Skip to main content

High Temperature Oxide Aerogels

  • Chapter
  • First Online:
Springer Handbook of Aerogels

Part of the book series: Springer Handbooks ((SHB))

  • 1449 Accesses

Abstract

Numerous applications from insulation to catalytic supports and fuel cells can benefit from lightweight, high surface area, mesoporous materials which maintain their mesoporous structure to temperatures of 600 to 1200 °C. Polymeric aerogels are limited to temperatures of nominally 400 °C due to thermal degradation of organic groups. Silica aerogels begin to densify by 700 °C. A number of aerogel systems show stability at higher temperatures, including alumina, alumina silicates, yttrium-doped alumina, and zirconia and yttria-stabilized zirconia aerogels. Within a given chemical composition, the morphology and textural stability of a mesoporous structure is dependent upon the synthesis method used. Other important considerations in choosing an aerogel composition include the time at temperature required for a given application, phase transformations inherent in a given system, and approaches to phase stabilization such as introduction of dopants into the backbone structure. Reinforcement of the aerogel through a composite approach also is addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pierre, A.C., Pajonk, G.M.: Chemistry of aerogels and their applications. Chem. Rev. 102, 4243–4265 (2002)

    CAS  Google Scholar 

  2. Fricke, J., Emmerling, A.: Aerogels. J. Am. Ceram. Soc. 75, 2027–2036 (1992)

    CAS  Google Scholar 

  3. Scherer, G.W.: Theory of drying. J. Am. Ceram. Soc. 73, 3–14 (1990)

    CAS  Google Scholar 

  4. Pajonk, G.M.: Transparent silica aerogels. J. Non-Cryst. Solids. 225, 307–314 (1998)

    CAS  Google Scholar 

  5. Antonietti, M., Fechler, N., Fellinger, T.-P.: Carbon aerogels and monoliths: control of porosity and nanoarchitecture via sol–gel routes. Chem. Mater. 26, 196–210 (2014)

    CAS  Google Scholar 

  6. Brinker, C.J.: Hydrolysis and condensation of silicates: effects on structure. J. Non-Cryst. Solids. 100, 31–50 (1988)

    CAS  Google Scholar 

  7. Hench, L., West, J.: The sol-gel process. J. Chem. Rev. 90, 33–72 (1990)

    CAS  Google Scholar 

  8. Gash, A.E., Tillotson, T.M., Satcher Jr., J.H., Hrubesh, L.W., Simpson, R.L.: New sol-gel route to transition and main-group metal oxide aerogels using inorganic salt precursors. J. Non-Cryst. Solids. 285, 22–28 (2001)

    CAS  Google Scholar 

  9. Baumann, T.F., Gash, A.E., Chinn, S.C., Sawvel, A.M., Maxwell, R.S., Satcher, J.J.H.: Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem. Mater. 17, 395–401 (2005)

    CAS  Google Scholar 

  10. Clapsaddle, B.J., Sprehn, D.W., Gash, A.E., Satcher, J.J.H., Simpson, R.L.: A versatile sol-gel synthesis route to metal-silicon mixed oxide nanocomposites that contain metal oxides as the major phase. J. Non-Cryst. Solids. 350, 173–181 (2004)

    CAS  Google Scholar 

  11. Itoh, H., Tabata, T., Kokitsu, M., Okazaki, N., Imizu, Y., Tada, A.: Preparation of SiO2-Al2O3 gels from tetraethoxysilane and aluminum-chloride – a new sol-gel method using propylene oxide as a gelation promoter. J. Ceram. Soc. Jpn. 101, 1081–1083 (1993)

    CAS  Google Scholar 

  12. Acosta, S., Corriu, R.J.P., Leclerq, D., Lefèvre, P., Mutin, P.H., Vioux, A.: Preparation of alumina aerogels by non-hydrolytic sol-gel processing method. J. Non-Cryst. Solids. 71, 234–242 (1994)

    Google Scholar 

  13. Corriu, R., Leclercq, D., Lefèvre, P., Mutin, P.H., Vioux, A.: Preparation of monolithic binary oxide gels by a nonhydrolytic sol-gel process. Chem. Mater. 4, 961–963 (1992)

    CAS  Google Scholar 

  14. Mutin, P.H., Vioux, A.: Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity, morphology, and nanostructure. Chem. Mater. 21, 582–596 (2009)

    CAS  Google Scholar 

  15. Vioux, A.: Nonhydrolytic sol-gel routes to oxides. Chem. Mater. 9, 2292–2299 (1997)

    CAS  Google Scholar 

  16. Nassar, E.J., Avilia, L.R., Pereira, P.F.S., Mello, C., de Lima, O.J., Ciuffi, K.J., Carlos, L.D.: Eu(III) incorporation in sol–gel aluminum–yttrium matrix by non-hydrolytic route. J. Lumin. 111, 159–166 (2005)

    CAS  Google Scholar 

  17. Andrianainarivelo, M., Corriu, R., Leclercq, D., Mutin, P.H., Vioux, A.: Mixed oxides Si02-Zr02 and Si02-Ti02 by a non-hydrolytic sol-gel route. J. Mater. Chem. 6, 1665–1671 (1996)

    CAS  Google Scholar 

  18. Andrianainarivelo, M., Corriu, R., Leclercq, D., Mutin, P.H., Vioux, A.: Nonhydrolytic sol-gel process: aluminum titanate gels. Chem. Mater. 9, 1098–1102 (1997)

    CAS  Google Scholar 

  19. Debecker, D.P., Hulea, V., Mutin, P.H.: Mesoporous mixed oxide catalysts via non-hydrolytic sol–gel: a review. Appl. Catal. A Gen. 451, 192–206 (2013)

    CAS  Google Scholar 

  20. Hay, J.N., Porter, D., Raval, H.M.: A versatile route to organically modified silicas and porous silicas via the non-hydrolytic sol-gel process. J. Mater. Chem. 10, 1811–1818 (2000)

    CAS  Google Scholar 

  21. Bourget, L., Corriu, R., Leclercq, D., Mutin, P.H., Vioux, A.: Non-hydrolytic sol-gel routes to silica. J. Non-Cryst. Soids. 242, 81–91 (1998)

    CAS  Google Scholar 

  22. Pierre, A.C., Elaloui, E., Pajonk, G.M.: Comparison of the structure and porous texture of alumina gels synthesized by different methods. Langmuir. 14, 66–73 (1998)

    CAS  Google Scholar 

  23. MacKenzie, J.D., Bescher, E.P.: Chemical routes in the synthesis of nanomaterials using the sol-gel process. Acc. Chem. Res. 40, 810–818 (2007)

    CAS  Google Scholar 

  24. Sinkó, K., Hsing, N., Goerigk, G., Peterlik, H.: Nanostructure of gel-derived aluminosilicate materials. Langmuir. 24, 949–956 (2008)

    Google Scholar 

  25. Yoldas, B.E.: Hydrolytic polycondenstaion of Si(OC2H5)4 and effect of reaction parameters. J. Non-Cryst. Solids. 83, 375–390 (1986)

    CAS  Google Scholar 

  26. Partlow, D., Yoldas, B.E.: Colloidal versus polymer gels and monolithic transformation in glass-forming systems. J. Non-Cryst. Solids. 46, 153–161 (1981)

    CAS  Google Scholar 

  27. Yoldas, B.E.: Hydroylsis of aluminum alkoxides and bayerite conversion. J. Appl. Chem. Biotechnol. 23, 803–809 (1973)

    CAS  Google Scholar 

  28. Yoldas, B.E.: Alumina gels from porous transparent Al2O3. J. Mater. Sci. 10, 1856–1860 (1975)

    CAS  Google Scholar 

  29. Yoldas, B.: Alumina sol preparation from alkoxides. Am. Ceram. Soc. Bull. 54, 289–290 (1975)

    CAS  Google Scholar 

  30. Yoldas, B.: A transparent porous alumina. Am. Ceram. Soc. Bull. 54, 286–288 (1975)

    CAS  Google Scholar 

  31. Mizushima, Y., Hori, M.: Preparation of heat-resistant alumina aerogels. J. Mater. Res. 8, 2993–2999 (1993)

    CAS  Google Scholar 

  32. Kayser, S., Shter, G., de Hazan, Y., Cohen, Y., Grader, G.S.: Heat treatment of alumina aerogels. Chem. Mater. 9, 2464–2467 (1997)

    Google Scholar 

  33. Pecharromán, C., Sobrados, I., Iglesias, J.E., González-Correño, T., Sanz, J.: Thermal evolution of transitional aluminas followed by NMR and IR spectroscopies. J. Phys. Chem. B. 103, 6160–6170 (1999)

    Google Scholar 

  34. Mizushima, Y., Hori, M.: Properties of alumina aerogels prepared under different conditions. J. Non-Cryst. Solids. 167, 1–8 (1994)

    CAS  Google Scholar 

  35. Sinkó, K., Mezei, R., Rohonczy, J., Fratzl, P.: Gel structures containing Al(III). Langmuir. 15, 6631–6636 (1999)

    Google Scholar 

  36. Horiuchi, T., Osaki, T., Sugiyama, T., Suzuki, K., Mori, T.: Maintenance of large surface arrea of alumina heated at elevated temperatures above 1300°C by preparing silica-containing pseudoboehmite aerogel. J. Non-Cryst. Solids. 291, 187–198 (2001)

    CAS  Google Scholar 

  37. Popa, A.F., Rossignol, S., Kappenstein, C.: Influence of drying technique on silicon insertion into C-alumina and consequences for the homogeneity and thermal stability of silica–alumina aquagels. J. Mater. Chem. 12, 2866–2868 (2002)

    CAS  Google Scholar 

  38. Hoffman, D.W., Roy, R., Komarneni, S.: Diphasic xerogels, a new class of materials: phases in the system Al2O3-SiO2. J. Am. Ceram. Soc. 67, 468–471 (1984)

    CAS  Google Scholar 

  39. Komarneni, S., Suwa, Y., Roy, R.: Application of compositionally diphasic gels for enhanced densification: the system Al2O3-SiO2. J. Am. Ceram. Soc. 69, C-155–C-156 (1986)

    Google Scholar 

  40. Komarneni, S., Rutiser, C.: Single-phase and diphasic aerogels and xerogels of mullite: preparation and characterization. J. Eur. Ceram. Soc. 16, 143–147 (1996)

    CAS  Google Scholar 

  41. Komarneni, S., Roy, R., Selvaraj, U., Malla, P.B., Brevel, E.: Nanocomposite aerogels: the SiO2–Al2O3 system. J. Mater. Res. 8, 3163–3167 (1993)

    CAS  Google Scholar 

  42. Hurwitz, F.I., Gallagher, M., Olin, T.C., Shave, M.K., Ittes, M.I., Olafson, K.N., Fields, M.G., Rogers, R.B., Guo, H.: Optimization of alumina and aluminosilicate aerogel structure for high temperature performance. Int. J. Appl. Glas. Sci. 5, 276–286 (2014)

    CAS  Google Scholar 

  43. Komarneni, S., Roy, R.: Solid state 27Al and 29Si magic-angle spinning NMR of aluminosilicate gels. J. Am. Ceram. Soc. 69, C42–C44 (1986)

    CAS  Google Scholar 

  44. Aravind, P.R., Munkundan, P., Pillai, O.K., Warrier, K.G.K.: Mesoporous silica-alumina aerogels with high thermal pore stability through hybrid sol-gel route followed by subcritical drying. Microporous Mesoporous Mater. 96, 14–20 (2004)

    Google Scholar 

  45. Klug, F.J., Prochazka, S., Doremus, H.: Alumina-silica phase diagram in mullite region. J. Am. Ceram. Soc. 70, 750–759 (1987)

    CAS  Google Scholar 

  46. Brühne, S., Gottleib, S., Assmus, W., Alig, E., Schmidt, M.U.: Atomic structure analysis of nanocrystalline boehmite AlO(OH). Cryst. Growth Des. 8, 489–493 (2008)

    Google Scholar 

  47. Padmaja, P., Warrier, K.G.K., Padmanabhan, M., Wunderlich, W., Berry, F.J., Mortimer, M., Creamer, N.J.: Structural aspects and porosity features of nano-size high surface area alumina-silica mixed oxide catalyst generated through hybrid sol-gel route. Mater. Chem. Phys. 95, 56–61 (2006)

    CAS  Google Scholar 

  48. Hurwitz, F.I., Rogers, R.B., Guo, H., Yu, K., Domanowski, J., Schmid, E., Fields, M.G.: The role of phase changes in maintaining pore structure on thermal exposure of aluminosilicate aerogels. MRS Commun. 7, 642–650 (2017)

    CAS  Google Scholar 

  49. Wefers, K., Misra, C.: Oxides and Hydroxides of Aluminum. Alcoa Research Laboratories (1987)

    Google Scholar 

  50. Boumaza, A., Favaro, L., Lédion, J., Sattonnay, G., Brubach, J.B., Berthet, P., Huntz, A.M.: Transition alumina phases induced by heat treatment of boehmite: an x-ray diffraction and infrared spectroscopy study. J. Solid State Chem. 182, 1171–1176 (2009)

    CAS  Google Scholar 

  51. Krodikis, X., Raybaud, P., Gobichon, A.-E., Rebours, B., Euzen, P., Toulhoat, H.: Theoretical study of the dehydration process of boehmite to γ-alumina. J. Phys. Chem. B. 105, 5121–5130 (2001)

    Google Scholar 

  52. Pakharukova, V.P., Shalygin, A.S., Gerasimov, E.Y., Tsybulya, S.V., Martyanov, O.N.: Structure and morphology evolution of silica-modified pseudoboehmite aerogels during heat treatment. J. Solid State Chem. 233, 294–302 (2016)

    CAS  Google Scholar 

  53. Ananthakumar, S., Juyansankar, M., Warrier, K.G.K.: Microstructural, mechanical and thermal characterisation of sol–gel-derived aluminium titanate–mullite ceramic composites. Acta Mater. 54, 2965–2973 (2006)

    CAS  Google Scholar 

  54. Hurwitz, F.I., Guo, H., Rogers, R.B., Sheets, E.J., Miller, D.R., Newlin, K.N., Shave, M.K., Palczer, A.R., Cox, M.T.: Influence of Ti addition on boehmite-derived aluminum silicate aerogels: structure and properties. J. Sol-Gel Sci. Technol. 64, 756–764 (2012)

    Google Scholar 

  55. Popa, M., Calderón-Moreno, J.M., Popescu, L., Kakihana, M., Torecillas, R.: Crystallization of gel-derived and quenched glasses in the ternary oxide Al2O3–ZrO2–SiO2 system. J. Non-Cryst. Solids. 297, 290–300 (2002)

    CAS  Google Scholar 

  56. Popa, M., Kakihana, M., Yoshimura, M., Calderón-Moreno, J.M.: Zircon formation from amorphous powder and melt in the silica-rich region of the alumina–silica–zirconia system. J. Non-Cryst. Solids. 352, 5663–5669 (2006)

    CAS  Google Scholar 

  57. Fryer, J.R., Hutchison, J.L., Paterson, R.: Study of the hydrolysis products of zirconyl chloride. J. Colloid Interface Sci. 34, 238–248 (1970)

    CAS  Google Scholar 

  58. Al-Yassir, N., Le Van Mao, R.: Thermal stability of alumina aerogel doped with yttrium oxide, used as a catalyst support for the thermocatalytic cracking (Tcc) process: an investigation of its textural and structural properties. Appl. Catal. A Gen. 317, 275–283 (2007)

    CAS  Google Scholar 

  59. Ponthieu, E., Grimblot, J., Elaloui, E., Pajonk, G.M.: Synthesis and characterization of pure and yttrium-containing alumina aerogels. J. Mater. Chem. 3, 287–293 (1993)

    CAS  Google Scholar 

  60. Hurwitz, F.I., Olson, N., Guo, H., Rogers, R.B., Phan, D.: Yttria-Stabilized Zirconia Aerogels for High Temperature Applications: The Role of Synthesis Approaches on Pore Structure after Thermal Exposure, Manuscript in preparation, (2018)

    Google Scholar 

  61. Jones, R.I., Mess, D.: Improved tetragonal phase stability at 1400°C with Scandia, yttria-stabilized zirconia. Surf. Coat. Technol. 86–87, 94–101 (1996)

    Google Scholar 

  62. Miller, R.A., Smialek, J.L., Garlick, R.G.: Phase stability in plasma-sprayed, partially stabilized zirconia-yttria. In: Heuer, A.H., Hobbs, L.W. (eds.) Science Nd Technology of Zirconia, Advances in Ceramics, vol. 3, pp. 241–253. The American Ceramic Society, Columbus (1981)

    Google Scholar 

  63. Chervin, C.N., Clapsaddle, B.J., Chiu, H.W., Gash, A.E., Satcher, J.J.H., Kauzlarich, S.M.: Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route. Chem. Mater. 17, 3345–3351 (2005)

    CAS  Google Scholar 

  64. Chervin, C.N., Clapsaddle, B.J., Chiu, H.W., Gash, A.E., Satcher, J.J.H., Kauzlarich, S.M.: Role of cyclic ether and solvent in a non-alkoxide sol-gel synthesis of yttria-stabilized zirconia nanoparticles. Chem. Mater. 18, 4865–4874 (2006)

    CAS  Google Scholar 

  65. Barnardo, T., Hoydalsvik, K., Winter, R., Martin, C.M., Clark, G.F.: In situ double anomalous small-angle x-ray scattering of the sintering and calcination of sol-gel prepared yttria-stabilized-zirconia ceramics. J. Phys. Chem. C. 113, 10021–10028 (2009)

    CAS  Google Scholar 

  66. Chao, X., Yuan, W., Shi, Q., Zhu, Z.: Improvement of thermal stability of zirconia aerogel by addition of yttrium. J. Sol-Gel Sci. Technol. 80, 667–674 (2016)

    CAS  Google Scholar 

  67. Lieb, E.W., Vainio, U., Pasquarelli, R.M., Kus, J., Czaschke, C., Walter, N., Janssen, R.M., Schreyer, A., Weller, H., Vossmeyer, T.: Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres. J. Colloid Interface Sci. 448, 582–592 (2015)

    Google Scholar 

  68. Matsui, K., Ohgai, M.: Formation mechanism of hydrous zirconia particles produced by hydrolysis of ZrOCl2 solutions: iv, effects of ZrOCl2 concentration and reaction temperature. J. Am. Ceram. Soc. 85, 545–553 (2002)

    CAS  Google Scholar 

  69. Shi, Z., Gao, H., Wang, X., Li, C., Wang, W., Hong, Z., Zhi, M.: One-step synthesis of monolithic micro-nana yttria stabilized ZrO2-Al2O3 composite aerogel. Microporous Mesoporous Mater. 259, 26–32 (2018)

    CAS  Google Scholar 

  70. Wagh, P.B., Rao, A.V., Haranath, D.: Influence of molar ratios of precursor, solvent and water on physical properties of citric acid catalyzed teos silica aerogels. Mater. Chem. Phys. 53, 41–47 (1998)

    CAS  Google Scholar 

  71. Takahashi, R., Sato, S., Sodesawa, T., Kawakitz, M., Ogura, K.: High surface-area silica with controlled pore size prepared from nanocomposite of silica and citric acid. J. Phys. Chem. B. 104, 12184–12191 (2000)

    CAS  Google Scholar 

  72. Chen, B., Wang, X., Zhang, S., Wei, C., Zhang, L.: Monolithic Zno aerogel synthesized through dispersed inorganic sol–gel method using citric acid as template. J. Porous. Mater. 21, 1035–1039 (2014)

    CAS  Google Scholar 

  73. Davar, F., Hassankhani, A., Loghman-Estarki, M.R.: Controllable synthesis of metastable tetragonal zirconia nanocrystals using citric acid assisted sol–gel method. Ceram. Int. 39, 2933–2941 (2013)

    CAS  Google Scholar 

  74. Liu, Q., Wang, A., Wang, X., Zhang, T.: Mesoporous C-alumina synthesized by hydro-carboxylic acid as structure-directing agent. Microporous Mesoporous Mater. 92, 10–21 (2006)

    CAS  Google Scholar 

  75. Liu, G., Yolang, G., Li, S., Zhang, W., Jia, M.: Preparation of titania-silica mixed oxides by a sol-gel route in the presence of citric acid. J. Phys. Chem. C. 113, 9345–9351 (2009)

    CAS  Google Scholar 

  76. Singh, K.A., Pathak, I.C., Roy, S.K.: Effect of citric acid on the synthesis of nano-crystalline yttria stabilized zirconia powders by nitrate–citrate process. Ceram. Int. 33, 1463 (2007)

    CAS  Google Scholar 

  77. Zhang, Z., Gao, Q., Liu, Y., Zhou, C., Zhi, M., Hong, Z., Zhang, F., Liu, B.: A facile citric acid assisted sol–gel method for preparing monolithic yttria-stabilized zirconia aerogel. RSC Adv. 5, 84280 (2015)

    CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Dereck Johnson and the many student interns who have contributed to our understanding of high temperature aerogels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances I. Hurwitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hurwitz, F.I., Guo, H., Rogers, R.B., Olson, N., Garg, A. (2023). High Temperature Oxide Aerogels. In: Aegerter, M.A., Leventis, N., Koebel, M., Steiner III, S.A. (eds) Springer Handbook of Aerogels. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-27322-4_18

Download citation

Publish with us

Policies and ethics