
Evaluation of Situations in RoboCup 2D
Simulations Using Soccer Field Images

Tanguy Pomas and Tomoharu Nakashima(B)

Department of Computer Science and Intelligent Systems,
Osaka Prefecture University, Sakai, Japan

mb104079@edu.osakafu-u.ac.jp, tomoharu.nakashima@kis.osakafu-u.ac.jp

Abstract. This paper proposes a convolutional neural network (CNN)
that assesses the situation at one point of a RoboCup 2D soccer game,
predicting which team will score next and when, by only taking soccer
field images as input. To train this model, we define a metric, called Sit-
uationScore that estimates, for a frame, the remaining number of frames
before next goal. A dataset containing more than one million RoboCup
2D soccer field images labeled with their SituationScore, from more than
5,000 games has been built to train our CNN. Our CNN-based model
manages to predict the SituationScore of a frame with an average error
lower than the other methods tested in this paper that use raw numerical
data from log files.

1 Introduction

Since games in RoboCup 2D Soccer Simulation League, or simply RoboCup
2D, are simulated on computer, every piece of information regarding them is
stored, and can be easily extracted for analysis purposes. Such logs contain, for
example, the coordinates of every player, for every cycle of a game, as well as
their velocity and their orientation. Therefore, it is not surprising that log files
play an important role when analyzing games and designing strategies.

RoboCup 2D games can be visualized on computers thanks to tools such as
soccerwindow2 that displays the position of all players and the ball for every cycle
of the game, with one computational cycle corresponding to one frame on it. This
tool not only allows audience to visualize games, but also researchers to replay
the same game, the same actions, in order to easily analyze them. However,
even when working with soccerwindow2, field images are only considered as a
representation of numerical data stored in log files, not as data itself.

This paper proposes a model that uses such images as input data in order
to assess how good or bad is the situation for both teams playing, without
considering numerical data available in log files. A metric, called SituationScore,
is proposed and used to evaluate the state of the field, estimating the number of
remaining frames before the next goal. We decided to build our model by using
a Convolutional Neural Network (CNN), given their efficiency for a large range
of tasks related to image analysis. To allow comparison with our CNN-based
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 275–286, 2019.
https://doi.org/10.1007/978-3-030-27544-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_23&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_23


276 T. Pomas and T. Nakashima

model, other models using raw numerical data from log files have been built and
evaluated, such as fully-connected neural networks and decision trees.

In order to evaluate these models, we built datasets containing more than
one million soccer field images and their corresponding raw numerical data from
more than 5,000 games. Our CNN leads to slightly better results than the other
tested methods. This may indicate that spatial features extracted by our CNN
can provide better information than raw numerical data.

The remainder of this paper is organized as follows. Section 2 presents
research that shares common points with this paper. In Sect. 3, we detail what
is the main objective of our work. Section 4 describes the procedure used to
build our datasets and provides the reasons why several datasets are required.
In Sect. 5, experiments relying on raw numerical data, as well as our model
only training with soccer field images and their respective results are described.
Finally, Sect. 6 summarizes our work, its results and limits, and provides an idea
to improve it.

2 Related Work

CNNs are known to be really efficient for a wide variety of tasks, especially tasks
related to computer vision, such as object classification, segmentation, or face
recognition. We can mention the work of Krizhevsky et al. [1] who first used
CNN in 2012 on the Imagenet dataset [2] and significantly outperformed every
other method employed at that time to perform image classification. Their work
is particularly appropriate to illustrate the learning power of CNNs, as Imagenet
dataset contains millions of images corresponding to 1000 different classes.

More closely related to our work, Stanescu et al. [3] used CNNs to evaluate
the state of a Real-Time Strategy (RTS) game, µRTS. Their CNN has been
trained to predict which of the two players is the most likely to win. To do this, it
analyzes the state of the game at three different moments. Each of these moments
is represented by a 8 × 8 × 25 image stack corresponding to the 25 features that
can be found on the 8 × 8 map, such as resources, units and buildings of each
player. Despite accurately predicting the winner of an RTS game, this prediction
only concerns µRTS, which is a very simple RTS game designed for testing AI
techniques.

Other more complex and popular RTS games have also been subjects of
research. That is the case of StarCraft on which some researchers applied
machine learning methods to estimate the global state of a game. For exam-
ple, Erickson et al. [4] proposed a logistic regression method to predict which
player will win a game by taking the global state of the game into account. To do
so, many aspects of the game have been identified and converted into features
such as number of units, map coverage and skill of each player. These game
states have been taken every 10 s for each of their 400 replays, providing them
enough data to evaluate their model on states from particular time intervals.
Rivari et al. [5] further improve their results by computing new features and
applying gradient boosting regression trees and random forests to estimate the
winner of the game.



Evaluation of Situations in RoboCup 2D Simulations 277

Another completely different way to predict the winner of a StarCraft game
is proposed by Sánchez-Ruiz et al. [6] who use influence maps in order evaluate
the state of the game. Influence maps are matrices representing the situation for
each player on the StarCraft map. For each unit owned by a player, a numerical
influence value is added to its corresponding position on the influence map and
its surroundings. In their work, influence maps are then reduced from 128 × 128
to 4 × 4 matrices. Therefore, the global state of a game is represented by 16
numerical values per player. Several machine learning methods are then used to
predict the winner of a game based on these influence maps that are computed
every 30 s.

While [4] and [5] extracted numerical values to evaluate the state of a game,
other work transform their initial raw numerical data into images. That is the
case of Souza et al. [7], who convert time-series into Recurrence Plots (RP),
considered as gray images. Several features are then extracted from these images
and used as input of a Support Vector Machine (SVM) algorithm that will use
this data to classify the time-series. Hatami et al. [8] propose a very similar
method that converts time-series into RP images, which are then used as input
images of a CNN that will perform a classification of the initial time-series. The
main difference between these last two papers is that the latter uses a CNN
directly working with RP, without extracting hand-crafted features first.

The work presented in this paper shares a few similarities with some of these
researches, as it involves the use of a CNN training on soccer field images that
are visual representation of available raw numerical data. However, it is still one
of a kind as it aims to evaluate the immediate state of a RoboCup 2D game with
only one image.

3 Task Definition

In RoboCup 2D soccer games, many different metrics could be defined to tell
which of the two playing teams currently has the upper hand, for example con-
sidering how many players of each team are on which part of the field, as well
as where is and who possesses the ball. However, such analysis, while easily con-
ducted using numerical data from log files, would be much more complicated to
conduct working only with field images. Therefore, another metric, independent
from players’ coordinates, has to be defined to assess the situation of a game.

To this end, we introduce the SituationScore of a frame f that is defined by

SituationScore(f) = ±(100 − n), (1)

where n is the number of frames between f and the frame corresponding to the
next goal. It is assumed in this paper that the considered frames are at most 100
cycles away from the next goal. Therefore, in this formula, n is necessary lower
than 100. The SituationScore’s sign is determined by the team that will score
this goal. We chose to consider a positive score when left team will score next
goal and vice versa. An example of a soccer field image and its corresponding
score is provided in Fig. 1.



278 T. Pomas and T. Nakashima

Fig. 1. Image taken 35 frames before the left team scores. The corresponding
SituationScore is +65.

Such definition presents two main assets, the first one being the easiness to
assign the correct score to newly produced images, as it does not require any
complex computation. The second asset is inherent to our objective to work only
with images. This metric does not take into account the state of the field itself at
all, only the remaining time, the number of frames, before next goal. Therefore,
many situations or formations can automatically be covered by this model.

On the other hand, this score is only defined for the last 100 frames before a
goal, meaning that, for most frames of a game, this score is not defined. However,
our model estimating such score is built only on valid frames, within 100 frames
before a goal. Therefore this problem does not affect the training phase. Then, a
solution to bypass this problem is to think of evaluated situations that are more
than 100 frames away from a goal as similar to situations with identical scores.

Having defined the SituationScore, our goal is to build a model that esti-
mates its value for any given frame. To this end, a dataset containing images
associated with their score has first to be created. In this paper, we built a
dataset containing more than one million images from more than 5,200 games,
as well as other datasets containing their corresponding raw numerical data.
Using these datasets, we built several models to estimate the SituationScore,
in particular a CNN only working on the image dataset.

4 Datasets Construction

4.1 Procedure

In order for our dataset to cover as many situations and formations as possible,
games between several 16 different teams have been simulated.

Dataset creation has been decomposed into several steps:

1. Games between each possible pair of teams are simulated and their log files
saved

2. Log files of games where no goal have been scored are deleted
3. For each game, every frame is saved using soccerwindow2
4. A python script is used to analyze their corresponding log files to determine

at which cycles goals have been scored



Evaluation of Situations in RoboCup 2D Simulations 279

5. Every 100 frames before each of these goals are kept, and their
SituationScores are computed. These frames are renamed to include their
SituationScore while the other are deleted.

When using soccerwindow2 in this procedure, some graphic options have been
precised, mainly to enhance the frames’ quality, removing superfluous informa-
tion and enlarging the players and the ball. These options include hiding score
board, player numbers, view area, stamina and potential yellow card, as well as
setting player size to 2, and ball size to 1.3. Size of saved images has also been
precised in these options, but minimum size from soccerwindow2 being 280×167,
kept frames have then been cropped to be of size 256 × 160. Soccer field images
visible in this paper, such as in Fig. 1 offers a good insight of frames contained
in our dataset.

A dataset containing about 1.02 million soccer field images taken from 5215
games has been constructed. This dataset has then been split into three parts:
a training set containing ∼720,000 images, a validation set containing ∼156,000
images and a test set containing ∼135,000 images. Images from a specific game
are all included in only one of these sets. In other words, each of these sets
contains images from different games.

4.2 Play-On Only Dataset

During a soccer game, there are several phases during which players have some
time to replace themselves on the field, while a player is about to make a kick.
These phases are typically kick-in, free kicks or corner kicks, and they are imple-
mented in RoboCup 2D Soccer Simulation League. We will refer to them as
“Non Play-On” (NPO) phases or events.

These events are quite common and also happen regularly within the last 100
frames before a goal. Therefore, NPO events concern a significant proportion of
images of the previously built dataset that systematically gathered the last 100
frames before a goal. However, it is not uncommon that players barely move
during these NPO phases, leading to almost identical successive frames, with
different SituationScores. Figure 2 illustrates this phenomenon, by showing two
images that are taken 28 frames apart. Players have barely moved during these 28
frames, thus images are almost identical, but the SituationScore is completely
different.

Regarding this issue, we decided to build another dataset using the same
procedure as for the first one. We decided to call this second dataset “Play-On
Only” (POO) dataset, in reference to the play-on phase, which is simply the
standard game phase. The only difference with the first dataset that we may
refer to as “All Frames” (AF) dataset, is that NPO phases frames, like kick-in
and corner kicks frames, are not counted within the last 100 frames before a
goal. Basically, this dataset contains the last 100 play-on frames before each
goal, which often include frames that are more than 100 frames before a goal.

The POO dataset has been built using the same log files as the all frames
dataset, it has also been split in the exact same way into training, validation



280 T. Pomas and T. Nakashima

(a) SituationScore -1 (b) SituationScore -29

Fig. 2. Lack of players’ movements during a kick-in.

and test sets. Therefore, each of these contains approximately the same number
of images as its all frames counterpart.

4.3 Raw Numerical Dataset

To allow comparison with our CNN-based model, models using raw numerical
data, such as coordinates, also have to evaluated. Consequently, a dataset con-
taining numerical data from the same log files has first to be built.

In order to allow fair comparison with our CNN model, two different numer-
ical datasets have been built. The first one that we will refer to as “coordinates
dataset” only contains numerical data that could be retrieved by analyzing just
one image. In other words, it contains for one frame, the ball and the players’
coordinates along with their body angle, which can be obtained by paying atten-
tion to the orientation of their back, the black part of their circle visible on every
frame, such as in Fig. 1. The second one that we may call “all numerical dataset”
contains the same data as the first one, on top of ball and players’ velocities,
their absolute neck angle and their view angle range.

The problem of non play-on cycles being exactly the same whether field
images or their corresponding coordinates are considered, numerical datasets
have also been split into Play-On Only datasets and All Frames datasets. There-
fore, four numerical datasets have been built: All Frames Coordinates (AFC),
All Frames All Numerical (AFN), POO Coordinates (POOC) and POO All
Numerical datasets (POON).

These numerical datasets have been built using the same log files as for the
previous images datasets. Splitting into training, validation and test sets has
also been done the same way, leading to sets of the same size, corresponding to
the same games.

5 Experiments and Results

5.1 Experiments on Raw Numerical Data

While the main aspect of our work is to use CNN to build a model that accu-
rately estimates the SituationScore, most, if not all, work on RoboCup 2D



Evaluation of Situations in RoboCup 2D Simulations 281

exploits numerical data from log files. Therefore, to allow comparison with our
CNN model and to determine if working directly with soccer field images has an
interest, models using numerical data have first to be built and evaluated.

Two kinds of experiments using numerical data have been conducted. The
first one was experiments using Fully-Connected Neural Networks (FCNN), build
with the TensorFlow library. These experiments are similar to our CNN experi-
ments, but with much simpler neural networks, containing only fully-connected
layers, up to thirty of them. The only hyper-parameters that were tested during
these tests were batch size, learning rate, number of fully-connected layers and
number of units within them. These experiments were run on the four numerical
datasets presented earlier.

Table 1 includes the best results of these experiments for each numer-
ical dataset, based on the Mean Absolute Error (MAE) between their
SituationScore predictions and true scores. As expected, using all numerical
data available leads to better results than only using data visible on one frame.
Moreover, these first results tend to prove the importance of distinguishing NPO
phases from standard game phases, as results on POO datasets are significantly
better than those on AF datasets.

For the second series of experiments, several models built on these datasets
have been tested using various machine learning methods. Experiments were
conducted using Scikit-learn Python machine learning library [9]. Tested meth-
ods were bagging of decision trees, random forest, extra trees regressor, linear
regression, linear SVR and k-Nearest Neighbors. The latter three gave results
much worse than the other methods, not being really efficient with huge datasets.
In particular, without transformation of the training set, the kNN method need
to compute a distance between a situation and every other 720,000 training sit-
uations to estimate the score of this situation, making it completely unusable
for our task. Random forest, bagging of decision trees and extra trees regressor
methods gave similarly good results.

Table 1 presents the best results obtained with all methods implemented and
tested with Scikit-learn Python library. The extra trees regressor model gives
slightly better results than the other on all datasets, except on the All Frames, all
Numerical (AFN) dataset, for which best results are obtained with a Bagging of
Decision Trees model. Interestingly enough, this time better results are achieved
on AF rather than on POO datasets.

5.2 Experiments Using Images as Input Data

Regarding our CNN implementation, we decided to use the TensorFlow library
in Python. A CNN architecture similar to the VGG architecture [10], along with
appropriate hyper-parameter values leading to satisfactory results have been
determined by preliminary experiments. Our architecture is illustrated in Fig. 3.
Our CNN was trained with an initial learning rate of 0.0001, decreasing by 5%
every 1500 steps, corresponding to batches of size 16. It should also be noted
that our CNN takes 160×256 images as input and contains a 15% dropout term
at the end of each convolutional block, as well as after each fully-connected layer.



282 T. Pomas and T. Nakashima

Table 1. Lowest MAE obtained during numerical experiments on every dataset

Method AFC POOC AFN POON

Fully-connected neural network 14.91 14.39 14.07 13.79

Linear SVR 19.89 18.79 18.52 17.59

Linear regression 20.30 19.18 18.81 17.95

Decision tree bagging 14.66 14.69 13.96 14.23

Random forest 14.65 14.69 13.97 14.25

Extra trees regressor 14.60 14.58 14.14 14.21

k nearest neighbors 18.56 - - -

160x256x32

80x128x64

40x64x128
20x32x256 10x16x256 4096 4096 1

Convolutional layer + ReLU activation

Max pooling

Fully connected + ReLU activation

4096

5x8x256

Fig. 3. Final architecture of our CNN, composed of the same four convolutional blocks
as VGG, but with one more fully-connected layer

From lack of being truly optimal, our final architecture, along with presented
hyper-parameter values quickly and consistently leads to a MAE usually between
13.3 and 13.6 that do not rise afterwards.

Table 2 shows the lowest MAE obtained using the presented architecture
with its hyper-parameters values along with. Further hyper-parameters adjusting
may lead to slightly better results, such as a MAE consistently around 13.3,
but systematically getting below this value may be extremely difficult without
changing this architecture.

A remark that has to be done regarding these results is that bagging of
decision trees, extra trees and random forest can provide lower MAE if trained
longer, with more trees. However, their MAE has only decreased by about 0.02
when going from 100 to 200 trees. Therefore an improvement of more than 0.1
is probably not to be expected. Extensive hyper-parameters adjusting, on the
other hand, could possibly lead to better results, but that is also the case for
FCNN and our CNN-based model.

Besides this issue that may have a slight impact on results, we can also
consider the prediction time issue. Indeed, if we want to be able to compute
the SituationScore in real time, our models have to be fast enough to do it
before the next frame is displayed, which is within 100 ms. Even more, if we
want the SituationScore to be a parameter that a team considers when making
choices, prediction time has to be much shorter than 100 ms so that strategic
choices can be made in the remaining time. Table 2 includes prediction time of



Evaluation of Situations in RoboCup 2D Simulations 283

Table 2. Best MAE obtained using our CNN and most efficient methods

Method AF POO Prediction time

Proposed CNN 13.31 13.27 ∼4.1 ms

Fully-connected neural network 14.07 13.79 ∼0.8 ms

Bagging of decision trees 13.93 14.23 ∼6.0 ms

Random forest 13.97 14.25 ∼5.1 ms

Extra trees 14.14 14.21 ∼9.1 ms

the most efficient methods tested. All of them compute a SituationScore in less
than 10 ms, which shows that their predictions are fast enough to be used in a
team strategy. However, it should be precised that our CNN and FCNN models
required a GeForce GTX 1080 GPU to be that fast, while the other methods
used a simple Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz.

5.3 Additional Remarks

AF and POO Datasets. In some experiments, models built on AF datasets
perform better than models built on POO datasets. In particular that is the case
in decision tree bagging and random forest experiments. However, the contrary
is observed in FCNN experiments. Our CNN-based model, as for itself, gives
approximately the same results whether trained on AF or POO dataset. This
proves that, contrary to what we could have thought, the POO datasets are
not “better” datasets than AF datasets. In fact, it may be possible that ignor-
ing movements of players during NPO phases when some of them move a lot
compensates the improvement got by ignoring NPO frames when players barely
move.

Indeed, in some NPO phases players barely move leading to many similar
frames with different scores. However, in other NPO phases some players move a
lot, meaning that ignoring them will bring a discontinuity in the SituationScore
distribution. There will be frames corresponding to the same goal, with scores
different by 1, but some players will seem to jump from one position to a com-
pletely another one between those frames, as shown in Fig. 4.

Therefore, both AF and POO datasets have a defect related to these NPO
phases. As a consequence, it may be better to only focus on the AF dataset, as
it represents everything that happens in the game.

Distribution of Prediction Error. Intuitively, the SituationScore is more
easily estimated on some frames than other. For example, the closer the ball is to
the goal, the sooner the goal is likely to be scored and the higher should be the
SituationScore. Therefore, high SituationScore situations, regardless of their
sign, are relatively easy to identify. On the other hand, when the ball is far from
the goal, position of every player on the field has to be considered to assess the



284 T. Pomas and T. Nakashima

(a) SituationScore +32 (b) SituationScore +33

Fig. 4. Players’ position jumping between two consecutive POO images.

Fig. 5. Average error for each computed SituationScore.

situation, which makes it considerably more difficult to accurately estimate the
SituationScore.

By computing the average difference between estimations and true scores for
each possible value, this intuition can be confirmed. In fact, when true score
is between −10 and +10, average error of our model is above 20 points while
it drops below 5 points when true score is either above +90 or below −90, as
visible in Fig. 5.

Situation Score Predictions on Other Frames. Another problem remains
as the SituationScore is only defined for the last 100 frames before a goal but
games used in our experiments contains more than 3,000 frames for only two
goals on average. That means the SituationScore is not really defined for more
than 90% of frames. This may not be a problem to train our model, as datasets
have been built for this purpose, but make our model’s predictions harder to
interpret for frames that have no true SituationScore. A simple solution, when
using our CNN on every frame of a game, would be to consider that the situation
in the frame is similar to a situation with predicted score, whether or not a
goal will be scored soon. However, it is still interesting to have an idea of the
probability that a goal will be scored knowing a SituationScore estimation.



Evaluation of Situations in RoboCup 2D Simulations 285

Fig. 6. Probability that a goal is scored within next 100 frames for each computed
SituationScore.

In order to have the beginning of an answer to this question, another
dataset, containing all frames from 120 games, totalling 360,612 images where
SituationScore is not defined and 23,098 images where it is has been built. These
first figures confirm that SituationScore is properly defined in only about 6% of
all frames. After training on the All Frames dataset, our CNN estimated the score
of all these frames. Without surprise, the higher the predicted SituationScore
regardless of its sign, the more likely a goal will be scored soon, and vice-versa.
While predicting a score between −10 and +10 has less than 2% chance to cor-
responds to an actual frame within 100 frames before a goal, chances that a goal
will be scored soon increase with SituationScore prediction value. For example,
this probability gets higher than 50% if predicted score is below -94 or above 92,
as shown in Fig. 6.

Considering a new model, estimating whether or not a goal will be scored in
the next X frames could be an interesting extension of this work.

6 Conclusion

In this paper, we have introduced the SituationScore, a metric that assesses the
field situation at one point of a RoboCup 2D game by estimating the remaining
number of frames before next goal. Datasets containing frames or numerical data
from more than 5,000 games, along with their corresponding SituationScore
have been built in order to train models estimating this score.

Several models that predict this score have been built. Most of them were
trained using raw numerical data and, among them, the decision tree bagging,
random forest, extra trees and FCNN performed the best. However, we also
focused on the construction of a CNN-based model that outperformed these
models by training only on soccer field frames, disregarding numerical data.
However, most tested methods could provide slightly better results if trained
longer, with extensive hyper-parameter adjusting.

If results using our CNN are satisfactory and able to predict the num-
ber of remaining frames before next goal with an average error around 13.5,



286 T. Pomas and T. Nakashima

another problem inherent to the SituationScore definition subsists. In fact, the
SituationScore definition assumes that a goal will be scored within 100 frames.
Therefore, our model is not trained to estimate if a goal will be scored soon, but
instead assumes that it will. In other words, when considering truly any frame
of a RoboCup 2D game, our CNN estimates a possible number of frames before
next goal is scored regardless of the probability that it happens.

Thus, this work could be extended by considering a new model that predicts
whether or not a goal will be scored in the next X frames. Combining this
new model with the model presented in this paper would be a way to complete
it, to make it fully usable. Another way to do this would be to update the
SituationScore definition so that it is defined on all frames of a RoboCup 2D
game, for example considering a score of 0 when no goal is scored within the
next 100 frames. It would be also useful to investigate the performance of various
CNNs that are trained by using games from different years. This would lead some
insight into the trend of teams by years. This is also left as a future task.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, vol. 25, pp. 1097–1105 (2012)

2. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

3. Stanescu, M., Barriga, N.A., Hess, A., Buro, M.: Evaluating real-time strategy
game states using convolutional neural networks. In: Proceedings of the IEEE
Conference on Computational Intelligence and Games, pp. 1–7 (2016)

4. Erickson, G.K.S., Buro, M.: Global state evaluation in StarCraft. In: Proceedings of
the Tenth Artificial Intelligence and Interactive Digital Entertainment Conference,
pp. 112–118 (2014)

5. Ravari, Y.N., Sander, B., Spronck, P.: StarCraft winner prediction. In: Proceed-
ings of the Twelfth Artificial Intelligence and Interactive Digital Entertainment
Conference, pp. 2–8 (2016)

6. Sánchez-Ruiz, A.A., Miranda, M.: A machine learning approach to predict the
winner in StarCraft based on influence maps. Entertain. Comput. 19, 29–41 (2017)

7. Souza, V.M.A., Silva, D.F., Batista, G.E.A.P.A.: Extracting texture features for
time series classification. In: Proceedings of the Twenty-Second International Con-
ference on Pattern Recognition, pp. 1425–1430 (2014)

8. Hatami, N., Gavet, Y., Debayle, J.: Classification of time-series images using deep
convolutional neural networks. In: Tenth International Conference on Machine
Vision (ICMV): Image Analysis and Imaging System, Vienna (2017)

9. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(Oct),
2825–2830 (2011)

10. Simonyan, K., Andrew, Z.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2015)

http://arxiv.org/abs/1409.1556

	Evaluation of Situations in RoboCup 2D Simulations Using Soccer Field Images
	1 Introduction
	2 Related Work
	3 Task Definition
	4 Datasets Construction
	4.1 Procedure
	4.2 Play-On Only Dataset
	4.3 Raw Numerical Dataset

	5 Experiments and Results
	5.1 Experiments on Raw Numerical Data
	5.2 Experiments Using Images as Input Data
	5.3 Additional Remarks

	6 Conclusion
	References




