py/px) and z(p) = pz. Note that

ϕ ∈ [0, 2π). The Jacobian matrix of the vector function will be used later, which

is J = ∂q
∂pT =

⎡
⎢⎣

px√
p2
x+p2

y

py√
p2
x+p2

y

0
−py

p2
x+p2

y

px

p2
x+p2

y
0

0 0 1

⎤
⎥⎦ . For better analysis, we label the robots in

the counter-clockwise direction according to their initial (angular) positions (ϕi)
in B as shown in Fig. 2. Note that the subscript i− and i+ represent the indices
of the neighboring robots of ri in the clockwise and counter-clockwise direction
respectively. Especially, if i = n, i+ = 1, and if i = 1, i− = n. Δi > 0 represents
the difference between the angular positions of ri+ and that of ri. In particular,

Δi =

{
ϕi+ − ϕi, i = 1, . . . , n − 1,

ϕ1 − ϕn + 2π, i = n.
(2)

Also note that
∑n

i=1 Δi = 2π,
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Before giving the definition of the circumnavigation problem with dynamic
spacing, we propose the concept of utility.

Definition 1 (Utility). In a heterogeneous multi-robot system, given different
kinds of robots, a robot’s utility μ(t) ≥ 0 is determined by a given criterion (such
as its maximum movement speed). The utility reflects the weight of the robot in
the circumnavigation process at time t.

For example, suppose a robot’s maximum movement speed is the criterion.
Let μi(t) = vmi(t)

vM
, i = 1, . . . , n, where vmi(t) is the maximum movement speed

of ri and vM is the possible greatest movement speed in the heterogeneous
multi-robot system. Then μi(t) ∈ [0, 1], i = 1, . . . , n. When μi(t) = 0, the
robot ri cannot continue the circumnavigation process with other robots. In this
case, its neighboring robots will neglect its role in the circumnavigation process.
μi(t) will increase or decrease due to the enhancement or damage of the robot’s
locomotion capabilities. To explain directly how utilities are utilized to enable
dynamic spacing among robots, we simply regard the utility of a robot to be
proportional to its maximum movement speed. For simplicity of writing, the
symbol t is neglected from μ unless it causes confusion. The circumnavigation
control problem based on utilities is defined as follows:

Definition 2 (Circumnavigation Control Problem Based on Utilities).
In a heterogeneous multi-robot system composed of n (n ≥ 2) mobile robots, each
of the robot’s dynamics are modelled by (1). Suppose fi : Rn+1 → (0, 2π), i =
1, . . . , n, is a smooth function of time and the utilities of robots, which maps util-
ities to the final holistic formation spacing. Assume lim

t→∞ fi(t, μ1, . . . , μn) exists,
the circumnavigation control problem based on utilities is to seek control laws
satisfying the following asymptotic conditions:

lim
t→∞ ρi(t) = ρ∗ (3)

lim
t→∞ Δi(t) = lim

t→∞ fi (4)

lim
t→∞ ϕ̇i(t) = ω∗ (5)

lim
t→∞ zi(t) = z∗ (6)

Here, μi > 0, ρ∗ > 0, ω∗ ∈ R and z∗ ∈ R. ρ∗, ω∗ and z∗ denote the circumnav-
igation radius, the angular speed and the circumnavigation height respectively.

In this paper, it is required that all robots and the target remain in the same
plane in the end. Therefore, the default value of z∗ is 0. However, z∗ can be differ-
ent for different robots. Equation (4) manifests that the final formation spacing
is not specified manually as proposed in [9] or [13], but instead, it is determined
by the fi function, which will be referred to as f function for simplicity. Note
that fi function depends on the utilities of other robots instead of calculating by
each robot alone. The advantage of eliciting the f function is that the spacing
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among robots can be dynamically adjusted corresponding to the variations of
robots’ utilities.

The expression of the f function is determined by a formation guideline.
It is proposed under specific physics background representing the relationship
between the utilities of robots and the final formation spacing. In this paper, we
suppose that multiple heterogeneous robots circumnavigate a target and try to
prevent it from fleeing. In Fig. 3, four robots r1, . . . , r4 rotate around a target
denoted by O. Suppose that the target is intelligent enough to determine the
best fleeing points denoted by A, B, C and D in the figure. Obviously, the best
fleeing points are related to the utility (i.e., the maximum movement speeds) of
robots. The position of A, for instance, is calculated by ∠AOr2 = μ2

μ1+μ2
. We

also suppose that the probability of capturing the target by a robot is inversely
proportional to the time spent on moving from its initial position along the
circular trajectory at its maximum speed to the best fleeing point. Therefore,
the formation guideline can be defined as

Formation Guideline 1. In the final circumnavigation formation formed by
robots, when the target tries to escape via any of the best fleeing point, the two
robots adjacent to the best fleeing point have the same probability of capturing
the target.

To understand the above formation guideline, taking Fig. 3 for example, it
means the travelling time for r1 and r2 to arrive at the best fleeing point A
along the circular trajectory at their maximum speeds (i.e., μ1 and μ2 resp.)
is the same, or the travelling time for r2 to arrive at A or B along the circular
trajectory at its maximum speed (i.e., μ2) is identical, and hence, the probability
of capturing the target is equal. Following this, it can be derived that μi

μi+μi+
Δi =

μi

μi+μi−
Δi−. According to this equation, the relationship between the final desired

formation spacing and the utilities is Δ1 : Δ2 : · · · : Δn = (μ1 + μ2) : (μ2 +
μ3) : · · · : (μn + μ1). Therefore, given μ1, . . . , μn, the formation spacing can be
determined, and the f function is expressed as follows:

fi(t, μ1, . . . , μn) =
μi + μi+∑n

k=1 μk
π. (7)

Other formation guidelines can be similarly defined1.

Remark 1. Note that formation guidelines only reflect the relationship between
the utilities of robots and the final formation spacing; it does not determine the
utilities of robots.

3 Utility-Based Circumnavigation Control Algorithm

First we define a rotational matrix Rb, which is the representation of the body
reference frame B with respect to the world reference frame W. Therefore, the
1 Another example of the formation guideline can be found in the full version http://

arxiv.org/abs/1805.05395.

http://arxiv.org/abs/1805.05395
http://arxiv.org/abs/1805.05395
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following equation calculates the cylindrical coordinates of ri in the frame B: qi =
q(RT

b (pi−pb)), where pi and pb are the Cartesian coordinates of ri and the target
in the frame W respectively. Then the derivative of qi is the dynamics of robots
in the cylindrical coordinates, which is q̇i = Ji[ṘT

b (pi −pb)+RT
b (ṗi − ṗb)], where

Ji is the Jacobian matrix as shown in Sect. 2, i.e., Ji = ∂q
∂pT

∣∣∣∣p = RT
b (pi − pb)

.

Note that det(J) = 1√
p2
x+p2

y

as long as p2x + p2y �= 0. This means Ji is invertible

as long as the distance between ri and the target is non-zero. This condition can
always be guaranteed since the initial positions of the robots and the target do
not coincide, and by designing appropriate control algorithms, the distance can
be guaranteed to be non-zero all the time. By letting

ui = ṗi = ṗb + Rb(J−1
i vi − ṘT

b (pi − pb)), (8)

we can switch our focus to the new control input in the cylindrical coordinates
vi = q̇i = (ρ̇i, ϕ̇i, żi)T [1]. The advantage of transforming to this control input is
that we can control ρi, ϕi and zi separately, which are the three main variables
in the circumnavigation problem.
Notations. For positive integers m and n, Mn and Mm×n are a set of all n × n
and m×n real matrices. If all the entries in a matrix is nonnegative, this matrix is
called nonnegative. We denote Id as the d×d identity matrix. 1 and 0 are vectors
of all 1’s or 0’s of suitable dimensions respectively. The underlying directed graph
(or digraph) of a nonnegative matrix M ∈ Mn, denoted by G(M), is the directed
graph with the vertex set {vi}, i ∈ {1, ..., n}, such that there is a directed edge
in G(M) from vj to vi if and only if mij �= 0. A directed graph is called strongly
connected if for every pair of vertices, there is a directed path between them [4].
The following is a preliminary result related to any strongly connected digraph.

Lemma 1 (Theorem 3 of [6]). Assume G is a strongly connected digraph
with Laplacian L satisfying Lwr = 0, wT

l L = 0 and wT
l wr = 1. Then R =

lim
t→∞ exp(−Lt) = wrw

T
l ∈ Mn.

Theorem 1. Consider a multi-robot system with robot dynamics described by
(1) and (8), by introducing the control input vi = q̇i = (ρ̇i, ϕ̇i, żi)T into (8),
where

ρ̇i = kρ(ρ∗ − ρi), (9)
żi = −kzzi, (10)
ϕ̇i = ω∗ + kϕ(ϕ̄i − ϕi). (11)

Note that kρ, kz and kϕ are positive gains, and

ϕ̄i =

{
ϕi− + μi−+μi

μi++2μi+μi−
(Δi + Δi−), i = 2, 3, . . . , n,

ϕi− + μi−+μi

μi++2μi+μi−
(Δi + Δi−) − 2π, i = 1,

(12)
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where μi is the utility of the robot ri and it is piecewise constant. If the f function
is shown as (7) (Formation Guideline 1), the circumnavigation control problem
based on utilities encoded by (3), (4), (5) and (6) can be solved with exponential
convergence speed.

Proof. It is obvious that (9) and (10) do not rely on the states of other robots,
and they are basically P control laws with reference input ρ∗ and 0 respectively.
So according to the classical control theory, ρi and zi will converge exponentially
to ρ∗ and 0 respectively.

Since μi, i = 1, . . . , n, is piecewise constant, it is obvious that lim
t→∞ fi exists.

We define ϕ̄ = [ϕ̄1 ... ϕ̄n]T and ϕ = [ϕ1 ... ϕn]T , so (11) and (12) can be written
into compact forms respectively as follows:

ϕ̇ = ω∗1 + kϕ(ϕ̄ − ϕ), (13)

ϕ̄ = Aϕ + b, (14)

A =

⎡
⎢⎢⎢⎢⎣

0 μn+μ1
μ2+2μ1+μn

0 . . . 0 0 μ1+μ2
μ2+2μ1+μn

μ2+μ3
μ3+2μ2+μ1

0 μ1+μ2
μ3+2μ2+μ1

. . . 0 0 0
...

...
...

...
...

...
...

μn−1+μn

μ1+2μn+μn−1
0 0 . . . 0 μn+μ1

μ1+2μn+μn−1
0

⎤
⎥⎥⎥⎥⎦

(15)

where A ∈ Mn is shown as (15), and b = 2π
[

−(μ1+μ2)
μ2+2μ1+μn

0 . . . 0 μn−1+μn

μ1+2μn+μn−1

]T

.

During each time period where μi is constant, A and b are constant matrix
and vector respectively. Note that matrix A is a row stochastic matrix and
furthermore, it could be considered as the adjacency matrix [4] corresponding to
a weighted directed ring denoted by G(A). It can be readily verified that G(A)
is strongly connected. Next we define the error signal as

eϕ = ϕ̄ − ϕ = (A − In)ϕ + b = −Lpϕ + b, (16)

where Lp = In − A, which is the Laplacian matrix of G(A). Since Lp is constant
at each time period, the derivative of eϕ is ėϕ = −Lpϕ̇. By substituting (13) and
(16) into this equation, we further obtain the error dynamics as

ėϕ = −ω∗Lp1 − kϕLpeϕ = −kϕLpeϕ. (17)

Note that 1 is the right eigenvector associated with the zero eigenvalue of Lp,
so −ω∗Lp1 = 0. The solution to (17) is eϕ(t) = exp(−kϕLpt)eϕ(0). According
to Lemma 1 and also note that kϕ > 0 only affects the convergence speed but
not the convergence value, we have lim

t→∞ eϕ(t) = wrw
T
l eϕ(0), where Lpwr =

0, wT
l Lp = 0 and wT

l wr = 1. By substituting (16) into this equation, we obtain
the following:

lim
t→∞ eϕ(t) = wr(−wT

l Lpϕ + wT
l b) = wT

l bwr. (18)
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Let wr = 1 and wl = wL∑
wL

, where the ith entry of wL is

⎡
⎣wLi

= (μi+ + 2μi + μi−)
n∏

j=1,j �=i,i−
(μj + μj+)

⎤
⎦ ,

and
∑

wL
=

∑n
i=1 wLi

. It can be easily verified that wT
l and wr are the left and

right eigenvector of the Laplacian matrix Lp associated with the zero eigen-
value respectively, and wT

l wr = 1. Therefore, (18) becomes lim
t→∞ eϕ(t) = 0, or

lim
t→∞ ϕ(t) = lim

t→∞ ϕ̄(t). According to (13), the circumnavigation speed of each
robot converges to the desired angular speed ω∗. In addition, under this condi-
tion, ϕ̄i is replaced by ϕi in (12) and therefore, for robots with indices i = 2, ..., n,
the equation ϕi = ϕi− + μi−+μi

μi++2μi+μi−
(Δi +Δi−) further becomes Δi

Δi−
= μi+μi+

μi+μi−
.

This means a sequence of equations Δn

Δn−1
= μn+μ1

μn−1+μn
, ..., Δ2

Δ1
= μ2+μ3

μ1+μ2
. Assuming

Δ1 = k(μ1 + μ2), k �= 0, we have Δi = k(μi + μi+), i = 2, ..., n. According
to

∑n
i=1 Δi = 2π,, it follows that 2k

∑n
i=1 μi = 2π, and hence k = π/

∑n
i=1 μi.

Therefore, Δi = (μi +μi+)π/
∑n

i=1 μi = fi(t, μ1, . . . , μn). So the formation spac-
ing expressed by (4) and (7) can be achieved.

Remark 2. Since (9), (10), (11) and (17) typically admit a linear system, the
convergence is global and exponential. In fact, for the convergence of eϕ, a Lya-
punov function can be defined as V (eϕ) = eT

ϕPeϕ, where P = diag{wl}, so
the global and exponential convergence can also be proved using the Lyapunov
theorem.

Remark 3. In the definition of circumnavigation control problem based on util-
ities, (4) contains the utilities of all robots. However, it can be seen from (12)
that each robot only needs to obtain the utilities of its two neighboring robots.
Moreover, it should be noted that robots do not know what the holistic expected
formation is; the actual formation (or spacing) among robots adapt dynamically
to the variations of the local utilities of neighboring robots. In addition, when
a robot joins or leaves the formation, according to (11) and (12), the spacing
among robots will adjust dynamically through local update of the utilities of
neighboring robots. To sum up, the utility-based circumnavigation control algo-
rithm does not rely on the number of robots, and it is able to dynamically adjust
the formation spacing dependent on the change of utilities.

Remark 4. When μθ = 0, the robot rθ has quitted from the circumnavigation
process, and therefore the communication topology has changed. The change
of communication topology means the indices of the neighboring robots alter
accordingly. When μ2 = 0, for example, the neighboring robots of r3 change
from r2 and r4 to r1 and r4. In this way, the circumnavigation control algorithm
based on utilities can well adapt to the cases where there are local variations on
utilities or where robots join or quit from the formation. The formation spacing
can adjust dynamically based on the selected formation guideline, achieving
distributed formation reconfiguration.
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Another problem that is worth considering is whether robots preserve their
initial orders during the whole circumnavigation process. For the next theorem,
the definition of a Metzler matrix [5] is given. For a real matrix M = [mij ] ∈ Mn,
if all its off-diagonal elements are non-negative, i.e., mij ≥ 0, i �= j, M is a
Metzler matrix.

Theorem 2. During the circumnavigation process, robots always keep their ini-
tial orders in the formation. In other words, Δi(t) > 0, i = 1, . . . , n, for t ≥ 0.

Proof. According to (2), (11) and (12), for i = 1, . . . , n, it follows that

Δ̇i = kϕ

[
μi + μi+

μi∗ + 2μi+ + μi
Δi+ −

(
μi+ + μi∗

μi∗ + 2μi+ + μi

+
μi− + μi

μi+ + 2μi + μi−

)
Δi +

μi + μi+

μi+ + 2μi + μi−
Δi−

]
,

(19)

where i∗ represents (i+)+, which is the index of the second adjacent robot for
the robot ri in the counter-clockwise direction. Let Δ = [Δ1 . . . Δn]T , then (19)
can be rewritten as Δ̇ = kϕMΔΔ, where MΔ is shown in (20).
MΔ =
⎡
⎢⎢⎢⎢⎣

−(μ2+μ3)
μ3+2μ2+μ1

+ −(μn+μ1)
μ2+2μ1+μn

μ1+μ2
μ3+2μ2+μ1

. . . μ1+μ2
μ2+2μ1+μn

μ2+μ3
μ3+2μ2+μ1

−(μ3+μ4)
μ4+2μ3+μ2

+ −(μ1+μ2)
μ3+2μ2+μ1

. . . 0
...

...
...

...
μn+μ1

μ2+2μ1+μn
0 . . . −(μ1+μ2)

μ2+2μ1+μn
+

−(μn−1+μn)

μ1+2μn+μn−1

⎤
⎥⎥⎥⎥⎦
.

(20)
Therefore, the solution of Δ(t) is Δ(t) = exp(kϕMΔt)Δ(0). Since MΔ is a
Metlzer matrix, it has been proved that exp(kϕMΔt) is a non-negative matrix.
In addition, due to Δ(0) > 0, it follows that Δ(t) > 0, t ≥ 0, which means that
robots always keep their initial orders in the formation.

Remark 5. The significance of this theorem is that it provides a preliminary
result for collision avoidance. In other words, if robots are treated as mass points,
then collision will not happen since they always keep their initial orders. For real
robots with geometric shape, given sufficiently large spacing, the collision will
not happen, but this will need further investigation.

4 Experimental Results and Analysis

Although it is claimed that formation guidelines correspond to specific physics
backgrounds, in the experiment, we do not try to reproduce the specific scenar-
ios. This is because the emphasis here is the stability of the circumnavigation
control algorithm based on utilities, and how the global formation spacing reacts
dynamically to the variation of the utilities. In the experiments, robots’ utili-
ties are supposed to be proportional to its maximum movement speed. However,
how the utilities are calculated from the maximum movement speeds is not the
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interest of the study. Instead, the variation of the utilities are manually specified.
Readers can think of an increase in the utilities as an update of robots’ locomo-
tion capabilities, while the decrease means the deterioration of performance due
to worn-out or damage of robots2.

4.1 Experiment with Soccer Robots

In this experiment, four soccer-playing robots [11,12] are used and Formation
Guideline 1 is adopted. Since the soccer-playing robots have omnidirectional
movement abilities and they can reach any given velocity instantly, their dynam-
ics can be regarded as the first-integrator model given in (1). In addition, an
omnidirectional vision system is equipped on each robot with algorithms for
self-localization and the recognition of a yellow football [2]. The position and
velocity of the robot itself and the position and velocity of the football are
obtained by its own omnidirectional vision system. Moreover, robots are only
allowed to receive information from its neighboring robots and the information
is transmitted using wireless communication.

Fig. 4. The real robot experiment. (a)–(d) illustrate the positions of robots at 4 s
(Stage 1), 19 s (Stage 2), 39 s (Stage 3) and 61 s (Stage 4) respectively. (Color figure
online)

The utilities of robots r1, r3 and r4 remain 20 throughout the whole cir-
cumnavigation process, while the utility of the robot r2 varies according to a
piecewise constant function. That is, μ2 = 1, (0 ≤ t < 15); μ2 = 20, (15 ≤
t < 30); μ2 = 50, (30 ≤ t < 45); μ2 = 0, (t ≥ 45). For convenience, the four
time ranges are denoted by Stage 1, 2, 3 and 4 respectively. Following Formation
Guideline 1, it can be calculated the final expected spacing for the four stages
is [62 62 118 118]T , [90 90 90 90]T , [114 114 66 66]T and [120 120 120]T

(unit: degree) correspondingly. Note that at Stage 4, the robot r2 quits from the
circumnavigation process as its utility becomes zero. In this experiment, robots’
initial positions are randomly chosen. The experiment parameters are ρ∗ = 2 m,
w∗ = 0.5 rad/s, kϕ = 2.5 and kρ = 2.

The circumnavigation process is shown in Fig. 4. It demonstrates the posi-
tions of robots at different stages. The yellow lines connecting each robot’s center

2 The simulation results are illustrated in the full version http://arxiv.org/abs/1805.
05395.

http://arxiv.org/abs/1805.05395
http://arxiv.org/abs/1805.05395
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Fig. 5. The data plots of the real robot experiment. (Color figure online)

indicate the formation shape. The ball in the middle of the field is the target
to be encircled, which is marked by a red circle. The corresponding data plots
are shown in Fig. 5. Since robots move on the ground, the error plot of −z is
omitted. In Fig. 5d, the red, green, blue and black solid lines connecting the cen-
tres of robots represent the formation shapes at Stage 1, 2, 3 and 4 respectively.
The dashed lines originated from robots are their trajectories. Note that since r2
quits from the formation at Stage 4 (μ2 = 0), the data related to r2 is not plot-
ted after 45 s. The circumnavigation radii, angular speeds and formation spacing
converge to but fluctuate around the desired values at each stage (see Fig. 5a, b
and c respectively). Noticeably, at the last intersection (45 s), the circumnavi-
gation radius and spacing for the robot r1 deviate significantly from the desired
values due to the absence of the robot r2 in the formation, but the variations
diminish rapidly subsequently (see Fig. 5a and c). The robot r4 is hardly affected
as it is not a neighboring robot of r2. In Fig. 5d, the black dot at the center is
the real position of the target and the cluster of pink dots are the perceived
positions of the target by r1. This manifests that information noise increases the
uncertainty of the perceived information. Although there are fluctuations due
to the information noise, the real spacing converges to the expected spacing at
each stage (see Fig. 5c).
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5 Concluding Remarks and Future Work

This paper proposes a distributed control law for a multi-robot system to realize
circumnavigation process with dynamic spacing based on utilities. Unlike most
of the existing study, in this paper, the spacing is not fixed and equal but they
are dynamic, which is useful if robots are heterogeneous (e.g. with different
kinematics capabilities). The theoretical analysis using graph theory along with
the experiments prove the effectiveness of the proposed circumnavigation control
algorithm based on utilities.

Although Theorem 2 implies that robots will not collide with each other since
their orders are unchanged during the circumnavigation process, this claim is
based on the assumption that robots are considered as mass points. The collision
avoidance problem taking into account the physical dimensions of robots will be
studied in the future.
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