
Chapter 4
Local Least Squares Analysis of Auroral
Currents

Joachim Vogt, Adrian Blagau, Costel Bunescu and Maosheng He

Abstract Multi-spacecraft probing of geospace allows the study of physical struc-
tures on spatial scales dictated by orbital and instrumental parameters. This chapter
highlightsmulti-point array analysismethods for constellations of two or three space-
craft such as Swarm, and also discusses multi-scale techniques for the geometri-
cal characterisation of auroral current structures using observations of stationary or
weakly time-dependent current structures along the tracks of individual satellites.
Linear estimators are based on a least squares approach which is local in the sense
that only few measurements around a reference point are considered for the recon-
struction of geometrical and physical parameters. Local least squares estimators for
field-aligned currents are compared with non-local counterparts and also local esti-
mators based on finite differences. Uncertainties, implementation and other practical
aspects are discussed. The techniques are illustrated using selected Swarm crossings
of the auroral zone.

4.1 Introduction

Coupling processes in the auroral zone are to a large extent controlled by elec-
tric currents flowing parallel to the ambient magnetic field lines (e.g., Lysak 1990;
Paschmann et al. 2002; Vogt 2002). Auroral field-aligned currents (FACs) connect
remote plasmas in geospace and are associatedwith globalmagnetospheric dynamics
such as large-scale convection and substorms. The type of electrodynamic coupling
in the auroral current circuit depends on the spatial scale L of FACs. Quasi-static cou-
pling of the equatorial magnetosphere and the auroral ionosphere is expected on large
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scales L � λP ∼ 100km (Lyons 1980; Lotko et al. 1987). Alfvénic coupling should
be important on intermediate scales L � λA ∼ 10km (Vogt and Haerendel 1998).
On even smaller spatial scales in the kilometre range or below, auroral phenom-
ena are typically very dynamic and short-lived, and not correlated with long-range
magnetosphere–ionosphere coupling processes. The importance of spatial scales in
FACs and their association with auroral processes and coupling regimes was con-
firmedbyLühr et al. (2015) using data from the initial phase ofESA’s three-spacecraft
Swarm mission when a range of inter-spacecraft distances was covered, see also
Chap.6 of this volume. Since April 2014, two Swarm satellites SwA and SwC orbit
side-by-side in the auroral ionosphere, while the third Swarm satellite SwB moves
at a higher altitude and lines up only occasionally with the lower pair to form a
three-spacecraft constellation. SwA and SwC can be understood as a two-satellite
array that allows the study of auroral FACs on a regular basis but restricted to the
spatial scale given by their orbital separation.

To resolve electric current systemsor other geospace structures bymeans of single-
spacecraft data or multi-spacecraft observations, analysis methods must provide an
adequate spatial resolution.The single-spacecraft approachwhere an individual satel-
lite is assumed to move across a stationary or at most weakly time-dependent struc-
ture may resolve spatial scales given by the product of relative speed V and sam-
pling intervalΔt . Satellite constellations such as Cluster and Swarm allow to adopt a
multi-point array perspective with the spatial resolution given by the inter-spacecraft
distance scale Δr . For geospace phenomena and missions, VΔt is typically smaller
than Δr . Single-spacecraft methods allow the study of smaller scales but only in the
along-track direction. Multi-point array techniques provide information also about
the across-track variability (and possibly temporal changes) but only on larger spatial
scales (e.g., Russell et al. 1983; Dunlop et al. 1988; Neubauer and Glassmeier 1990;
Pinçon and Lefeuvre 1991; Chanteur and Mottez 1993; Dudok de Wit et al. 1995;
Bauer et al. 2000; Balikhin et al. 2001;Dunlop et al. 2002;DeKeyser et al. 2007;Vogt
et al. 2008a), see also the ISSIScientificReports SR-1 andSR-8 (PaschmannandDaly
1998, 2008).

The category of analysis methods addressed in this report may be termed local
least squares (LS) techniques. We are concerned mainly with multi-point array esti-
mation of auroral FACs using vector magnetometer data from satellite missions such
as Swarm, but alsowithmulti-scale geometrical characterisation of current structures
in the data of individual spacecraft. In local LS analysis, the least squares principle is
applied to a confined region of interest, typically comprising only a fewmeasurement
points, equivalent to general (non-local) least squares modelling with localised basis
functions but requiring less computational effort. Compared to local estimators based
on finite differencing, local LS estimators turn out to be more robust with regard to
non-regular (skewed or stretched) satellite constellations. To cover the multi-scale
nature of auroral processes, in particular also intermediate and possibly even smaller
scales, a multi-scale analysis technique developed by Bunescu et al. (2015, 2017) is
included here as a localised version of the popular single-spacecraft minimum vari-
ance analysis or MVA that has its roots also in the least squares approach (Sonnerup
and Scheible 1998).

http://dx.doi.org/10.1007/978-3-030-26732-2_6
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Multi-spacecraft array techniques based on the local LS principle are presented in
Sect. 4.2 (methodology) and Sect. 4.3 (implementation and applications). The multi-
scale variant of MVA is discussed in Sect. 4.4 before we conclude in Sect. 4.5 with a
summary.

4.2 Methodology of Multi-spacecraft Array Techniques

Multi-spacecraft estimation of spatial gradients, electric currents, or boundary param-
eters is based on a set of satellite positions and corresponding observations that are
interpreted as array measurements. In the simplest and most straightforward case,
each satellite of a constellation contributes one position vector to the array, and
all measurements are taken at the same time. This perspective was adopted, e.g., by
Dunlop et al. (1988), Chanteur (1998),Harvey (1998), aswell asVogt andPaschmann
(1998) in the preparation phase of ESA’s four-spacecraft mission Cluster to develop
analysis methods for electric currents and spatial gradients. The corresponding three-
spacecraft case of the LS approach was addressed by Vogt et al. (2009). The resulting
estimators are instantaneous, thus perfectly localised in time, and also local in space
at the lower resolution limit given by the inter-spacecraft separation scale that for
Cluster ranged between 100km and 10,000km.

For the Swarm mission with only two satellites SwA and SwC close enough to
be considered a multi-point array on a regular basis, the instantaneous approach was
relaxed to include additional measurements shifted in time, thus generating a virtual
planar four-point satellite array (Ritter and Lühr 2006; Ritter et al. 2013; Shen et al.
2012a; Vogt et al. 2013). Virtual along-track separations approximately equal to the
distance between SwA and SwC of somewhat less than 100km in the auroral zone
are obtained using time shifts of about 10 s, considerably smaller than the variation
time scales of FACs associated with quasi-static coupling. Localisation in space is
characterised by the effective inter-spacecraft separation in the virtual quad, typically
of the order of 100km. In the context of this report, we refer to this class of methods
as local analysis techniques.

When spatial distributions of electrodynamic variables for large parts of or even
the entire auroral region are to be reconstructed from satellite crossings (e.g., He
et al. 2012; Amm et al. 2015), possibly in combination with other ground-based
data, the methodology is usually termed modelling rather than analysis, and should
be referred to as a regionalmethod (spatial extent of the order of 1000km), applicable
to structures that do not vary on time scales less than the satellite crossing time of
the order of a few minutes. The most popular modelling approach is based on the
least squares principle that we choose as a starting point for our discussion.
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4.2.1 General Linear Least Squares

Least squares modelling can be characterised as a statistical technique to find the
parameters of a model (m) that gives the best approximation of a given data set
(d) of S measurements contaminated by random errors (residuals r ). The measure-
ments dσ form the components of a data vector d. If all parameters a1, a2, . . . , aN
enter the model function m linearly, then m = ∑

ν aν fν with basis functions fν . The
model parameters aν are also called amplitudes and can be cast into a vector a. The
estimation problem can be written in the form Ma = d with a matrix M and the
solution a = Milsd where Mils is the pseudo-inverse of M in the least squares sense.
For technical details of the general linear least squares approach, see Appendix A.

Regional least squares modelling of auroral field-aligned currents was carried
out by He et al. (2012, 2014) who condensed ten years of CHAMP (Reigber et al.
2002) magnetic field measurements into the empirical FAC model MFACE using a
set of data-adaptive basis functions called empirical orthogonal functions (EOFs).
In the first modelling step, the set of EOFs was constructed from the data in a coor-
dinate frame centred on the dynamic auroral oval to capture its magnetic local time-
dependent expansion and contraction duringmagnetospheric activity. The EOFs then
serve as basis functions in an expansion of the form j‖(Δβ|p) = ∑

ν aν(p) fν(Δβ)

where the parameter vector p is formed by a set of predictor variables (magnetic
local time, seasonal and solar wind parameters, AE), and Δβ = β − βACC is mag-
netic latitude in auroral oval coordinates, i.e. relative to the latitude of the auroral
current centre βACC. In a second step, the functional dependences βACC = βACC(p)

and aν = aν(p)were determined also through least squares regression. The geophys-
ical parameters that drive the model (such as the IMF, solar wind parameters and
geomagnetic indices) are obtained from NASA’s OMNIWeb service. Two sample
outputs are shown in Fig. 4.1. The times chosen for producing the diagrams cor-
respond to selected Swarm auroral crossings that are used also for demonstrating
multi-point FAC estimators in Sect. 4.3.2 and multi-scale MVA analysis of FACs in
Sect. 4.4.1.

With regard to the discussion below of gradient and curl estimation from multi-
spacecraft magnetic field measurements, it is important to note that the normal equa-
tions produce parameter estimates that are linear in the data: we may write

a =
∑

σ

qσdσ (4.1)

where the vectors qσ are the rows of Mils. They depend only on the array geometry
but not on the measurements dσ , and may be termed generalised reciprocal vectors,
see below. Linearity in the data applies also to any aspect of the model that can be
expressed through a linear operation acting on the model function. Since differential
operators like grad or curl are linear, least squares estimators of gradients and currents
from linear magnetic field models based on multi-spacecraft vector measurements
are linear in the data. The representation a = ∑

σ qσdσ facilitates error analyses and
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Fig. 4.1 Sample output of
MFACE, an empirical model
of auroral FAC based on 10
years of CHAMP magnetic
field measurements. Model
results are generated for
02:48:00 UT on 24 July 2014
and for 13:40:30 UT on 29
May 2014, corresponding to
the centre times of two
Swarm auroral crossings
used for demonstrating FAC
analysis techniques in
Sects. 4.3.2 and 4.4.1

comparisons of the linear least squares technique with linear estimators derived form
other principles such as finite differencing or boundary integrals, see Sect. 4.2.4.
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4.2.2 Local LS Estimators of Spatial Gradients

The position vectors in an array of S spacecraft are denoted as rσ , σ = 1, . . . , S,
and the difference vectors are rστ = rτ − rσ . The average position or mesocentre
r∗ = (1/S)

∑
σ rσ may be chosen to coincidewith the origin. In such amesocentric

coordinate system, the position tensor R = ∑
σ (rσ − r∗)(rσ − r∗)T simplifies to

R = ∑
σ r r

T. Note that the volumetric tensor introduced by Harvey (1998) differs
by a factor of 1/S from the position tensor defined here.

To estimate the gradient vector of a scalar field h, we consider the model h(r) =
h∗ + (r − r∗) · ∇h (or h(r) = h∗ + r · ∇h in a mesocentric frame). The function is
linear in its four parameters, namely, the value h∗ of h at the mesocentre and the
three components of the gradient ∇h. Using S measurements hσ at positions rσ , the
least squares estimates are h∗ � (1/S)

∑
σ hσ and

∇h � g =
∑

σ

qσhσ . (4.2)

The local LS estimate of the gradient matrix of a vector field B is given by

∇B � G =
∑

σ

qσBT
σ . (4.3)

The vectors qσ are solutions of

Rqσ = rσ (4.4)

Vogt et al. (2008b). Based on the rank of the (3 × 3) position tensorR, we distinguish
two cases.

Invertible position tensor

If S ≥ 4, and the position vectors are not all in one plane, the position tensor is non-
singular (full rank 3), and we obtain qσ = R−1rσ (Vogt et al. 2008b). The vectors qσ

canbeunderstood asgeneralised reciprocal vectors, because in the special case S = 4
they coincide with the (tetrahedral) reciprocal vectors (Chanteur 1998; Chanteur and
Harvey 1998; Vogt et al. 2008b) defined through

kρ = rστ × rσν

rσρ · (rστ × rσν)
(4.5)

where (ρ, σ, τ, ν) is a cyclic permutation of (1, 2, 3, 4).

Singular position tensor, planar spacecraft array

If S ≥ 3, and the spacecraft are in all one plane but not co-linear, the position ten-
sor has only rank 2. Measurements allow to determine the component ∇p h of the
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Fig. 4.2 Geometry of planar
reciprocal vectors for a
three-spacecraft
configuration. Each vector
qσ is perpendicular to the
line segment Lσ facing
satellite no. σ at position
vector rσ . The length |qσ | is
inversely proportional to the
distance between Lσ and rσ

q1

q3

q2

r2

r1r3

L1 L3

L2

gradient in the plane spanned by the three spacecraft (in-plane or perpendicular
gradient) but not the component ∇n h normal to that plane (out-of-plane or normal
component). Additional information in the form of geometrical or physical assump-
tions (conditions, constraints) is required to determine ∇n h. The vectors qσ are the
minimum-norm solutions of Rqσ = rσ (Vogt et al. 2013), and may be termed planar
reciprocal vectors. In the special case S = 3, they can be written in the form (Vogt
et al. 2009)

qσ = n × rτν

|n|2 , σ = 1, 2, 3 , (4.6)

where (σ, τ, ν) is a cyclic permutation of (1, 2, 3), n = r12 × r13 = rστ × rσν , and
the corresponding unit vector is n̂ = n/|n|. The geometry of planar reciprocal vec-
tors for a three-spacecraft configuration is sketched in Fig. 4.2. The relationships of
planar reciprocal vectors to the eigenvalues and eigenvectors of the volumetric tensor
(1/S)R are discussed in detail by Shen et al. (2012b).

The singular position tensor case is most relevant for the Swarm mission: here
the gradient vector cannot be resolved fully from the measurements, and additional
information has to be taken into account to reconstruct its out-of-plane component.
Constraints may in principle be incorporated in the least squares framework using
Lagrange multipliers. The approach chosen by Vogt et al. (2009) is based on geo-
metrical considerations, and offers the possibility to choose between three types of
constraints: (1) gradient parallel to a given direction ê, (2) gradient perpendicular to a
given direction ê, (3) the physical structure is stationary in a reference frame moving
with a known velocity relative to the spacecraft array. Of particular importance for
studies of field-aligned currents is a fourth constraint that combines the force-free
condition B× (∇ × B) = 0 with ∇ · B = 0 to estimate the full magnetic gradient
matrix from spacecraft measurements in one plane (Shen et al. 2012a; Vogt et al.
2013).
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4.2.3 Local LS Estimators of Electric Currents

In the invertible position tensor case (spacecraft are not all in one plane), the local
LS estimate of the curl ∇ × B can be written as

∇ × B � c =
∑

σ

qσ × Bσ . (4.7)

In the singular position tensor case (spacecraft are in one plane but not co-linear),
onemay incorporate an adequate constraint to reconstruct the full gradientmatrix∇B
first, and then take its skew-symmetric part 1

2 (∇B − ∇BT) to obtain the curl (Vogt
et al. 2009). If the curl is known to be parallel to a given direction as in the case of
auroral FACs, one may also start from the density jn of the normal current (i.e. the
component perpendicular to the plane spanned by the spacecraft positions) that is
fully determined by the measurements through

μ0 jn = (∇ × B)n � cn = n̂ ·
∑

σ

qσ × Bσ =
∑

σ

(
n̂× qσ

) · Bσ =
∑

σ

(
n̂× qσ

) · Bp,σ

(4.8)

Here n̂ is a unit vector normal to the spacecraft plane, and Bp,σ are the planar
components of the measured vectors Bσ . The field-aligned current density is then
given by j‖ � jn/n̂ · B̂0 where B̂0 is the direction of the ambient magnetic field.

4.2.4 Related Local Estimators of Gradients and Currents

In preparation of the Cluster mission, gradient analysis methods were derived from
several different principles such as discretised boundary integration (Dunlop et al.
1988), spatial interpolation (Chanteur 1998), and least squares estimation (Harvey
1998). For the Swarm mission, curl estimators based on finite differences (FD) and
also on discretised boundary integrals (BI)were developed byRitter andLühr (2006),
see also Shen et al. (2012a) and Ritter et al. (2013). Although the underlying prin-
ciples differ, the resulting estimators may still turn out to be identical. Chanteur and
Harvey (1998) demonstrated that in the regular (tetrahedral) four-spacecraft case,
spatial interpolation yields the same analysis scheme as unconstrained least squares.
Considering virtual four-point almost planar configurations relevant for the Swarm
mission, (Vogt et al. 2013) compared different estimators for the normal component
of the curl (corresponding to the radial current density) and found that the FD and
BI estimators are algebraically identical.

Inter-comparisons of gradient and curl analysis schemes are facilitated by the
observation that (to our knowledge) all the proposed multi-spacecraft methods yield
estimators that are linear in the data. Using general results from linear algebra,
(Vogt et al. 2008b) demonstrated that the problem of linear and consistent four-point
gradient estimation has a unique solution. The same argumentation can be applied to
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Fig. 4.3 Virtual four-point configuration produced by two satellites on close orbits such as SwA
(corresponding to satellite a) and SwC (satellite b). The shape of the four-point array can be
characterised by the dimensionless parametersμ = M/L (stretching parameter, ratio of along-track
to across-track distance), λ = 	/L (skewness parameter, ratio of relative offset 2	 to across-track
distance 2L), and ε = m/M (deviation of the two velocity directions from the perfectly parallel
case). From Vogt et al. (2013), Fig. 4.1

three-spacecraft arrays: the number of free parameters (mesocentre value h∗ and two
components of the planar gradient ∇p h) is the same as the number of measurements
(values hσ at three-spacecraft positions), therefore there is a unique three-point linear
and consistent estimator for the planar gradient that can be expressed explicitly, e.g.,
using the formalism of Vogt et al. (2009).

All linear estimators for the gradient of a scalar variable h can be represented in
the form ∇h � ∑

σ pσhσ with a specific set of vectors pσ , termed canonical base
vectors by Vogt et al. (2013). For vector measurements, we obtain ∇B = ∑

σ pσBT
σ .

The corresponding linear curl estimator can then be written in the form ∇ × B =∑
σ pσ × B. The FD/BI and LS estimators for planar four-point configurations pro-

duced from the SwA–SwC pair yield canonical base vectors that differ only in terms
proportional to a small configurational parameter ε = m/M ∼ 10−2 with m and M
as in Fig. 4.3, see Vogt et al. (2013) for a detailed description. The FD/BI estimator
of the normal curl component (∇ × B)n can be written in the compact form

μ0 jn = (∇ × B)n � 1

2A

[(
B+
c − B−

a

) · (
r+
a − r−

c

) − (
B+
a − B−

c

) · (
r+
c − r−

a

)]

(4.9)
where the A is the modulus of the oriented area

A = 1

2

(
r−
a − r+

a

) × (
r+
c − r+

a

) + 1

2

(
r+
c − r−

c

) × (
r−
a − r−

c

)
, (4.10)
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see also Appendix B in Vogt et al. (2013). Subscripts a and c indicate SwA and SwC,
respectively, and superscripts ± denote the two time-shifted measurements.

4.2.5 Errors and Limitations

Spatial gradient estimates produced from multi-point measurements are affected
by several errors and limitations: (a) measurement errors, (b) positional errors, (c)
imperfections of the assumed linear model. In the planar spacecraft array case when
additional information has to be considered to reconstruct the normal gradient, and (d)
uncertainties in the imposed geometrical or physical conditions give rise to additional
errors.

Measurement errors

Random uncertainties produced by limitations of the experimental setup (instrumen-
tal noise) are called measurement errors or physical errors. They can be quantified
by means of error covariances 〈δhσ δhτ 〉 for scalar observables, and

〈
δBσ δBT

τ

〉
for

vectors such as the magnetic field. Representations such as ∇h � g = ∑
σ qσhσ

for linear gradient estimators offer a coherent framework for an assessment of the
resulting uncertainties (Chanteur 1998; Vogt and Paschmann 1998; Vogt et al. 2008b,
2009, 2013). The special case of isotropic and uncorrelated measurement errors
yields 〈δhσ δhτ 〉 = δστ (δh)2 where δστ is the Kronecker delta symbol, and δh is a
measure of instrumental sensitivity, resulting in the parameter covariant matrix

〈
δg δgT〉 = (δh)2Q (4.11)

with the tensor Q = ∑
σ qσqT

σ (reciprocal tensor). For planar arrays of spacecraft
positions, g is an estimator of the in-plane gradient component. The squaremagnitude
error is given by the trace

〈|δg|2〉 = (δh)2 trace(Q) = (δh)2
∑

σ

|qσ |2 . (4.12)

In both the invertible and the singular position tensor case, the term trace(Q) =∑
σ |qσ |2 is the square of an inverse length scale and can be understood as an

error amplification factor that depends on the geometry (extension and shape) of
the spacecraft array, see Vogt et al. (2008b, 2009, 2013). Normalisation using
the mean square inter-spacecraft distance (1/S)

∑
σ |rσ |2 yields a scaled version

of the geometrical error amplification factor. The case of gradient matrix estima-
tors ∇B � G = ∑

σ qσBT
σ , based on vector measurements is discussed in detail by

Chanteur (1998) and Vogt et al. (2009).
Using the same approach and assumptions, the accuracy of linear curl estimators

∇ × B � c = ∑
σ qσ × Bσ is studied in Appendix B. The parameter covariance

matrix is given by
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Fig. 4.4 Logarithm of the ratio L2
r /L

2
q as defined by Eq. (4.16), an effective error amplification

factor controlled by the shape of the planar four-point configuration sketched in Fig. 4.3, as a
function of the stretching parameter μ = M/L and the skewness parameter λ = 	/L . From Vogt
et al. (2013), Fig. 3

〈
δc δcT〉 = (δB)2

{
∑

σ

|qσ |2E −
∑

σ

qσqT
σ

}

= (δB)2 {trace(Q)E − Q} (4.13)

where E denotes the identity matrix. For a planar spacecraft array with normal unit
vector n̂ we obtain 〈|δcn|2

〉 = (δB)2
∑

σ

|qσ |2 . (4.14)

This case applies to Swarm field-aligned current estimates with the vectors qσ being
the canonical base vectors of the respective LS or FD/BI estimator (Vogt et al. 2013).
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Defining Lq = (∑
σ |qσ |2)−1/2

(gradient estimation error length) for a planar
four-point configuration, we may express the mean square error of the radial (nor-
mal) current jn as

〈|δ jn|2
〉 = (δB)2/(μ2

0L
2
q). Using the mean square inter-spacecraft

distance Lr = (
1
4

∑
σ |rσ |2)1/2 as a measure of the extent of the spacecraft array, one

may further rearrange to obtain the form

〈|δ jn|2
〉 = (δB)2

μ2
0L

2
r

L2
r

L2
q

. (4.15)

The first term is a reference error for field-aligned current density controlled only by
the array size. The second term

L2
r

L2
q

=
(

∑

σ

|qσ |2
)

· 1
4

(
∑

σ

|rσ |2
)

(4.16)

gives the influence of the array shape. Figure4.4 displays the logarithm of L2
r /L

2
q for

m/M = ε = 10−2 in terms of the configurational parametersμ = M/L andλ = 	/L
(see Fig. 4.3). Error amplification is smallest (close to unity) for equal-sided (μ ≈ 1)
and non-skewed (λ ≈ 0) quads. Significantly skewed configurations (λ � 3) give
rise to substantial error amplification.

Positional errors

Random uncertainties in spacecraft positions are called positional errors or geomet-
rical errors. Isotropic and uncorrelated positional errors can be incorporated in the
parameter covariances obtained fromconsidering onlymeasurement errors by replac-
ing (δh)2 → (δh)2 + |∇h|2(δr)2 (Vogt and Paschmann 1998;Vogt et al. 2009). In the
case of magnetic gradient and electric current estimates based on Swarm magnetic
field data, positional errors have a much smaller impact than measurement errors
because |∇B|δr � δB and can thus be neglected. This statement remains valid if
positional inaccuracies in virtual four-point configurations imposed by time-shift
errors δt (in the order of ms) are taken into account, then δr ∼ V δt where V is the
spacecraft speed.

Model imperfections

Nonlinear variations of the observable over the spatial region covered by the space-
craft array cause deviations from the assumed linearmodel, and the spatial gradient is
not perfectly uniform. In contrast to the statistical nature of measurement errors and
positional errors which become less important for larger inter-spacecraft separation
distances, gradient estimation errors due to deviations from linearity tend to increase
with spacecraft separations (Robert et al. 1998). In the auroral zone the problem
implies that current structures with variation scales (sheet widths) smaller than the
array extension cannot be resolved and are effectively smeared out.



4 Local Least Squares Analysis of Auroral Currents 67

Uncertainties of imposed conditions

In the planar spacecraft array case (position tensor has rank 2) where only the in-
plane component can be directly estimated from the measurements, the constraint
equations used to reconstruct the normal gradient may not be perfectly satisfied,
producing additional errors. The quality of the normal gradient can be assessed by
means of error indicators (Vogt et al. 2009, 2013). The assumption that the full
gradient is aligned with a given direction ê (parallel constraint) can lead to large
uncertainties if |ê× n̂| is small. The normal gradient estimate resulting from the
perpendicular constraint (full gradient perpendicular to a given direction ê) should
be taken with care if the error indicator |ê · n̂| is small. An error indicator for the
force-free case that should not become too small is |B̂0 · n̂|. Since in the auroral zone
themagnetic field forms a small anglewith the radial vector, the error indicator for the
virtual four-point configuration constructed from Swarm dual-spacecraft positions
is close to unity and thus well-behaved. Larger uncertainties are expected at low
latitudes.

4.3 Multi-spacecraft Array Techniques in Practice

The multi-point array techniques of Sect. 4.2 rest on the choice of canonical base
vectors. For local LS estimators in the invertible position tensor case and a mesocen-
tric coordinate frame, the canonical base vectors are generalised reciprocal vectors
qσ = R−1rσ . Estimators of the magnetic gradient matrix ∇B and the curl vector
∇ × B are given by

∇B � G =
∑

σ

qσBT
σ , (4.17)

∇ × B � c =
∑

σ

qσ × Bσ . (4.18)

Practical aspects of four-spacecraft LS estimators were discussed, e.g., by Chanteur
and Harvey (1998), Vogt et al. (2008b), and Vogt (2014).

This section is concerned with the implementation and applications of local LS
estimators for the planar array case, i.e. three-spacecraft arrays and virtual four-point
configuration constructed from the positions of SwA and SwC. Then the canonical
base vectors qσ are minimum-norm solutions of Rqσ = rσ , and Eqs. (4.17) and
(4.18) produce the in-plane gradient and the normal curl component directly from
the measurements. The three-spacecraft LS gradient estimator was tested by Vogt
et al. (2009) and applied to Cluster pressure measurements in the magnetail. The
dual-satellite LS FAC estimator was validated by Vogt et al. (2013) using Cluster
observations of a force-free plasma structure in the solar wind that had previously
been studied and characterised in detail by means of multi-spacecraft timing anal-
ysis (Vogt et al. 2011). Below in Sect. 4.3.2 we present selected applications of the
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three-spacecraft and the dual-satellite LS FAC estimator to Swarm magnetic field
measurements, after discussing the implementation of local LS estimators for planar
arrays in Sect. 4.3.1.

4.3.1 Implementation of Planar Multi-point Array Estimators

Local LS gradient and/or curl estimation using measurements of a planar spacecraft
array involves the following steps.

Construction of canonical base vectors

In the planar array case with the position vectors of all spacecraft located in one
plane, we first compute the eigenvalues and eigenvectors of the position tensor R,
and then construct the pseudo-inverse Q from the two largest eigenvalues ρ1, ρ2 and
the corresponding eigenvectors ê1 and ê2 as

Q = ρ−1
1 ê1ê

T
1 + ρ−1

2 ê2ê
T
2 . (4.19)

The eigenvalues are assumed to be in descending order, ρ1 ≥ ρ2 ≥ 0, and ρ3 = 0
because the spacecraft array is planar. The canonical base vectors are qσ = Qrσ (in
a mesocentric frame). The procedure works for both the virtual four-point configu-
rations formed by positions of SwA and SwC as well as for three-spacecraft arrays.
In the latter case the canonical base vectors are planar reciprocal vectors (Vogt et al.
2009) that can also be computed using Eq. (4.6). For a thorough discussion of volu-
metric tensor (1/S) R eigenvectors and eigenvalues in the three-spacecraft case, see
Appendix D of Shen et al. (2012b).

Estimation of planar gradient and/or normal current components

Array magnetic field data Bσ allow to estimate directly the in-plane component of
the gradient matrix as ∇p B = ∑

σ qσBT, and also the normal component cn of the
curl:

cn = n̂ ·
∑

σ

qσ × Bσ =
∑

σ

(
n̂× qσ

) · Bσ . (4.20)

The normal (out-of-plane) current density is given by jn = cn/μ0.

Quality indicators of planar gradient and normal current estimates

The stability of the (constrained) matrix inversion that yields the canonical base vec-
tors is controlled by the effective condition number CN(R) = ρ1/ρ2 of the position
tensor R.

Error amplification due to the array shape is controlled by the ratio of square
length scales L2

r /L
2
q defined by Eq. (4.16), and directly related to the condition

number through
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L2
r

L2
q

= 1

4

(

2 + CN(R) + 1

CN(R)

)

, (4.21)

CN(R) = exp

[

arcosh

(

2
L2
r

L2
q

− 1

)]

, (4.22)

see Appendix C for a proof. Hence, CN(R) and L2
r /L

2
q contain essentially the

same information, and for moderately large values are related linearly: CN(R) �
4L2

r /L
2
q − 2. When also the array size is taken into account, error amplification is

measured by the square inverse length scale L−2
q = ∑

σ |qσ |2. The uncertainty of
both planar gradient and normal curl estimation is simply given by δB/Lq . Hence
in addition to CN(R) also Lq should be computed and checked to assess the quality
of the estimated derivative.

Construction of the full gradient matrix and/or the full current vector

In order to obtain the full gradient, the component normal to the spacecraft plane has
to be constructed in addition to the planar gradient estimate. This can be achieved
by means of suitable constraint equations as discussed in Sect. 4.2.2, see also Vogt
et al. (2009). The curl vector ∇ × B can then be read directly from the components
of the skew-symmetric part of ∇B. In the special case of the force-free condition,
the current is parallel to the ambient magnetic field B0, and the field-aligned current
density j‖ can be computed directly from the normal current density jn through
j‖ � jn/n̂ · B̂0. The construction of normal gradients and planar curl components
should be critically assessed using error indicators as discussed in Sect. 4.2.5.

4.3.2 Application to Swarm Auroral Crossings

To demonstrate local LS estimation of FACs for planar spacecraft arrays, we select
two auroral crossings of the Swarm satellites when SwB was close enough to the
SwA–SwC pair for the application of three-spacecraft techniques.

Figure4.5 showsmagnetic field measurements of the three Swarm satellites in the
Southern hemisphere on 24 July 2014, 02:44–02:50 UT, together with different FAC
estimates and quality indicators. Clearly visible are negative parallel (downward)
currents between ∼02:47:30 and ∼02:48:00 followed by positive parallel (upward)
current until ∼02:48:30. The dual-satellite LS FAC estimates are very close to the
Level-2 FAC product J_L2_AC apart from several smaller-scale deviations. They are
due to the fact that the Level-2 dual-satellite FAC product is based on filtered Swarm
magnetic field observations whereas here the least squares estimator processed unfil-
tered data as input. The smaller-scale deviations are much less pronounced if the
dual-satellite LS estimate of the FAC profile is also computed after application of a
suitable filter. The output produced by the three-spacecraft LS estimator, also based
on unfiltered magnetic field measurements, also shows smaller-scale variability but
otherwise follows the other two profiles quite well apart from an apparent time shift,
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Fig. 4.5 Panels 1–3: magnetic field measurements of SwA, SwB, and SwC on 24 July 2014,
02:44–02:50 UT. Panel 4: logarithmic condition numbers for the three-spacecraft array (CN_ABC)
and the virtual four-point configuration generated by SwA and SwC (CN_AC). Panel 5: angle
between the ambient magnetic field direction B̂0 and the normal vector of the three-spacecraft
plane. Panel 6: comparison of the dual-satellite (virtual four-point) LS FAC estimator J_LS_AC
and the three-spacecraft LS FAC estimator J_LS_ABC with the Level-2 dual-satellite FAC product
J_L2_AC
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caused by different mesocentres of the three-spacecraft array and the four-point con-
figuration. Condition numbers for the current structure crossing are moderate (below
5 for the dual-satellite estimator, and not much larger than 10 for the three-spacecraft
array). The angle between the ambient magnetic field and the normal direction of
the three-spacecraft plane assumes tolerable values far from 90◦.

The geometry of the current structure can be further studied using minimum
variance analysis (MVA), discussed in more detail in Sect. 4.4 where the analysis
procedure and key variables are explained. An important MVA parameter is the
eigenvalue ratio that can be interpreted as ameasure of planarity. For sufficiently large
eigenvalue ratios we can think of the current structure as a sheet, with the eigenvector
to the largest eigenvalue being tangential to the sheet. The auroral crossing considered
here yields large eigenvalue ratios 29, 20 and37 for SwA,SwBandSwC, respectively,
and sheet orientations that are very consistent within a few degrees for all three
satellites.

Data from the second Swarm auroral crossing on 29 May 2014, 13:36–13:44 UT,
are displayed in Fig. 4.6. The largest current densities are observed between
∼13:39:30 and ∼13:41:30. Again apart from smaller-scale deviations due to dif-
ferences in filtering of the input magnetic field measurements, the two dual-satellite
FAC estimates (both based on data from SwA and SwC) are very similar. The FAC
profile produced by the three-spacecraft LS estimator differs significantly at around
13:41, despite reasonable values of the quality indicators. Closer inspection of the
SwB magnetic field profile reveals a substructure at 13:41 that is not present in
the measurements of SwA and SwC, indicating non-uniform currents on the inter-
spacecraft separation scale that are inconsistent with the linear model assumption.
Eigenvalue ratios are 11, 16, 13 and thus somewhat smaller than for the first cross-
ing, and also the sheet orientations obtained from single-spaceraft MVA show larger
differences up to about 10 degrees.

4.4 Single-Spacecraft Multi-scale Analysis

Satellite measurements of the magnetic field allow the study of planar geospace
structures such as current sheets or boundary layers through the eigenvalues and
eigenvectors of the data covariance matrix. This type of principal axis decomposition
is known as principal component analysis (PCA) or empirical orthogonal function
(EOF) analysis in the statistical literature, and as minimum variance analysis (MVA)
in space physics (Sonnerup and Cahill 1967). MVA can be derived using constrained
least squares estimation (Sonnerup and Scheible 1998) and is usually applied to the
entire geospace structure of interest. (Bunescu et al. 2015, 2017) introduced a multi-
scale version by applying theMVA procedure using a range of sliding windows, thus
producing local estimates of key MVA parameters such as the eigenvalue ratio and
the angle characterising sheet orientation. The novel multi-scale version of MVA is
described below in Sect. 4.4.2, followed by an application to Swarm magnetic field
measurements in Sect. 4.4.3. The starting point of our discussion are the principles
of MVA as summarised in Sect. 4.4.1.



72 J. Vogt et al.

  J_LS_ABC
J_LS_AC

  CN_AC

2014-05-29  13:37 - 13:42

-400

-200

0

200

400

sw
A

_d
B

_N
E

C
[n

T
]

  N

  E

  C

-400

-200

0

200

400

sw
B

_d
B

_N
E

C
[n

T
]

  N

  E
  C

-400

-200

0

200

400

sw
C

_d
B

_N
E

C
[n

T
]

  N

  E
  C

0.0
0.5
1.0
1.5
2.0

lo
g(

C
N

)   CN_ABC

0
10
20
30

B
an

gl
e

[d
eg

]

1337

87.9
21.4
82.4
-75.8

1338

88.2
10.1
78.7
-69.2

1339

84.4
9.8

74.9
-66.0

1340

80.6
9.8

71.1
-64.1

1341

76.7
9.8

67.3
-62.9

1342

72.9
9.7
63.5
-62.2

-3

-2

-1

0

1

2

3

J 
al

on
g 

B
  

[μ
A

/m
2 ]

J_L2_AC

hhmm
2014 May 29 
MLAT
MLT
LAT
LON

Fig. 4.6 Panels 1–3: magnetic field measurements of SwA, SwB, and SwC on 29 May 2014,
13:36–13:44 UT. Panel 4: logarithmic condition numbers for the three-spacecraft array (CN_ABC)
and the virtual four-point configuration generated by SwA and SwC (CN_AC). Panel 5: angle
between the ambient magnetic field direction B̂0 and the normal vector of the three-spacecraft
plane. Panel 6: comparison of the dual-satellite (virtual four-point) LS FAC estimator J_LS_AC
and the three-spacecraft LS FAC estimator J_LS_ABC with the Level-2 dual-satellite FAC product
J_L2_AC
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4.4.1 MVA Applied to Auroral Current Sheets

Since themagnetic fieldB is solenoidal (divergence-free), planar magnetic structures
varying only in one spatial direction n̂ satisfy

0 = ∇ · B = n̂ · ∇Bn , (4.23)

thus Bn = n̂ · B is constant. Assuming that any observed variability along n̂ is due
to sufficiently small random errors, the eigenvector to the smallest eigenvalue of
the data covariance matrix is a proxy of n̂. MVA applied to magnetic field data is
sometimes termed MVAB. The method can be used also for other conserved plasma
variables, see Sonnerup and Scheible (1998).

The quality of n̂ estimates is associated with eigenvalue ratios. In the case of
auroral FAC sheets, magnetic perturbations are in the plane perpendicular to the
ambient magnetic field. The problem reduces to two spatial dimensions with two
relevant eigenvalues λ1 ≥ λ2 and two eigenvectors ê1, ê2. The eigenvalue ratio λ1/λ2

can be understood as ameasure of planarity and should be sufficiently large. The sheet
orientation is given by tangential vectors B̂0 (direction of the ambient magnetic field)
and ê1, and the normal unit vector n̂ = ê2. The orientation of auroral current sheets
can be concisely characterised by the (inclination) angle formed by the sheet normal
with magnetic north, or the spacecraft velocity vector (approximately geographic
north for polar orbiting satellites such as CHAMP or Swarm).

4.4.2 Multi-scale Field-Aligned Current Analyzer

The multi-scale and continuous (local) variant of MVAB introduced by Bunescu
et al. (2015, 2017), termed MS-MVA, can be summarised as follows:

• A range of window widths w with linear resolution dw is defined.
• At each time t of the magnetic field series, MVA is applied to an array of data
segments of width w within a predefined range and centred at t , thus yielding
a series of key MVA parameters λ1 = λmax, λ2 = λmin, Rλ = λ1/λ2 (eigenvalue
ratio), and an inclination angle. All parameters are functions of time t and scale w.

• In addition to these MVA parameters, the derivative of the largest eigenvalue
λ1 = λmax with respect to scale w is computed numerically to yield ∂wλmax.

• The continuous and multi-scale MVA parameters are displayed as functions of
time t and scale w in a suitable two-dimensional graphical representation, either
as a contour plot and/or using an appropriate colour bar. Important scales are found
to show up well in colour plots of ∂wλmax.

MS-MVA was validated using synthetic data and measurements of the Cluster and
FAST satellites.
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Fig. 4.7 Swarm magnetic measurements and MS-MVA parameters for two selected auroral cross-
ings. Panels 1–4: 24 July 2014, 02:45-02:50 UT. Panels 5–8: 29May 2014, 13:37-13:43 UT. Shown
are the magnetic field measurements of SwA (panels 1 and 5), the eigenvalue ratio Rλ (panels 2 and
6), the Rλ (panels 2 and 6), the derivative ∂wλmax (panels 3 and 7) and the current sheet inclination
(panels 4 and 8)
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4.4.3 Application of MS-MVA to Swarm Auroral Crossings

Figure4.7 shows the MS-MVA results for the two Swarm auroral crossings consid-
ered already in Sect. 4.3.2. In both cases,MS-MVAwas applied tomagnetic field data
from SwA (panels 1 and 5), here given in the mean-field-aligned (MFA) coordinate
frame (note that in Figs. 4.5 and 4.6 the magnetic field was displayed in NEC coor-
dinates). The eigenvalue ratio Rλ is displayed in panels 2 and 6. The current sheet
inclination is shown in panels 4 and 8. The multi-scale nature of the FAC sheets is
visualised very clearly in the panels 3 and 7 showing ∂wλmax.

4.5 Summary

The local least squares approach to the estimation of spatial derivatives from multi-
spacecraft magnetic field measurements yields a generic framework for the analysis
for auroral FACs and their errors. This report reviewed the underlying principles,
estimation procedures, uncertainties, limitations, and practical aspects. The array
geometry defines the position tensor with eigenvalues controlling the quality of gra-
dient and curl estimates. Linear estimators can be uniquely qualified through their
set of canonical base vectors, facilitating error analysis and comparison with alterna-
tive approaches. In planar spacecraft array configurations, reconstruction of the full
gradient and curl vectors requires additional information that can be supplemented
in the form of geometrical or physical constraints. The multi-scale nature of auroral
currents can be investigated using a multi-scale version of the well-established min-
imum variance analysis. Analysis techniques were illustrated using selected auroral
crossings of the Swarm satellites.
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Appendix

Appendix A: General Linear Least Squares Modeling

Least squares modelling can be characterised as a statistical technique to find the
parameters of a model (m) that gives the best approximation of a given data set (d)
of S measurements contaminated by random errors (residuals r ). The measurements
dσ form the components of a data vector d that can be understood as an object in S-
dimensional data spaceD . The correspondingmodel predictions yield another vector
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m, and the best approximation in the least squares sense is given by minimising the
total square deviation χ2 ∝ |d − m|2 = |r|2 , where the square norm derives from
a scalar product that may be designed to account for non-constant errors and possibly
correlated observations through an error covariance matrix. In this sense, the best
model vector minimises the (square) distance to the data vector. Furthermore, the
best model satisfies the orthogonality principle: the residual vector r = d − m is
orthogonal to the space M formed by all admissible model vectors. The effective
dimension of the model space is the number N of model parameters.

Suppose all parameters a1, a2, . . . , aN enter the model function m linearly, then
m = ∑

ν aν fν with basis functions fν , and the aν are called amplitudes. The space
M of all admissible models forms a linear subspace of the data spaceD . Casting the
model parameters into an amplitude vector a, and the predictions of individual basis
functions into a S × N matrix M (design matrix), the model vector can be written
in the form m = Ma. Parameter estimation is reduced to a linear inverse problem.
In the overdetermined case (S > N ), the solution is given by the so-called normal
equations

a = (
MTM

)−1
MTd = Milsd with Mils = (

MTM
)−1

MT . (4.24)

The matrix Mils is the pseudo-inverse of M in the least squares sense. The problem
simplies further in the case of mutually orthogonal basis functions, then the ampli-
tudes are given by aν = (

fν/|fν |2
) · d where a vector fν comprises the predictions

of the basis function fν , typically obtained through evaluation at the S independent
variables (usually spatial coordinates, possibly combined with auxiliary parameters)
corresponding to the measurements.

Appendix B: Accuracy of Linear Curl Estimators

Consider a linear estimator of the form

c = ∇ × B =
∑

σ

qσ × Bσ (4.25)

with vectors qσ that are functions of the spacecraft positions but do not depend on
the measurements Bσ . The associated linear variation is given by

δc =
∑

σ

(qσ × δBσ + δqσ × Bσ ) . (4.26)

In the case of Swarm, the typical positional inaccuracy δr and instrumental error δB
are such that the second term can be dropped because in the auroral zone |∇B|δr �
δB, see Vogt et al. (2013).
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Defining the tensor Xσ through Xσu = qσ × u yields δc = ∑
σ Xσ δBσ . The

parameter covariance tensor is then given by

〈
δc δcT〉 =

〈(
∑

σ

Xσ δBσ

)(
∑

ν

XνδBν

)T〉

=
∑

σ,ν

Xσ

〈
δBσ δBT

ν

〉
XT

ν (4.27)

Assuming isotropic and uncorrelated errors
〈
δBσ δBT

ν

〉 = (δB)2δσνE, we may write

〈
δc δcT〉 = (δB)2

∑

σ

Xσ XT
σ (4.28)

Since Xσu = qσ × u, XT
σu = −qσ × u, and thus

Xσ XT
σu = −qσ × (qσ × u) = {|qσ |2E − qσqT

σ

}
u (4.29)

we obtain

(δB)−2 〈
δc δcT〉 =

∑

σ

|qσ |2E −
∑

σ

qσqT
σ = trace(Q)E − Q (4.30)

where Q = ∑
σ qσqT

σ .
The error covariance of the curl component cn = n̂ · c = n̂Tc orthogonal to a

given unit vector n̂ can be expressed in the form

(δB)−2 〈|δcn|2
〉 = (δB)−2 〈δcn δcn〉 = (δB)−2n̂T 〈

δc δcT〉
n̂

= trace(Q)n̂Tn̂ − n̂TQn̂ =
∑

σ

|qσ |2 −
∑

σ

|n̂ · qσ |2

=
∑

σ

|n̂× qσ |2 . (4.31)

In the planar spacecraft array case, and if n̂ is the normal unit vector to the spacecraft
plane, n̂ · qσ = 0 and thus

〈|δcn|2
〉 = (δB)2

∑
σ |qσ |2.

Appendix C: Condition Number of a Planar Position Tensor

In order to show that the product of L−2
q = ∑

σ |qσ |2 (inverse square gradient estima-

tion error length) and L2
r = 1

4

(∑
σ |qσ |2)1/2 (mean square inter-spacecraft distance)

is in the planar spacecraft array case related to the effective condition number of the
position tensor R through Eq. (4.22)



78 J. Vogt et al.

CN(R) = exp

[

arcosh

(

2
L2
r

L2
q

− 1

)]

, (4.32)

we work in a mesocentric coordinate frame to express the position vectors rσ and the
position tensor R = ∑

σ rσ rT
σ , thus L

2
r = 1

4 trace(R). The eigenvalues ρ1 ≥ ρ2 ≥ ρ3

and corresponding eigenvectors ê1, ê2, ê3 of R yield the alternative representation
R = ∑

k ρk êk ê
T
k . Since the spacecraft configuration is assumed to be planar, R has

rank 2, thus the third eigenvalue ρ3 is zero,

R = ρ1ê1ê
T
1 + ρ2ê2ê

T
2 , (4.33)

and L2
r = 1

4 trace(R) = 1
4 (ρ1 + ρ2). The effective condition number CN(R) in the

construction of the pseudo-inverse

Q = ρ−1
1 ê1ê

T
1 + ρ−1

2 ê2ê
T
2 (4.34)

is CN(R) = ρ1/ρ2. We further note that by defintion of qσ = Qrσ ,

∑

σ

qσqT
σ =

∑

σ

Qrσ rT
σ QT = QRQT = Q (4.35)

because the operator Q = QT acts only in the spacecraft plane (spanned by the two
eigenvectors ê1 and ê2), andQR yields the identity operation on that plane. Therefore,

ρ−1
1 + ρ−1

2 = trace(Q) =
∑

σ

|qσ |2 = L−2
q , (4.36)

and

L2r
L2q

= 1

4
(ρ1 + ρ2)

(
ρ−1
1 + ρ−1

2

)
= 1

4

(

2 + ρ1

ρ2
+ ρ2

ρ1

)

= 1

4

(

2 + CN(R) + 1

CN(R)

)

.

(4.37)

With x = ln CN(R) = ln(ρ1/ρ2) we obtain

L2
r

L2
q

= 1

4

(
2 + ex + e−x

) = 1

2
(1 + coshx) , (4.38)

and finally cosh
[
ln CN(R)

] = 2L2
r /L

2
q − 1.
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