
Towards Real-Time Ball Localization
Using CNNs

Daniel Speck(B), Marc Bestmann, and Pablo Barros

Department of Informatics, University of Hamburg, Vogt-Koelln-Strasse 30,
22527 Hamburg, Germany

{2speck,bestmann,barros}@informatik.uni-hamburg.de

Abstract. Convolutional Neural Networks (CNNs) have shown promis-
ing results for various computer vision tasks. Despite their success, local-
izing the ball in real-world RoboCup Soccer scenes is still challenging.
Especially considering real-time requirements and the limited comput-
ing power of humanoid robots. Another important reason is the lack of
training and test data as well as baseline models to start with or compare
to. In this paper, we propose a state-of-the-art ball detection model and
make our training (over 35k images) and test (over 2k images) data sets
publicly available.

Keywords: RoboCup · Deep learning · Dataset · Ball detection ·
Ball localization · Fully convolutional neural network · TensorFlow

1 Introduction

Ball localization is one of the essential skills in RoboCup Soccer. It has to be
precise for close balls to allow the robot to position itself for example to shoot the
ball, but it also has to be able to detect balls that are several meters away. The
latter will become more difficult in 2020 when the playfield size will be doubled
[6]. Additionally, it has to perform on the limited hardware of a humanoid robot
in real-time, while still leaving resources for the other tasks of the robot.

Many approaches using neural networks were made since a change in the rules
introduced multi-colored balls. Often classifiers are used to detect if a region of
interest (ROI) contains a ball [8,10]. To the best of our knowledge, one of the first
approaches working on full-scale raw images in RoboCup was proposed by us in
RoboCup 2016, Leipzig [13]. It was trained on 1,080 training and 80 test images.
The network’s output consists of probability distributions that get combined to
form a heatmap showing the likelihood of a pixel being part of a ball. While this
showed promising results, the runtime performance of the network was too slow
to be used on non-GPU ARM hardware robots during a game.

Schnekenburger et al. followed the same approach of taking the full image
as input but used an FCCN [12]. This network was only trained on the center
points of objects using 2,150 training and 250 test images. It was able to run in

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 337–348, 2019.
https://doi.org/10.1007/978-3-030-27544-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_28&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_28

338 D. Speck et al.

real-time, but the used robot has significantly more computational power. We
present a model that is able to run on an NVIDIA Jetson TX2, a hardware that
is commonly used in the Humanoid Kid- and Teen-Size League. We train this
architecture on 35,327 images and have 2,177 test images for evaluation.

We would like to contribute to the community and support the development
of deep learning ball detection architectures. Therefore, we make our training
and test datasets publicly available and also share our baseline architectures.
This allows benchmarking and comparison of different approaches as well as an
easy access to high-quality training data which is especially difficult for new
teams.

The remainder of this paper is structured as follows: First, the data sets, as
well as the metrics for measuring the detection quality are presented in Sect. 2.
Two models for locating balls are then presented in Sect. 3. The results are
afterward presented in Sect. 4 and discussed in Sect. 5.

2 Hamburg Bit-Bots Ball Dataset 2018

We propose the Hamburg Bit-Bots Ball Dataset 2018. All images and our mod-
els have been made public by us to encourage further scientific advances. The
data can be accessed via our website1. The image sets can also be downloaded
separately from our teams profile page on our Imagetagger2 and the models are
accessible at the corresponding GitHub repository3. We hope this supports the
development and comparability of deep learning based models in RoboCup.

2.1 Data

The training dataset consists of 35,327 images (see Fig. 1) and the test dataset
of 2,177 images. Moreover, we supply an additional dataset with images only
recorded on our robot for testing purposes that consists of another 764 images.
We labeled these images with bounding boxes using the Hamburg Bit-Bots
Imagetagger4, an online tool we developed for making image annotation pro-
cesses easier [3]. The training dataset is split into different so-called image sets.
Over 14,000 images are from RoboCup 2016, Leipzig, Germany and nearly 8,000
from RoboCup 2017, Nagoya, Japan, over 6,000 images from our new lab, over
5,000 images from Iran Open 2018, and around 1,000 images from our old lab
(without artificial turf) in Hamburg. Hence, the training images were recorded
at six different locations. To boost the diversity we recorded different types of
image sets: two different games from RoboCup 2017, many different sequences
(us kicking or rolling the ball), non-moving balls at different angles and positions
on the playfield as well as shots taken during preparation phases. Additionally,
1 https://robocup.informatik.uni-hamburg.de/en/documents/bit-bots-ball-dataset-

2018/.
2 https://imagetagger.bit-bots.de/users/team/1/.
3 https://github.com/Daniel451/Towards-Real-Time-Ball-Localization-using-CNNs.
4 https://imagetagger.bit-bots.de/.

https://robocup.informatik.uni-hamburg.de/en/documents/bit-bots-ball-dataset-2018/
https://robocup.informatik.uni-hamburg.de/en/documents/bit-bots-ball-dataset-2018/
https://imagetagger.bit-bots.de/users/team/1/
https://github.com/Daniel451/Towards-Real-Time-Ball-Localization-using-CNNs
https://imagetagger.bit-bots.de/

Towards Real-Time Ball Localization Using CNNs 339

Fig. 1. Images taken from training dataset including their bounding boxes (red rect-
angles). There are 4 different types of balls in total. Most commonly recorded ball type
is the Euro 2016 ball, which was the official one in Humanoid Kid-Size League at
RoboCup 2017, Nagoya, Japan. (Color figure online)

Fig. 2. Images taken from test dataset. This dataset mostly covers the Euro 2016 ball
and footage recorded from an actual game of the competition in RoboCup Humanoid
Kid-Size League at RoboCup 2017, Nagoya, Japan. The whole encounter’s footage is
just included in the test dataset. The training dataset does not include any of the
images of this game. Besides, the test dataset includes another 351 images recorded by
the WF Wolves team from a location that is not covered at all in the training dataset.

we have included another 14,886 negative samples, i.e. images covering the play-
field, goals, a few robots, . . . , but no ball, from RoboCup 2016, Leipzig, Germany,
for evaluating models against false positives (Fig. 2).

2.2 Metrics

There are several approaches to evaluate object detection frameworks. We supply
four different metrics: Intersection over Union (IoU; also called Jaccard index 5),
precision, recall, and radius accuracy.

5 https://en.wikipedia.org/wiki/Jaccard index.

https://en.wikipedia.org/wiki/Jaccard_index

340 D. Speck et al.

For IoU we give the average over the whole test dataset and also the 90th and
99th percentile since the intersection for false positives or false negatives is an
empty set, thus heavily affecting the total IoU over the whole dataset. Providing
the 90th and 99th percentile is a better measure for the accuracy of pixel-level
detection for true positives.

For precision and recall we measure true positives (TP), false positives (FP),
and false negatives (FN) with strong restrictions: if the models output contains
multiple balls, we only extract the prediction with the highest activation. The
center of this predicted ball cluster has to be within the ground truth, i.e. within
the original label (ball pixels), to be counted as a TP. Effectively this means that
at least 50% of such a predicted ball’s pixels have to intersect with the ground
truth ball label, otherwise it is counted as FP. If no significant cluster can be
found in the model’s output, then it is counted as a FN.

The fourth metric we use is radius accuracy. We propose this metric to allow
to compare other models to ours that, for example, work on absolute coordinates
and cannot produce pixel-level predictions to allow for IoU or other metrics. We
hope this allows for comparability with as many models as possible. The radius
accuracy is a radial error function. We compute the ball’s predicted center and
measure whether this point lies within a certain radius r around the ground
truth (label). Formally, the accuracy with respect to a certain radius r is the
sum (see Eq. 1) over a scoring function fr (see Eq. 2) that measures if the squared
difference between a prediction p and a label (ground truth) l is lower than the
square of the radius for every image.

accuracyr =
1
n

∗
∑

i∈I

fr

(
(pxi − lxi)2 + (pyi − lyi)

2
)
. (1)

fr(x) =

{
1 x < r2

0 x ≥ r2
(2)

3 Proposed Architecture

Two architectures for neural networks and their implementation in Tensorflow
are provided and evaluated against our dataset. Other teams are welcome to use
these to compare their own results or improve our proposed architectures.

3.1 Model 1 (CNN)

This architecture is an updated version (see Fig. 3) of the ball detection CNN
model proposed by us at the 20th RoboCup International Symposium, 2016 in
Leipzig [13]. Instead of soft-sign activation, we used leaky ReLU (rectified-linear
units) activation, which showed reasonable results for our architecture [9]. The
training procedure (teaching signal) stays the same as in the original paper.

Towards Real-Time Ball Localization Using CNNs 341

co
nv

 9
x9

x1
6

 /2

fla
tte

n

co
nv

 7
x7

x1
6

 /2

co
nv

 3
x3

x3
2

co
nv

 5
x5

x3
2

 /2

x
fu

lly
-c

on
ne

ct
ed

 1
00

y

fu
lly

-c
on

ne
ct

ed
 1

00

ou
tp

ut
 x

fu

lly
-c

on
ne

ct
ed

 2
00

ou
tp

ut
 y

fu

lly
-c

on
ne

ct
ed

 1
50

raw RGB image

150x200x3

Fig. 3. Illustration of our proposed Model 1 (CNN). 7 × 7 and 9 × 9 convolutions
are applied in parallel to the raw RGB input image. The second and third layer use
5×5 and 3×3 convolutional kernels respectively, before the information gets flattened
and propagated to the fully-connected output channels to build probability distribu-
tions for x- and y-dimension. Strides of 2 are applied in the first two layers to reduce
dimensionality.

co
nv

 3
x3

x1
6

co
nv

 3
x3

x3
2

ba
tc

h
no

rm

m
ax

 p
oo

l 2
x2

ba
tc

h
no

rm

co
nv

 3
x3

x3
2

ba
tc

h
no

rm

co
nc

at

m
ax

 p
oo

l 2
x2

co
nv

 3
x3

x6
4

ba
tc

h
no

rm

co
nv

 3
x3

x6
4

ba
tc

h
no

rm

co
nc

at

co
nv

 3
x3

x1
28

ba
tc

h
no

rm

co
nv

 3
x3

x1
28

ba
tc

h
no

rm

co
nv

 3
x3

x6
4

ba
tc

h
no

rm

co
nc

at
up

sa
m

pl
in

g

co
nv

 3
x3

x3
2

ba
tc

h
no

rm

co
nv

 3
x3

x3
2

ba
tc

h
no

rm

up
sa

m
pl

in
g

co
nc

at

co
nv

 3
x3

x1
6

ba
tc

h
no

rm

co
nv

 3
x3

x1
6

ba
tc

h
no

rm

co
nv

 3
x3

x1

heatmap
(150x200x1)

raw RGB image

150x200x3

Fig. 4. Illustration of our proposed Model 2 (FCNN). Convolutional layers (purple),
batch normalization (yellow), concatenation (so-called “skip connections”; blue), 2D
upsampling (green), 2D max-pooling (red). (Color figure online)

Evaluation. This architecture outputs two different probability distributions
that should model a normal distribution where mean µ is expected to be at
the ball’s center in x- (first distribution) respectively y-dimension (second dis-
tribution). We did not fully utilize the power of the probability distribution

342 D. Speck et al.

(expensive post-processing) in this paper, because this model is already similar
when it comes to computational complexity compared to Model 2 (FCNN). We
simply used an argmax on the output to find the single neuron with the highest
activation and take this as a prediction for the ball’s center in x- & y-dimension.
Further post-processing of the model’s output, i.e. analyzing the probability dis-
tributions, would cover better results, but also would be done mostly on CPU
and use up more computation time. We tried to streamline the model to also
run near real-time on a NVIDIA Jetson TX2.

3.2 Model 2 (FCNN)

We developed a fully-convolutional neural network (FCNN) using TensorFlow6

inspired by the model Schnekenburger et al. proposed in their paper on object
detection with the Sweaty robot [12]. Due to the limited computational power
of RoboCup Humanoid Kid-Size robots, we propose a model with smaller input
(150×200 for height and width; original paper uses 512×640) to allow near real-
time execution on our NVIDIA Jetson TX2 hardware. We also feed raw camera
input instead of normalized images. An illustration of our model can be seen
in Fig. 4. We use 2D max-pooling for dimensionality reduction and 2D bilinear
up-sampling in our architecture to get a smoother heatmap as output because
strided transposed convolutional layers for up-sampling led to “checkerboard
artifacts” in our heatmap for some input images [2]. Xu et al. showed a thorough
evaluation of activation functions, which we used as a basis and found Leaky
ReLU (rectified linear units) to cover the best results for us [14]. This kind of
activation function was proposed by Maas et al. [7].

We experimented with different initialization techniques for the model. The
most stable results (test accuracies after finished training varied by only 0.1%)
were achieved with Glorot random normal initialization for the convolutional
weights and an all-zero initialization for the biases [4]. A dropout rate of 0.5
is applied to all layers but the first and last layer [5]. Padding is always set to
“same”, i.e. one of the padding options in TensorFlow, in order to keep dimen-
sionality between convolutional layers.

For training the network we compute ellipses out of our bounding box labels
in order to get near pixel-precise labels as training feedback for Model 2.

Evaluation. To extract the ball’s center we apply several steps onto the
heatmap output of Model 2. At first, we apply Otsu’s method to binarize and
threshold the image [11]. Afterward, OpenCV’s contour-finding algorithm is
applied to the binary image, which will return clusters for each “hotspot” in
the original heatmap. To extrapolate the most significant cluster, i.e. highest
activation of the network in the heatmap, we sum up the network’s original
output over the indices of each cluster. This procedure extracts the “strongest”

6 https://www.tensorflow.org/.

https://www.tensorflow.org/

Towards Real-Time Ball Localization Using CNNs 343

Fig. 5. Input images (test set images; top), FCNN output (heatmaps; bottom)
and combined plot (center) for Model 2. The interval [0.0, 1.0] is the possible range
for the network’s activation, hence this Figure shows that the network’s neurons fire
strongly for ball pixels and nearly homogeneously flat out to 0.0 otherwise.

activation in the heatmap, returning the most significant cluster of “ball pix-
els”. Afterward, we extrapolate the center point for a cluster using OpenCV’s
moments function.

4 Experimental Results

4.1 Ball Localization

Table 1 shows that the fully-convolutional neural network (Model 2) has a very
good ball localization quality throughout the test set, while the older model falls
behind. Model 2 also delivers a reasonable performance on the robot test data
set, which consists of 764 images recorded only on our robot at IRAN Open
2018. Our robot also walks and moves its camera leading to motion blur in the
images.

4.2 False Positives

Additionally, we tested our models on a negative dataset from Leipzig, i.e. a
dataset covering no ball at all. The dataset has 14,886 images covering different

344 D. Speck et al.

Table 1. Results for full training (20 epochs).

Metric type Test dataset Robot test data

Model 1 Model 2 Model 2

Radius 3 accuracy 30% 93.3% 39.9%

Radius 5 accuracy 47% 95.1% 46.6%

Radius 10 accuracy 55% 96.3% 63.9%

IoU (Jaccard index) - 74.3% 43.9%

IoU 90th percentile - 90.6% 88.1%

IoU 99th percentile - 95.7% 93.7%

Precision - 97.9% 90.4%

Recall - 98.3% 86.6%

playfields from RoboCup 2016, Leipzig, recorded at different angles, heights,
orientations, and so forth. Considering the size and complexity of the dataset
it is a significant challenge to prove a model’s robustness against false positives
since any detection on this dataset can be considered a false positive. For Model 1
the 99th percentile of output activation showed values of 0.6 with a standard
deviation of 0.2, leading to some false positives, even with post-processing applied
to the output. Model 2’s 99th percentile activation was at 0.003 with a standard
deviation of 0.03. Actual balls in an image produce a mean activation of 0.7
(rounded) for Model 2, hence we apply a threshold at 0.5. In our negative dataset,
only 1.04% of all images produce an output >0.5. This results in 155 of 14,886
to falsely produce a positive output.

4.3 Hardware Benchmarks

The results for inference timings for a CPU and three different GPU types can
be seen in Table 2. The NVIDIA Jetson TX2 was chosen since it is used by 7
teams [1] in HL and therefore the most used dedicated GPU. The Intel CPU is
comparable to the performance of an Intel NUC which is used by 18 teams in the
HL [1]. It shows that CPU inference timings per batch increase somewhat linear
with batch size. Additionally, the CPU is considerably slow for many convolu-
tional layers (which is expected, since a CPU has no specific hardware capability
of speeding up these computations), rendering Model 2 more computationally
expansive than Model 1 without a GPU. The GPU inference timings reveal that
for larger GPUs (GTX 1080, Titan X) a mini-batch size of 1, 4 or 8 samples
at once is too small to fully utilize the whole GPU. Thus, mean batch time
does not increase linearly for these GPU models. Additionally, the Titan X is
slightly slower than the GTX 1080 due to the 1080’s higher GPU clock speeds.
At training time with larger mini-batch sizes the Titan X is of course faster.
The Jetson TX2 also performs noticeably well for both models. Model 1 has
fewer layers (especially convolutional layers), hence it’s computational complex-
ity comes mainly through the fully-connected layers, which can be parallelized

Towards Real-Time Ball Localization Using CNNs 345

Table 2. Inference timings (mean values per batch through 1,000 runs)

Models Hardware GPU Batch= 1 Batch= 4 Batch = 8

Total Per image Total Per image Total

Model 1 NVIDIA
Jetson TX2

Yes 0.041 s 0.014 s 0.057 s 0.011 s 0.089 s

Model 2 NVIDIA
Jetson TX2

Yes 0.049 s 0.028 s 0.112 s 0.023 s 0.181 s

Model 1 NVIDIA
Titan X

Yes 0.014 s 0.004 s 0.016 s 0.002 s 0.016 s

Model 2 NVIDIA
Titan X

Yes 0.015 s 0.005 s 0.021 s 0.004 s 0.029 s

Model 1 NVIDIA GTX
1080

Yes 0.010 s 0.003 s 0.011 s 0.002 s 0.012 s

Model 2 NVIDIA GTX
1080

Yes 0.012 s 0.005 s 0.019 s 0.003 s 0.026 s

Model 1 Intel Core i5
2500K

No 0.049 s 0.025 s 0.098 s 0.026 s 0.204 s

Model 2 Intel Core i5
2500K

No 0.124 s 0.130 s 0.518 s 0.136 s 1.085 s

on the GPU for small batch sizes. This way the mean mini-batch timings for
Model 1 do not increase heavily before mini-batch sizes of 8.

5 Discussion

Model 1 (CNN) was mainly selected to present a comparison to recent (2016)
state-of-the-art models [13] challenged with new, more complex datasets. In com-
parison to most publications we mainly use footage from actual competitions and
not just lab environments and in contrast to Model 1’s original test data we now
wanted to keep in mind the pending change of the rules that will double playfield
sizes. To the best of our knowledge, our training and test dataset is the largest
one publicly available for RoboCup. Due to the fact that we did not randomly
split train/test data, but hand-picked playfields & games, or even locations in
case of German Open footage, the test data is completely novel to the network.
This, including our robot test dataset from Iran Open featuring only footage
recorded on the robot, is more challenging than other test datasets, like the one
used in [13]. Hence, it was expected that Model 1 (CNN) shows a considerably
lower accuracy. The model performed well on older datasets, but struggles at
ball localization on full-size playfields at very high distances with completely
new environments, audiences, and so forth. However, despite the increased com-
plexity of test data, this is partly also explainable with us not utilizing the
probability distribution output for x- and y-dimension, but just taking the max-
imum value’s index of each distribution respectively. Further post-processing

346 D. Speck et al.

would definitely help to enhance Model 1’s accuracy, but also greatly increase
runtime performance. On the other hand, Model 1 performs better on CPUs due
to its considerably lower amount of convolutional layers, which are only cheap to
compute on GPUs. This emphasizes the usage of Model 1 or similar architectures
for CPU-based robots, especially since post-processing of mentioned probabil-
ity distributions is only greatly increasing runtime performance on comparably
slow ARM-CPUs like the NVIDIA Jetson TX2. Intel NUC based robots, which
are the standard for CPU-based robots, are much faster for the post-processing.
Moreover, the lowest detection rates occur for distant balls (more than approx.
5 m). Hence, at least for a goalkeeper (who does not need information about
balls on the enemy half of the playfield) Model 1 might be a reasonable choice
for fast detection of approaching balls on CPU-based architectures.

Model 2 (FCNN) covers a very high quality in ball localization overall. We
wanted to push pixel-level accuracy with this model and supplied reasonable
results considering the IoU results presented in Table 1. Model 2 scored 74.3%
IoU on the whole test dataset. If we factor out some false positives for which
the intersection is zero, hence greatly decreasing the total IoU, we get very high
values of 90.6% IoU for the 90th percentile or 95.7% for the 99th percentile.
Figure 5 illustrates this pixel-level ball localization. With a precision and recall
of 97.9% and 98.3% respectively the results also show that Model 2 has a very
low rate of false positives and false negatives. To further present the robustness of
Model 2 we additionally benchmarked the model on another 14,886 images from
RoboCup 2016, Leipzig, which do not contain any ball, thus any ball detection
can be considered a false positive on this dataset. Even on this dataset, the false
positive rate is just above 1% in total.

However, one might argue that the test dataset is not complex enough to
challenge Model 2 since it does only over three different balls and does not
include many very dark images. We included a robot test dataset recorded only
on a robot walking over the playfield at Iran Open 2018 (see Table 1). Although
the localization quality drops Model 2 delivers a reasonable performance, suffi-
cient for ball localization with a precision of 90.4% and a recall of 86.6%. The
drop mainly occurs due to the robot’s walking: this introduces motion blur that
heavily affects input image quality.

Considering runtime performance on GPUs it is also worth to think about
batch processing since it is easier to parallelize batches on a GPU and thus
achieve a higher overall utilization of the GPU’s computing power. As shown in
Table 2 the efficiency per image regarding runtime performance increases with
higher batch numbers. Of course, we can not infinitely increase the batch size,
because of (1) VRAM limitations, (2) reaching the maximum parallelization
performance of the GPU, and (3) latency. On the contrary, it has to be considered
that for distant balls at least latencies do not matter, but accuracy does. If the
robot always processes batches of 8 images then even if the robot is walking the
ball information will be more stable due to the post-processing of the batch. The
probability of 8 images being motion-blurred or covering other problems is lower
than for single images.

Towards Real-Time Ball Localization Using CNNs 347

6 Conclusion

We proposed a state-of-the-art deep learning architecture to detect & localize
balls in complex RoboCup Humanoid Soccer scenes that is able to run in near
real-time on NUC- or GPU-based robots, such as the NVIDIA Jetson TX2 based
robots we use. We also offer the full training and test dataset, the robot test
dataset and the additional negative dataset to test against false positives since
we want to emphasize the development and comparison of deep learning archi-
tectures in RoboCup. To the best of our knowledge, our datasets are by far the
largest and most complex ones publicly available in RoboCup. The results were
achieved keeping the limited computational resources of robots of the Humanoid
Kid-Size League in mind, thus more complex architectures might very well score
even better results. However, we also wanted to push ball detection to a pixel-
level localization with Model 2, which comes at the cost of needing a GPU or
fast CPU. The models can train 20 full epochs (20× 35,327 images) in less than
4 h on an NVIDIA TITAN X GPU when combined with a parallel data pre-
loading algorithm, while also evaluating the test dataset after each epoch. We
use a PCI-E SSD card for storing the images to ensure fast loading speeds, but
we will also supply HDF5 files that speed up loading from hard disks with the
only disadvantage of a larger total file size.

7 Future Work

We will release new versions of the dataset each year, to include new environ-
ments from each years RoboCup competitions and to increase the difficulty of
the test dataset. A large dataset with complex test data eases the transition
and prevents a drop of game quality similar to the year when the multi-colored
ball was introduced. The datasets also include some, although not many, blurry
images. Since a game of RoboCup soccer has to be dynamic recorded images
often involve motion blur from the camera itself or simply due to the robot cur-
rently walking. Another problem is that different backgrounds, especially light
sources, lead to vastly different color spaces. These distortions can heavily affect
detection rates of deep learning architectures because the system will focus on
learning significant features for ball detection, not de-blurring kernels. We are
currently working on neural network based de-noising frameworks to reduce this
kind of problems.

For fast moving balls, which will become more common in the future, we will
also try to combine neural architectures like the FCNN for detection in combina-
tion with fast object tracking architectures. A correlation tracker, for example,
is computationally cheap and might produce reasonable results if supplied with
accurate regions of interest from an FCNN.

Acknowledgement. We would like to thank everyone from our local RoboCup Team,
the Hamburg Bit-Bots, who helped with tagging the training data. We are grateful to
the NVIDIA corporation for supporting our research7. We used the donated NVIDIA

7 https://developer.nvidia.com/academic gpu seeding.

https://developer.nvidia.com/academic_gpu_seeding

348 D. Speck et al.

Titan X (Pascal) to train our models. This research was funded by the German Research
Foundation (DFG) and the National Science Foundation of China (NSFC) in project
Crossmodal Learning, TRR-169.

References

1. Humanoid league team description papers (2018). https://www.robocuphumanoid.
org/hl-2018/teams/. Accessed 09 Mar 2018

2. Aitken, A., Ledig, C., Theis, L., Caballero, J., Wang, Z., Shi, W.: Checkerboard
artifact free sub-pixel convolution: a note on sub-pixel convolution, resize convolu-
tion and convolution resize, July 2017. http://arxiv.org/abs/1707.02937

3. Fiedler, N., Bestmann, M., Hendrich, N.: Imagetagger: an open source online plat-
form for collaborative image labeling. Private Communication (submitted)

4. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS, vol. 9, pp. 249–256 (2010). 10.1.1.207.2059

5. Hinton, G.: Dropout: a simple way to prevent neural networks from overfitting. J.
Mach. Learn. Res. (JMLR) 15, 1929–1958 (2014)

6. Humanoid Leauge Technical Committe: Humanoid league proposed
roadmap (2014). https://www.robocuphumanoid.org/wp-content/uploads/
HumanoidLeagueProposedRoadmap.pdf. Acessed 10 Apr 2018

7. Maas, A., Hannun, A., Ng, A.: Rectifier nonlinearities improve neural net-
work acoustic models. In: ICML 2013. https://pdfs.semanticscholar.org/367f/
2c63a6f6a10b3b64b8729d601e69337ee3cc.pdf

8. Menashe, J., et al.: Fast and precise black and white ball detection for robocup
soccer. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup
2017. LNCS (LNAI), vol. 11175, pp. 45–58. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00308-1 4

9. Mishkin, D., Sergievskiy, N., Matas, J.: Systematic evaluation of CNN advances
on the ImageNet, June 2016. arXiv:1606.02228

10. O’Keeffe, S., Villing, R.: A benchmark data set and evaluation of deep learning
architectures for ball detection in the robocup SPL. In: Akiyama, H., Obst, O.,
Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp.
398–409. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1 33

11. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans.
Syst. Man Cybern. 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.
4310076. http://ieeexplore.ieee.org/document/4310076/

12. Schnekenburger, F., Scharffenberg, M., Wülker, M., Hochberg, U., Dorer, K.:
Detection and localization of features on a soccer field with feedforward fully con-
volutional neural networks (FCNN) for the adult-size humanoid robot sweaty. In:
Proceedings of the 12th Workshop on Humanoid Soccer Robots, 17th IEEE-RAS
International Conference on Humanoid Robots, pp. 1–6 (2017)

13. Speck, D., Barros, P., Weber, C., Wermter, S.: Ball localization for robocup soccer
using convolutional neural networks. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D.
(eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 19–30. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68792-6 2

14. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations
in convolutional network, May 2015. arXiv:1505.00853

https://www.robocuphumanoid.org/hl-2018/teams/
https://www.robocuphumanoid.org/hl-2018/teams/
http://arxiv.org/abs/1707.02937
https://www.robocuphumanoid.org/wp-content/uploads/HumanoidLeagueProposedRoadmap.pdf
https://www.robocuphumanoid.org/wp-content/uploads/HumanoidLeagueProposedRoadmap.pdf
https://pdfs.semanticscholar.org/367f/2c63a6f6a10b3b64b8729d601e69337ee3cc.pdf
https://pdfs.semanticscholar.org/367f/2c63a6f6a10b3b64b8729d601e69337ee3cc.pdf
https://doi.org/10.1007/978-3-030-00308-1_4
https://doi.org/10.1007/978-3-030-00308-1_4
http://arxiv.org/abs/1606.02228
https://doi.org/10.1007/978-3-030-00308-1_33
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TSMC.1979.4310076
http://ieeexplore.ieee.org/document/4310076/
https://doi.org/10.1007/978-3-319-68792-6_2
http://arxiv.org/abs/1505.00853

	Towards Real-Time Ball Localization Using CNNs
	1 Introduction
	2 Hamburg Bit-Bots Ball Dataset 2018
	2.1 Data
	2.2 Metrics

	3 Proposed Architecture
	3.1 Model 1 (CNN)
	3.2 Model 2 (FCNN)

	4 Experimental Results
	4.1 Ball Localization
	4.2 False Positives
	4.3 Hardware Benchmarks

	5 Discussion
	6 Conclusion
	7 Future Work
	References

