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Abstract. We propose a Visual-SLAM based localization and naviga-
tion system for service robots. Our system is built on top of the ORB-
SLAM monocular system but extended by the inclusion of wheel odome-
try in the estimation procedures. As a case study, the proposed system is
validated using the Pepper robot, whose short-range LIDARs and RGB-
D camera do not allow the robot to self-localize in large environments.
The localization system is tested in navigation tasks using Pepper in two
different environments: a medium-size laboratory, and a large-size hall.

1 Introduction

Pepper is the official robot used in the RoboCup@Home Standard Platform
League. It presents several advantages for human-robot interaction such as its
friendly appearance but has important limitations such as its reduced sensing
and computing capabilities. In contrast to custom robots which generally rely
on expensive LIDARs for metric localization and navigation, which work in both
indoor and outdoor environments, Pepper has short-range LIDARs and an RGB-
D camera that provide reliable localization only in small indoor rooms, being
unable to provide useful information to localize the robot in large environments.
This is a big deal for Pepper, which is expected to be used not only in homes,
but also in public places like hospitals, shopping malls, and schools.

To address this issue, we built upon the recent advances of visual SLAM sys-
tems to develop a visual-SLAM based self-localization solution aided by wheel
odometry, which allows Pepper to self-localize and navigate in large environ-
ments. The reason to include odometry in the visual estimation procedures is
to recover the metric scale (unknown in typical pure-visual schemes) and to
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make the visual system more robust to tracking failures. This is vital for nav-
igation tasks that require a “continuous” localization hypothesis to work. The
proposed solution is based on an open-source visual SLAM system, ORB-SLAM
[10], which is extended by the inclusion of the wheel’s odometry in the estimation
procedures.

In Sect. 2 we present a brief overview of modern SLAM systems. Then, in
Sect. 3 we describe some basic notation as well as relevant characteristics of the
Pepper robot. Afterwards, we present our localization and navigation approach
in Sect. 4. In Sect. 5 we present two experiments of localization and navigation
with the Pepper robot in different environments. Finally, Sect. 6 concludes the
work with discussion and recommendations for future developments along this
line.

2 Visual SLAM

Visual SLAM has been a hot topic during the last years since it presents a low-
cost solution for applications that require localization and mapping features such
as augmented reality, virtual reality, and autonomous systems (e.g. autonomous
cars, inspection drones). Being originally formulated as a filtering problem, nowa-
days optimization-based approaches are preferable by its superior accuracy at
similar computational cost [13]. Optimization-based approaches model the prob-
lem as a factor graph which probabilistically relates several variables -such as
poses and landmarks-, by the so-called factors, that correspond to sensor mea-
surements or physical constraints between the variables [1]. An example of a
visual SLAM system is shown in Fig. 1.

Fig. 1. Different factor graphs related to optimization approaches in ORB-SLAM. Cir-
cles denotes variables such as map points and keyframes within a visual SLAM scheme;
white are active, gray fixed. Squares denote factors or measurements.

The factor graph can be formulated as a non-linear least squares problem [1]
that aims to find the states X ∗ = X1, ... , Xm that minimize the error between
the measurements Zi, and an observational model hi(Xi) that “predicts” the
expected measurement given the state Xi

1:

1 The operator � generalizes the concept of subtraction for non-Euclidean spaces.
Please refer to Hertzberg et al. [5] for a complete treatment.
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X ∗ = arg min
X

=
m∑

i=1

‖hi(Xi) � Zi‖2Ωi
(1)

The same formulation holds for the visual case, where the states correspond to
selected camera poses of the trajectory -keyframes- and also the map represen-
tation -3D points, surfels, voxels, etc.-, and the measurements are reprojections
of the map into the image plane.

Regarding some actual systems, different solutions have been developed for
monocular and stereo/depth sensors. We are concerned about monocular solu-
tions since cameras are ubiquitous in current robots while being “cheap” sensors
in comparison to the other two; they also can work in both indoor and outdoor
environments. Monocular visual SLAM systems are either feature-based that uti-
lize just some features in the image, such as ORB-SLAM [10], or direct methods
that exploit the complete information from every image as in LSD-SLAM [3].

The main issue with monocular systems is that they require a moving cam-
era in order to estimate the depth of the scene, as well as depending on an
unknown scale factor that maps the estimated states to physically consistent
dimensions. The typical approach to solve the problem relies on the usage of
different sources of information that provides the scale, such as inertial measure-
ments units (IMU); however, this increases the computational requirements of
the estimation problem, since the number of states increases [12].

The utilization of visual localization systems in the RoboCup@Home has
been disregarded since most of the custom robots could afford accurate but
expensive LIDAR systems [2,7], which provide a simpler solution. Nevertheless,
since the range of Pepper’s LIDARs and depth camera are defined by the man-
ufacturer, and the RoboCup@Home SSPL (Social Standard Platform League)
forbids the use of additional sensors, it is unfeasible for the robot neither local-
ize nor navigate in large environments. For this reason, we propose a visual
approach for the localization problem based on an open-source visual SLAM
system, ORB-SLAM [10], and we present a strategy to solve visual SLAM issues
(mainly the lack of a metric scale) by aiding the system with wheel odometry
measurements.

3 Platform, Coordinate Systems and Notation

3.1 Notation

To prevent confusion in notation, we follow the conventions of Paul Furgale2:

– Coordinate frame A is notated as F−→A.
– Homogeneous transformation matrix OTWC ∈ SE(3) represents the pose of

the camera frame F−→C with respect to the world frame, F−→W , seen from frame
F−→O. A vector expressed in world frame W, Wv can be hereby transformed to
the camera frame C by the rotation matrix RWC ∈ SO(3), as Cv = RWC Wv

2 http://paulfurgale.info/news/2014/6/9/representing-robot-pose-the-good-the-bad-
and-the-ugly.

http://paulfurgale.info/news/2014/6/9/representing-robot-pose-the-good-the-bad-and-the-ugly
http://paulfurgale.info/news/2014/6/9/representing-robot-pose-the-good-the-bad-and-the-ugly
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Fig. 2. Coordinate frames used in this work, we follow the classic conventions with X
red, Y green and Z blue. F−→C denotes the camera frame, F−→O the odometry frame and

F−→B the body’s. Pepper picture is based on Philippe Dureuil’s. (Color figure online)

– The homogeneous transformation matrix CTWC will be abbreviated to TWC

for reader convenience unless otherwise indicated.

3.2 Pepper Robot

Pepper is a wheeled humanoid platform. It has a mobile omnidirectional base
and 20 degrees of freedom, including an actuated pelvis and neck. It has two
Omnivision OV5640 cameras, located in the forehead and the mouth, in addition
to an RGB-D sensor in the eyes. Additionally, the base has three LIDARs and
an IMU. In order to access the sensors and control the robot, Softbank provides
an API to its middleware, NAOQi.

Since we base our system in the ROS framework, we access sensing and
perform control through the naoqi driver ROS package. We principally use
the images from the forehead camera at a 640 × 480 pixels resolution, as well as
the internally computed odometry measurements; the algorithmic details about
the latter are unknown to the user.

We considered two main reference frames for this work (Fig. 2): On the one
hand, the odometry frame denoted by F−→O describes the pose of the robot relative
to the initial pose, as defined in ROS REP 1053. We use this frame to describe
the pose of the robot’s torso (body) computed by the internal wheel odometry,
denoted by OTOB. On the other, ORB-SLAM has its own reference frame (world)
F−→W that depends on the initialization of the system, hence it may change every

3 http://www.ros.org/reps/rep-0105.html.

http://www.ros.org/reps/rep-0105.html
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Fig. 3. Overview of our proposed system. The camera images are feed to the ORB-
SLAM system together with the camera position with respect to the odometry frame
(odom). An estimated camera position with respect to an arbitrary fixed frame is given
as output by ORB-SLAM. The visual localization node takes this information and
the Pepper kinematic information to compute a transformation between the standard
fixed frame map and the odom frame.

time the system is reset. The estimate provided by ORB-SLAM corresponds to
the world position with respect to the camera pose, CTCW .

4 Localization and Navigation System

Our visual SLAM-based localization and navigation system for Pepper con-
sist of three main components, which are shown in Fig. 3. Firstly, an ORB-
SLAM-based localization and mapping system, which uses a single RGB cam-
era located in Pepper’s forehead, and odometry measurements computed by
the proprietary Pepper’s software. The second component correspond to the
visual localization4 ROS node that transforms ORB-SLAM’s camera pose
estimate to a transformation between the standard map frame and the odom
frame. Finally, the node move base5 executes the navigation process.

4.1 ORB-SLAM-based Localization

Our localization system maintains the same software architecture with 3 parallel
threads, original from ORB-SLAM2 [11]: incoming images are processed in the
Tracking thread, creating new map points and estimating the current camera
pose TCW in world frame F−→W ; a Local Mapping thread which builds on the map
and the keyframes and frequently performs local bundle adjustments to update
the positions of map points and camera poses at the keyframes; a Loop Closing
thread which detects loops in the trajectory and propagates a correction through
the trajectory poses and the map. In addition, we implemented the following
improvements:
4 https://github.com/ristofer/visual localization/.
5 http://wiki.ros.org/move base.

https://github.com/ristofer/visual_localization/
http://wiki.ros.org/move_base
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Tracking Modifications. We changed the Tracking thread to process not only
images but also odometry measurements, obtained directly from ROS. Odometry
measurements are computed within the Pepper’s internal software and published
in ROS through NAOqi wrappers with respect to the odom frame, shown as F−→O

in Fig. 2. Our ROS-compatible wrapper for ORB-SLAM subscribes the tf topic
and images, and requests an odometry measurement every time a new image is
received, obtaining a synchronized pair image-odometry. Later, every time a new
keyframe is created after a successful camera tracking, the odometry information
is also included in the keyframe.

In addition, since the original behavior of ORB-SLAM is to stop providing
camera poses when camera tracking fails, and wait until a relocalization, which
is not a desirable strategy while navigating6, we set the camera estimation equal
to the odometry prediction. This ensures a continuous camera pose hypothesis
for planning tasks but requires that the metric scale is initialized.

Metric Scale Initialization. We did not utilize any general system initializa-
tion solution as in [9] but preferred a multi-step approach as in [12]. We first wait
until the pure visual SLAM system is initialized and the unscaled map built, to
then compute the scale from the odometry information between keyframes.

By comparing the relative translations between keyframes as predicted by
ORB-SLAM ΔpO(i − 1, i) and the odometry ΔpW (i − 1, i), the scale can be
retrieved and the map and keyframe poses can be updated by the method of
Horn [6] (Eq. (2)). However, the initial map is subject to major change in the
early stages of the mapping. Therefor the scale correction is done after a fixed
number of N keyframes have been created, ensuring a satisfactory converged
map and thus a reasonably reliable scale correction. The success of this strategy
only depends on the environment’s size and the motion performed by the robot;
an additional discussion is given in Sect. 5.

s =

√∑N
i ‖ΔpO(i − 1, i)‖2

√∑N
i ‖ΔpW (i − 1, i)‖2

(2)

After the scale update, a Global Bundle Adjustment (Global BA) is per-
formed to guarantee an optimal map reconstruction.

Local Mapping. Every time a new keyframe is created, Local Mapping per-
forms an optimization in a subset of the complete trajectory updating both the
poses and the map -the so-called local window. The parts of the trajectory to
be optimized are keyframes in the neighborhood of the last added keyframe,
and also map points being observed by those; the neighbors are selected by the
so-called covisibility graph [10]. This operation on the local window ensures an
efficient optimization process even in large maps.

6 Unless high-level behaviors to detect failures are considered.
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Since the initialization procedure makes the current trajectory and map met-
rically consistent, it is possible to fuse the visual information with wheel odom-
etry information to avoid drift. This is done by adding odometry factors or
constraints between keyframes. In order to do so, the odometry measurement
is mapped from the odometry frame F−→O to the camera frame F−→C by using
Pepper’s forward kinematics. Hence, we compute the difference between the
odometry measurements i−1 and i, CTCi−1,Ci

, between all the keyframes in the
local window, which hopefully match the difference between the keyframes’ pose,
(TCi−1WTCiW

). The error between the odometry’s and ORB-SLAM’s differences
are defined in the minimal representation of the pose, i.e. 6-dimensional, which
is achieved by using the logarithm map of SE(3):

εodo = LogSE(3)

(
CT−1

Ci−1,Ci
TCi−1WT−1

CiW

)
. (3)

This residual is defined for every pair of keyframes within the local window;
additionally, keyframes with neighbors which are not in the local window, are
also added as fixed nodes in the optimization. The corresponding optimization
problem that minimizes visual error terms εvis (as defined in [10]) and odometry
terms εodo (Eq. (3)), is:

X ∗ = arg min
X

=
∑

(i,k)

‖εvis‖2Ωvis
+

∑

(i−1,i)

‖εodo‖2Ωodo
(4)

The optimization problem in Eq. 4 is solved with the graph optimization
framework g2o[8] using fixed information matrices Ωodo,Ωvis. The resulting
keyframe poses and map points are then updated, and the Local Mapping thread
awaits until a new keyframe is added from Tracking.

Localization Mode and Map Reuse. ORB-SLAM provides the option to
localize in a previously built map, disabling the SLAM capabilities. This local-
ization can run in a single thread, hence requiring a fraction of the computational
requirements compared to the full ORB-SLAM system. Nevertheless, in order to
perform localization-only, it is required a map that was built in the same session.

Since this is not generally the case, we use map saving capabilities (taken from
a fork of ORB-SLAM7) and implemented a different behavior for the system
when it is launch with a pre-built map, that first tries to relocalize and then
continue mapping incrementally. These minor changes allowed us to build maps
even during different sessions once the relocalization is successful.

4.2 Navigation

For the navigation part, we assume the ORB-SLAM’s map was already built, so
we can rely on the localization mode.

7 https://github.com/Alkaid-Benetnash/ORB SLAM2.

https://github.com/Alkaid-Benetnash/ORB_SLAM2
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The pose estimation performed by ORB-SLAM is 6-dimensional since it con-
siders a camera freely moving in the space, which would be an overkill to perform
planning with Pepper. In order to use ORB-SLAM’s estimates within a pla-
nar navigation framework, we developed the visual localization node, which
takes the estimated position of the camera with respect to the ORB-SLAM world
frame and computes a transformation between the ROS standard map and odom
frames. This transformation represents the Pepper position in the ORB-SLAM
map based on the estimated pose of the Pepper’s camera and its kinematic
information.

The move base package is used to navigate. Our localization system basically
replaces the amcl8 package in the ROS Navigation Stack. The move base package
uses the pose estimate provided by the localization system and Pepper’s laser
readings to compute the cost map necessary for planning. Thus, lasers are not
used for localization, but for obstacle detection and path planning.

5 Experiments and Results

5.1 Experimental Setup

We considered two real environments of the Faculty of Physical and Mathemati-
cal Sciences of Universidad de Chile to test our system: Mechatronics Laboratory
and School Building South Hall. The chosen places were different in size, furni-
ture, and visual features complexity, being the latter of paramount importance
for the visual SLAM system.

– The Mechatronics Laboratory (Fig. 4a) is a 10 × 9 m2 space. The main furni-
ture are rolling chairs and work tables. It is a feature-rich space comparable
to the RoboCup Arena; however, it has various windows that enable the pass
of natural light.

– The School Building South Hall (Fig. 4b) has an area of 16× 27.5 m2. It is an
open space with pillars and doors, but generally feature-less, making it the
most challenging environment for our system.

To have a ground truth reference, a Google Tango Tablet is used (Fig. 4c).

5.2 Experiments

Mapping. The first experiment considered a localization and mapping task; this
was performed in both the Mechatronics Lab (Fig. 4a) and South Hall (Fig. 4b).
We remote controlled the robot to build a three dimensional map to be later used
for localization. Table 1 compare different mapping results through the Absolute
Trajectory Error [14], a metric that calculates the root mean square error RMSE

defined as
(

1
N

∑N
i ‖pei − pgti‖2

)1/2

between the localization estimate pei and
the ground truth pgti through all the time indices.

8 http://wiki.ros.org/amcl.

http://wiki.ros.org/amcl
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Fig. 4. Left: Mechatronics Lab. Center: South Hall. Right: Pepper with Google Tango
Tablet attached for ground truth measurements.

Table 1. Absolute Trajectory Error (ATE) in meters, for each place and axis. A
mapping experiment was performed in the Mechatronics Laboratory and in the South
Hall. The estimated trajectory and the ground truth was used to calculate the ATE.

Place ATE X [m] ATE Y [m] ATE Z [m]

Mechatronics Laboratory 0.270 0.249 0.080

South Hall 0.619 0.849 0.390

During all the experiments we noticed that the robot must move smoothly
and preferably sideways in order to triangulate the initial map; pure rotational
factors must be avoided despite the offset between the head camera and the base’s
axis of rotation. The initial displacement is primordial to recover a reliable scale
factor as well. However, this also depends on a parameter that sets the number of
keyframes to wait until the scale is recovered with Eq. 2, which is set empirically.

Regarding mapping, as is expected from a feature-based visual SLAM sys-
tem, the number of points and quality of the map increases in feature-rich envi-
ronments. In addition, compared to LIDAR mapping, visual mapping requires
significantly more time. This because map creation depends on the field-of-view
(FOV) of the camera, which is very narrow in Pepper, requiring to map the
same place from multiple views in order make it useful for robust localization.
LIDAR does not suffer from this issue since localization is performed by point
cloud alignment rather than feature matching. However, feature matching has
the advantage of providing instantaneous relocalization when the robot is lost
since places are uniquely defined by a bag-of-words representation [10].

Localization and Navigation. We performed a second experiment to test the
localization and navigation in a known place, i.e., with a pre-built map. This
was also executed in the Mechatronics Laboratory and South Hall.

We commanded the robot to navigate without operator help to a relative
point with respect to its initial pose, which exploited the localization capabilities
of our system in a known environment. Localization results are shown in Figs. 5
and 6.

Our experiments show the performance of the system, which uses both visual
localization and odometry fusion (highlighted in gray) and odometry-only local-
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Fig. 5. Navigation test on the Mechatronics Laboratory. The estimate of the local-
ization system is compared to ground truth. Grey areas in the graph indicated when
the robot is correctly localized with ORB-SLAM. When the robot is not localized, an
odometry estimate is used

ization when the robot is lost (in white). In the navigation experiment in the
Mechatronics Lab, showed in Fig. 5, Pepper correctly navigated through the test.
However, between seconds 275 and 350 there exists a considerable drift between
the ground truth and the localization estimate. These problems can result in
reaching an erroneous navigation goal or even collide if no safety procedures
are considered. We believe that a cause of this issue was the lack of viewpoints
during the mapping step, as mentioned in the previous experiment.

Regarding South Hall experiments, the multiple discontinuities in the local-
ization estimate (Fig. 6, Z axis) made navigation unfeasible. This was caused by
the large distance between the robot and the landmarks in this environment,
which was not the case of the Mechatronics Lab. Since visual SLAM systems
are based on optimization and Pepper’s FOV is narrow, it is more difficult to
correctly estimate the pose because the triangulation uncertainty is higher; this
is a known problem in visual systems [4].

However, in both experiments we noticed that localization is robust to
changes in the environment, like a change in furniture position and, if the map
is correctly built, there is minimal (if not zero) accumulation of drift error.

5.3 Discussion

The previous experiments evidence several advantages but also challenges of our
proposed system. We summarizes them as follows:
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Advantages. Our localization system is not affected by Peppers’ LIDARs short
range, which is one of the main limitations of it in RoboCup environments. Since
we used the map created visually, the robot is able to localize with a single look
by exploiting the relocalization capabilities of ORB-SLAM. Our scale recovery
solution also allowed us to perform metric mapping despite using a single camera.
In addition, since the motion estimation is based on features, it is robust to
partial occlusions, and odometry is used when no visual features are tracked. All
these advantages demonstrate that it is possible for our system to localize the
robot in RoboCup@Home arenas successfully.

Challenges. Despite the previous advantages, we cannot avoid to mention some
challenges and difficulties we noticed during our experiments. The first one
relates to illumination changes, which can deteriorate hugely visual tracking.
If we set the camera exposure to automatic we can deal with dynamic lighting,
but the system is more susceptible to motion blur, which is still an issue despite
the robot performs planar motion; the main cause of this is joint backslash. If
the environment has non-variable illumination, we recommend to fix the camera
exposure to diminish those problems. The second challenge regards glossy sur-
faces, which produce fake landmarks because of reflections. Despite ORB-SLAM
is able to deal with outliers that do not match the predicted motion, it is still
an open challenge in our opinion. Finally, localization turns noisier when the
landmarks are far away, which is caused by the optimization procedures and the
point’s triangulation uncertainty.

Fig. 6. Navigation test on the South Hall. The robot tries to navigate but the local-
ization system does not work correctly.
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6 Conclusions

In this work, we presented a localization system for a Pepper robot based on
a visual SLAM system. Our solution, built upon ORB-SLAM, was focused on
developing a self-localization system able to deal with large environments despite
the LIDARs’ short range. In order to do so, we presented an approach that fused
visual and wheel odometry information. We tested the system in two real envi-
ronments, showing the feasibility performing SLAM and navigation with our
system with the current Pepper sensors, despite displaying some issues such as
weakness to illumination changes, ambiguities to glassy surfaces and far land-
marks.

Nowadays we are working towards an on-board implementation of the self-
localization system on Pepper, which will allow us to perform a more exhaustive
evaluation and comparison with other sensors such as lasers. In the future, we
would like to improve robustness to illumination changes and reducing the noisy
behavior in large environments.

Acknowledgments. This work was partially funded by the FONDECYT 1161500
project.
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