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Abstract. We formulate numerically-robust inductive proof rules for
unbounded stability and safety properties of continuous dynamical sys-
tems. These induction rules robustify standard notions of Lyapunov func-
tions and barrier certificates so that they can tolerate small numerical
errors. In this way, numerically-driven decision procedures can establish
a sound and relative-complete proof system for unbounded properties of
very general nonlinear systems. We demonstrate the effectiveness of the
proposed rules for rigorously verifying unbounded properties of various
nonlinear systems, including a challenging powertrain control model.

1 Introduction

Infinite-time stability and safety properties of continuous dynamical systems are
typically established via inductive arguments over continuous time. For instance,
proving stability of a dynamical system is similar to proving termination of a
program. A system is stable at the origin in the sense of Lyapunov, if one can
find a Lyapunov function (essentially a ranking function) that is everywhere pos-
itive except for reaching exactly zero at the origin, and never increases over time
along the direction of the system dynamics [11]. Likewise, proving unbounded
safety of a dynamical system requires one to find a barrier function (or differ-
ential invariant [19]) that separates the system’s initial state from the unsafe
regions, and whenever the system states reach the barrier, the system dynam-
ics always points towards the safe side of the barrier [21]. In both cases, once
a candidate certificate (Lyapunov or barrier functions) is proposed, the verifi-
cation problem is reduced to checking the validity of a universally-quantified
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first-order formula over real-valued variables. The standard approaches for the
validation step use symbolic quantifier elimination [4] or Sum-of-Squares tech-
niques [17,18,24]. However, these algorithms are either extremely expensive or
numerically brittle. Most importantly, they can not handle systems with non-
polynomial nonlinearity, and thus fall short of a general framework for verifying
practical systems of significant complexity.

The standard approach of checking invariance conditions in program anal-
ysis is to use Satisfiability Modulo Theories (SMT) solvers [16]. However, to
check the inductive conditions for nonlinear dynamical systems, one has to solve
nonlinear SMT problems over real numbers, which are highly intractable or
undecidable [23]. Recent work on numerically-driven decision procedures pro-
vides a promising direction to bypass this difficulty [5,6]. They have been used
for many bounded-time verification and synthesis problems for highly nonlinear
systems [12]. However, the fundamental challenge with using numerically-driven
methods in inductive proofs is that numerical errors make it impossible to verify
the induction steps in the standard sense. Take the Lyapunov analysis of stability
properties as an example. A dynamical system is stable if there exists a func-
tion that vanishes exactly at the origin and its derivatives strictly decreases over
time. Since any numerical error blurs the difference between strict and non-strict
inequality, one can conclude that numerically-driven methods are not suitable
for verifying these strict constraints. However, proving a system is stable within
an arbitrarily tiny neighborhood around the origin is all we really need in prac-
tice. Thus, there is a discrepancy between what the standard theory requires
and what is needed in practice, or what can be achieved computationally. To
bridge this gap, we need to rethink about the fundamental definitions.

In this paper, we formulate new inductive proof rules for continuous dynam-
ical systems for establishing robust notions of stability and safety. These proof
rules are practically useful and computationally certifiable in a very general
sense. For instance, for stability, we define the notion of ε-stability that requires
the system to be stable within an ε-bounded distance from the origin, instead of
exactly at the origin. When ε is small enough, ε-stable systems are practically
indistinguishable from stable systems. We then define the notion of ε-Lyapunov
functions that are sufficient for establishing ε-stability. We then rigorously prove
that the ε-Lyapunov conditions are numerically stable and can be correctly deter-
mined by δ-complete decisions procedures for nonlinear real arithmetic [7]. In this
way, we can rely on various numerically-driven SMT solvers to establish a sound
and relative-complete proof systems for unbounded stability and safety prop-
erties of highly nonlinear dynamical systems. We believe these new definitions
have eliminated the core difficulty for reasoning about infinite-time properties of
nonlinear systems, and will pave the way for adapting a wide range of automated
methods from program analysis to continuous and hybrid systems. In short, the
paper makes the following contributions:

– We define ε-stability and ε-Lyapunov functions in Sect. 3. We prove that
finding ε-Lyapunov functions is sufficient for establishing ε-stability.

– We define two types of robust proof rules for unbounded safety in Sect. 3,
which we call Type 1 and Type 2 ε-barrier functions. The former relies on
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strict contraction, and the latter relies on reachable-set computation to guar-
antee bounded escape.

– We prove that δ-complete decision procedures provide a sound and relative-
complete proof system for the proposed numerically-robust induction rules,
in both Sects. 3 and 4.

We demonstrate the effectiveness of the proposed methods on various nonlinear
systems in Sect. 5. Section 2 covers the basic definitions and Sect. 6 concludes the
paper.

Related Work. Several lines of work have proposed relaxed and practical
notions to capture the spirit of the stability requirements. Early work from the
1960s introduced practical stability, which defined bounds on system behaviors
over finite time horizons [2,14,26,27]. These methods can show whether a sys-
tem leaves a safe set or enters a goal set over a finite time horizon based on
Lyapunov-like functions. Stability defined in this sense is equivalent to estimat-
ing the reachable set over a finite time horizon. Thus, the shortcoming is that
it may not capture the desired behavior of the system over unbounded time.
Similarly, notions of boundedness and ultimate boundedness specify limits on
the system behaviors [11]. Boundedness specifies whether the system remains
within a given bounded region. Ultimate boundedness specifies that the system
eventually returns to the given bounded region. These properties can be estab-
lished based on Lyapunov-like conditions. Related notions have been generalized
to switched systems [29,30]. Also, the related notion of region stability defines
systems that eventually enter and remain within a specified set [20]. We present
stability concepts that unify and extend the above notions. A related relaxation
of the traditional notions of stability includes almost Lyapunov functions [15],
which allow the strict stability conditions to be neglected in a region near the
equilibrium point. The challenge of applying this technique in practice is that
the size and shape of the neglected region are not specified a priori, so a con-
structive technique for specifying a stability region is not straightforward. Our
work is related to efforts to construct and check robust barrier certificates using
Lyapunov-like functions to ensure that controllers satisfy safety constraints [28].
This work provides a framework in which to specify analytic constraints on con-
troller behaviors. By contrast, our work focuses on providing constraints that
can be checked fully automatically. Our notion of ε-barrier functions is closely
related to t-barrier certificates from [1], though we choose to focus on distance
bounds from the barrier (ε) rather than time bounds that indicate how long it
takes for behaviors to re-enter the barrier once it has left (t).

2 Background

2.1 Dynamical Systems

Throughout the paper, we use the following definition of an n-dimensional
autonomous dynamical system:

dx(t)
dt

= f(x(t)), x(0) ∈ init and ∀t ∈ R≥0, x(t) ∈ D, (1)
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where an open set D ⊆ R
n is the state space, init ⊆ D is a set of initial states, and

f : D → R
n is a vector field specified by Lipschitz-continuous functions on each

dimension. For notational simplicity, all variable and function symbols can rep-
resent vectors. When vectors are used in logic formulas, they represent conjunc-
tions of the formulas for each dimension. For instance, when x = (x1, . . . , xn),
we write x = 0 to denote the formula x1 = 0 ∧ · · · ∧ xn = 0. For any system
defined by (1), we write its solution function as

F : D × R≥0 → R
n, F (x(0), t) = x(0) +

∫ t

0

f(x(s))ds. (2)

Note that F usually does not have an analytic form. However, since f is Lipschitz-
continuous, F exists and is unique. We will often use Lie derivatives to measure
the change of a scalar function along the flow defined by another vector field:

Definition 1 (Lie Derivative). Let f : D → R
n define a vector field. Write

the ith component of f as fi. Let V : D → R be a differentiable scalar function.
The Lie derivative of V over f is defined as ∇fV (x) =

∑n
i=1

∂V
∂xi

fi.

2.2 First-Order Language over the Reals LRF

We will make extensive use of first-order formulas over real numbers with Type 2
computable functions [25] to express and infer properties of nonlinear dynamical
systems. Definition 2 introduces the syntax of these formulas.

Definition 2 (Syntax of LRF ). Let F be the class of all Type 2 computable
functions over real numbers. We define:

t ::= xi | f(t(x)), where f ∈ F , possibly constant;
ϕ ::= 	 | ⊥ | t(x) > 0 | t(x) ≥ 0 | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xiϕ | ∀xiϕ.

We regard ¬ϕ as an operation that is defined inductively as usual. For
instance, ¬(t > 0) is defined as −t ≥ 0, and ¬(∃xiϕ) is defined as ∀xi¬ϕ. For
any LRF terms u and v, variable x, and LRF predicate ϕ, we write ∃[u,v]xϕ
and ∀[u,v]xϕ to denote ∃x(u ≤ x ∧ x ≤ v ∧ ϕ) and ∀x((u ≤ x ∧ x ≤ v) → ϕ),
respectively, which applies to open intervals too. Next, Definition 3 introduces
syntactic perturbation of formulas in LRF .

Definition 3 (δ-Strengthening and Robust Formulas [7]). Let δ ∈ Q
+ be

arbitrary. Let ϕ be an arbitrary LRF formula. The δ-strengthening of ϕ, denoted
by ϕ+δ, is obtained from ϕ by replacing every atomic predicate of the form t(x) >
0 and t(x) ≥ 0 with t(x) − δ > 0 and t(x) − δ ≥ 0, respectively. We say ϕ is δ
-robust iff ϕ+δ ↔ ϕ.

Definition 4 (δ-Complete Decision Procedures [7]). Let S be a class of
LRF -sentences. We say a decision procedure is δ-complete over S iff for any
ϕ ∈ S, the procedure correctly returns one of the following answers:
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– true : ϕ is true.
– δ-false : ϕ+δ is false.

When the two cases overlap, either decision can be returned.

It follows that if ϕ is δ-robust, then a δ-complete decision procedure can
correctly determine the truth value of ϕ.

3 Robust Proofs for Stability

We first focus on stability. We will define the notion of ε-stability, as a relaxation
of the standard Lyapunov stability, and then define ε-Lyapunov functions, which
are sufficient for proving ε-stability in a robust way.

3.1 Stability and Lyapunov Functions

Conventionally, ε and δ are used to best highlight the connection with ε-δ con-
ditions for continuity. We will mostly reserve the use of ε for defining conditions
that are robust under ε-bounded numerical errors. Thus, we replace ε by τ in
the standard definitions to avoid confusion.

Definition 5 (Stability). We say the system in (1) is stable at the origin in
the sense of Lyapunov, iff for any τ -ball neighborhood of the origin, there exists
a δ-ball around the origin, such that, if the system starts within the δ-ball then it
never escapes the τ -ball. We capture the definition by the following LRF -formula:

Stable(f) ≡df ∀(0,∞)τ∃(0,∞)δ∀Dx0∀[0,∞)t
(
‖x0‖ < δ → ‖F (x0, t)‖ < τ

)

Definition 6 (Lyapunov Function). Consider a dynamical system given in
the form of (1), and let V : D → R be a differentiable function. We say V is a
non-strict Lyapunov function for the system, iff the following predicate is true:

LF(f, V ) ≡df (V (0) = 0) ∧ (f(0) = 0) ∧ ∀D\{0}x
(
V (x) > 0 ∧ ∇fV (x) ≤ 0

)

Proposition 1. For any dynamical system defined by f , if there exists a Lya-
punov function V , then the system is stable. Namely, LF(f, V ) → Stable(f).

3.2 Epsilon-Stability

The standard definitions of stability requires a system to stabilize within arbi-
trarily small neighborhoods around the origin. However, very small neighbor-
hoods are practically indistinguishable from the origin. Thus, it is practically
sufficient to prove that a system is stable within some sufficiently small neigh-
borhood. We capture this intuition by making a minor change to the standard
definition, by simply putting a lower bound ε on the τ parameter in Definition 5.
As a result, the system is required to exhibit the same behavior as standard sta-
ble systems outside the ε-ball, but can behave arbitrarily within the ε-ball (for
instance, oscillate around the origin). The formal definition is as follows:
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Fig. 1. Standard and ε-relaxed notions of stability and Lyapunov functions

Definition 7 (Epsilon-Stability). Let ε ∈ R+ be arbitrary. We say a dynami-
cal system in (1) is ε-stable at the origin in the sense of Lyapunov, iff it satisfies
the following condition:

Stableε(f) ≡df ∀[ε,∞)τ∃(0,∞)δ∀Dx0∀[0,∞)t
(
‖x0‖ < δ → ‖F (x0, t)‖ < τ

)

In words, for any τ ≥ ε, there exists δ such that all trajectories that start within
the δ-ball will stay within a τ -ball around the origin.

Note that the only difference with the standard definition is that τ is bounded
from below by a positive ε instead of 0. The definition is depicted in Fig. 1c, which
shows the difference with the standard notion in Fig. 1a. Since the only difference
with the standard definition is the lower bound on the universally quantified τ ,
it is clear that ε-stability is strictly weaker than standard stability.

Proposition 2. For any ε ∈ R+, Stable(f) → Stableε(f).

Thus, any system that is stable in the standard definition is also ε-stable for
any ε ∈ R+. On the other hand, one can always choose small enough ε such
that an ε-stable system is practically indistinguishable from stable systems in
the standard definition.

3.3 Epsilon-Lyapunov Function

We now define the corresponding notion of Lyapunov function that can be used
for proving ε-stability. The robustness problem in the standard definition comes
from the singularity of the origin. With the relaxed notion of stability, the system
may oscillate within some ε-neighborhood of the origin. With the relaxation, we
now have room for constructing a few nested neighborhoods that can trap the
trajectories in a way that is robust under sufficiently small perturbations. To
achieve this, we make use of balls of different sizes, as shown in the following
definition. We write Bε to denote open ε-balls around the origin.

Definition 8 (Epsilon-Lyapunov Functions). Let V : D → R be a differen-
tiable scalar function defined for the system in (1), and let ε ∈ R+ be an arbitrary
value. We say V is an ε-Lyapunov function for the system, iff it satisfies the fol-
lowing conditions:
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1. Outside the ε-ball, there is some positive lower bound on the value of V .
Namely, there exists α ∈ R+ such that for any x ∈ D \ Bε, V (x) ≥ α.

2. Inside the ε-ball, there is a strictly smaller ε′-ball in which the value of V
is bounded from above, to create a gap with its values outside the ε-ball.
Formally, there exists ε′ ∈ (0, ε) and β ∈ (0, α) such that for all x ∈ Bε′ ,
V (x) ≤ β.

3. The Lie derivative of V is strictly negative outside of Bε′ . Formally, there
exists γ ∈ R+ such that for all x ∈ D \ Bε′ , the Lie derivative of V along f
satisfies ∇fV (x) ≤ −γ.

In sum, the three conditions can be expressed with the following LRF -formula:

LFε(f, V ) ≡df ∃(0,ε)ε′∃(0,∞)α∃(0,α)β∃(0,∞)γ

∀D\Bεx
(
V (x) ≥ α

)
∧ ∀Bε′ x

(
V (x) ≤ β

)

∧∀D\Bε′ x
(
∇fV (x) ≤ −γ

)

It is important to note that ε′, α, β, and γ, are not fixed constants, but
existentially quantified variables. Thus the condition can hold true for infinitely
many values of these parameters, which is critical to robustness. The only free
variable in the formula is ε, used in Bε and the bound for ε′. Note also that
neither of LFε(f, V ) and the standard definition LF(f, V ) implies the other.

Remark 1. The logical structure of LFε(f, V ) is seemingly more complex than
the standard Lyapunov conditions in Definition 6 because of the extra existen-
tial quantification. In Theorem3, we show that it does not add computational
complexity in checking the conditions.

The key result is that the conditions for an ε-Lyapunov function are sufficient
for establishing ε-stability.

Theorem 1. If there exists an ε-Lyapunov function V for a dynamical system
defined by f , then the system is ε-stable. Namely, LFε(f, V ) → Stableε(f).

Proof. Let τ ≥ ε be arbitrary, and let α, γ ∈ R+, β ∈ (0, α), and ε′ ∈ (0, ε) be
as specified by the definition of LFε(f, V ). Let x0 ∈ Bε′ be an arbitrary point.
For any t ∈ R≥0, let x(t) := F (x0, t) be the system state as defined in (2). We
use contradiction to prove for any t ∈ R+, inequality ‖x(t)‖ < ε ≤ τ holds.
Since ε′ < ε and F (x0, .) is continuous, we know t1 and t2 with the following
conditions exists (∂Bε′ and ∂Bε are boundaries of the corresponding balls):

0 ≤ t1 < t2 ≤ t, x(t1) ∈ ∂Bε′ , x(t2) ∈ ∂Bε, ∀(t1,t2)t′
(
x(t′) ∈ Bε \ Bε′

)

We know V (x(t1)) ≤ β < α ≤ V (x(t2)) and hence V (x(t1)) < V (x(t2)) are both
true; however, this is in contradiction with the mean value theorem and the fact
that Bε ⊂ D and ∀D\Bε′ x

(∇fV (x) < −γ
)
. ��
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Remark 2. Proof of Theorem 1 shows that once state of the system enters Bε′ ,
it never leaves Bε. However, it would be still possible for the state to leave Bε′ .
One the other hand, since closure of Bε \ Bε′ is bounded, and for every x in this
area, V is continuous at x and ∇fV (x) ≤ −γ, no trajectory can be trapped in
the closure of Bε \ Bε′ . Therefore, even though state of the system might leave
Bε′ , it will visit inside of this ball infinitely often.

Example 1. Consider the time-reversed Van der Pol system given by the follow-
ing dynamics. Figure 3 shows the vector field of this system around the origin.

[
ẋ1

ẋ2

]
=

[ −x2

(x2
1 − 1)x2 + x1

]

A Lyapunov function zT Pz, where zT is [x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2,

x1x
2
2, x

3
2], and P is the 9 × 9 constant matrix given in [8], is a 6-degree poly-

nomial that can be obtained using simulation-guided techniques from [10].
Using dReal [9] with δ := 10−25 and the Euclidean norm, we are able to prove
that zT Pz is a 10−12-Lyapunov function. Table 1 lists the parameters used for
this proof.

3.4 Automated Proofs with Delta-Decisions

We now prove that unlike the conventional conditions, the new inductive proof
rules are numerically robust. It follows that δ-decision procedures provide a
sound and relative-complete proof system for establishing the conditions in the
following sense:

– (Soundness) A δ-complete decision procedure is always correct when it con-
firms the existence of an ε-Lyapunov function.

– (Relative Completeness) For a given ε-inductive certificate, there exists δ > 0
such that a δ′-complete procedure is able to verify it, for any 0 < δ′ ≤ δ.

To prove these properties, the key fact is that the continuity of the functions in
the induction conditions ensures that there is room for numerical errors in the
conditions. Consequently, the formulas allow δ-perturbations in their parameters.
This is captured by Lemma 1, and the proof is given in [8].

Lemma 1. For any ε ∈ R+, there exists δ ∈ Q+ such that LFε(f, V ) is δ-robust.

Note that if a formula φ is δ-robust then for every δ′ ∈ (0, δ), φ is δ′-robust
as well. The soundness and relative-completeness then follow naturally.

Theorem 2 (Soundness). If a δ-complete decision procedure confirms that
LFε(f, V ) is true then V is indeed an ε-Lyapunov function, and f is ε-stable.

Proof. Using Definition 4, we know LFε(f, V ), exactly as specified in Definition
8, is true. Therefore, V is ε-Lyapunov. Using Theorem 1, f is ε-stable. ��
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Theorem 3 (Relative Completeness). For any ε ∈ R+, if LFε(f, V ) is true
then there exists δ ∈ Q+ such that any δ-complete decision procedure must return
that LFε(f, V ) is true.

Proof. Fix an arbitrary ε ∈ R+ for which LFε(f, V ) is true. Let φ := LFε(f, V ),
and using Lemma 1, let δ ∈ Q+ be such that φ is δ-robust. Since φ is true, we
conclude φ+δ is true as well. Using Definition 4, no δ-complete decision procedure
can return δ-false for φ. ��

We remark that the quantifier alternation used in Definition 8 can be elim-
inated without extra search steps. It confirms that we only need to run SMT
solving to handle the universally quantified subformula. The reason is that the α,
β, and γ parameters can be found by estimating the range of V (x) and ∇fV (x)
in the different neighborhoods. In fact, we can rewrite LFε(f, V ) in the following
way to eliminate the use of α, β, and γ:

LFε(f, V ) ↔ ∃(0,ε)ε′
(

sup
x∈Bε′

V (x) < inf
x∈D\Bε

V (x) ∧ sup
x∈D\Bε′

∇fV (x) < 0
)

Note that in this form the universal quantification is implicit in the sup and inf
operators. In this way, the formula is existentially quantified on only ε′, which
can then be handled by binary search. This is an efficient way of checking the
conditions in practice. We also remark that without this method, the original
formulation with multiple parameters can be directly solved as ∃∀-formulas as
well using more expensive algorithms [13].

4 Robust Proofs for Safety

In this section, we define two types of ε-barrier functions that are robust to
numerical perturbations.

Proving unbounded safety requires the use of barrier functions. The idea is
that if one can find a barrier function that separates initial conditions from the
set of unsafe states, such that no trajectories can cross the barrier from the safe
to the unsafe side, then the system is safe. Here we use a formulation similar
to the that of Prajna [21]. The standard conditions on barrier functions include
constraints on the vector field of the system at the exact boundary of the barrier
set, which introduces robustness problems. We show that it is possible to avoid
these problems using two different formulations, which we call Type 1 and Type 2
ε-barrier functions. Type 1 ε-barrier functions strengthen the original definition
and requires strict contraction of the barrier. Instead of only asking the system to
be contractive exactly on the barrier’s border, we force it to be contractive when
reaching any state within a small distance from the border. Type 2 ε-barrier
functions allow the system to escape the barrier for a controllable distance and
a limited period of time. It should then return to the interior of the safe region.
Type 1 ε-barriers can be seen as a subclass of Type 2 ε-barriers. The benefit
for allowing bounded escape is that the shape of the barrier no longer needs
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to be an invariant set, which can be particularly helpful when the shape of the
system invariants cannot be determined or expressed symbolically. The down-
side to Type 2 ε-barriers is that checking the corresponding conditions requires
integration of the dynamics, which can be expensive but can still be handled
by δ-complete decision procedures. The intuition behind the two definitions is
shown in Fig. 2 and will be explained in detail in this section.

4.1 Safety and Barrier Functions

Before formally introducing robust safety and ε-barrier functions, we define the
safety and barrier functions first. It is easy to see that the robustness problem
with the barrier functions is similar to that of Lyapunov functions: if the bound-
ary is exactly separating the safe and unsafe regions then the inductive conditions
are not robust, since deviations in the variables by even a small amount from
the barrier will make it impossible to complete the proof.

Definition 9 (Safety). Let B : D → R be a scalar function defined for the
system in (1). We say B ≤ 0 defines a safe (or forward invariant) set for the
system, iff the following formula is true:

Safe(f, init, B) ≡df ∀Dx0∀[0,∞)t
(
init(x0) → B(F (x0, t)) ≤ 0

)
.

Definition 10 (Barrier Function). Let B : X → R be a differentiable scalar
function defined for the system in (1). We say B is a barrier function for the
system, iff the following formula is true:

Barrier(f, init, B) ≡df ∀Dx

((
init(x) → B(x) ≤ 0

)
∧

(
B(x) = 0 → ∇fB(x) < 0

))

Proposition 3. Barrier(f, init, B) → Safe(f, init, B).

Fig. 2. Type 1 and Type 2 ε-Barriers
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4.2 Type 1: Strict Contraction

In the standard definition, the boundary of the barrier set is typically a manifold
defined by equality, which is not numerically robust. To avoid this problem, we
need the barrier boundary to be belt-shaped in the sense that there is a clear gap
between the safe and unsafe regions. The idea is as shown in Fig. 2c: we need a
second and stronger barrier defined by B = −ε for some reasonable ε, so that
the system is clearly separated from B = 0. The formal definition is as follows.

Definition 11 (ε-Barrier Certificates). Let ε ∈ R+ be arbitrary. A differ-
entiable scalar function B : D → R is an ε-barrier function iff the following
conditions are true:

– For all x, init(x) implies B(x) ≤ −ε.
– There exists γ ∈ R+ such that for all x, B(x) = −ε implies ∇fB(x) ≤ −γ.

Formally, the condition is defined as

Barrierε(f, init, B) ≡df ∀Dx
(
init(x) → B(x) ≤ −ε

)

∧ ∃(0,∞)γ∀Dx
(
B(x) = −ε → ∇fB(x) ≤ −γ

)

It should be intuitively clear from the definition that the existence of ε-barrier
functions is sufficient for establishing invariants and safety properties. The new
requirement is that the system stays robustly within the barrier, by the area
defined by −ε ≤ B(x) ≤ 0.

Theorem 4. For any ε ∈ R+, Barrierε(f, init, B) → Safe(f, init, B).

Proof. Assume Barrierε(f, init, B) is true. It is easy to see Barrier(f, init, B+ε), as
specified in Definition 10, is also true. Therefore, using Proposition 3, we know
Safe(f, init, B + ε) and hence Safe(f, init, B) are both true. ��

It is clear that there is room for numerically perturbing the size of the area
and still obtaining a robust proof. The proof is similar to the one for Lemma 1
as shown in [8].

Theorem 5. For any ε ∈ R+, there exists δ ∈ Q+ such that Barrierε(f, init, B)
is a δ-robust formula.

Example 2 (Type 1 ε-Barrier for timed-reversed Van der Pol). Consider the
time-reversed Van der Pol system introduced in Example 1. We use the same
example to demonstrate the effect of numerical errors in proving barrier cer-
tificates. The level sets of the Lyapunov functions in the stable region are bar-
rier certificates; however, for the barriers that are very close to the limiting
cycle, numerical sensitivity becomes a problem. In experiments, when ε = 10−5

and δ = 10−4, we can verify that the level set zT Pz = 90, is a Type 1 ε-
barrier. Table 2 lists parameters used in this proof. Figure 3 (Left) shows the
direction field for the timed-reversed Van der Pol dynamics, the border of the
set zT Pz ≤ 90, which we prove is a type 1 ε-barrier, and the boundary of set
zT Pz ≤ 110, which is clearly not a barrier, since it is outside of the limit cycle.



148 S. Gao et al.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x 2

Vector Field
Limit Cycle
z'Pz=90
z'Pz=110

-2 -1.5 -1 -0.5 0 0.5 1 1.5
x

1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

x 2

Unsafe

init

Vector Field
B(x) =  1.0 Levelset
B(x) = -0.1 Levelset
B(x) =  0.0 Levelset
Forward Image of B(x)=0 Levelset at t=0.14
Forward Image of B(x)=0 Levelset at t=0.28
Forward Image of B(x)=0 Levelset at t=0.42

Fig. 3. (Left) Van der pol example (Right) Type 2 barrier example

The conditions for ε-Lyapunov and ε-barrier functions look very similar, but
there is an important difference. In the case of Lyapunov functions, we do not
evaluate the Lie derivative of the balls. Thus, the balls do not define barrier sets.
On the other hand, the level sets of Lyapunov functions always define barriers.

Remark 3. The ε-barrier functions can also be used as a sufficient condition for
ε-stability, if a barrier can be found within the ε-ball required in ε-stability.

Remark 4. A technical requirement for proving robustness of the ε-barrier con-
ditions is that ¬init defines a simple set that can be over-approximated, such
that for every ε ∈ R+, there is δ ∈ R+ such that for any point that satisfies
¬init+δ there is an ε-close point that satisfies ¬init. A sufficient condition for
this restriction is that init be of the form (

∧
i ai ≤ xi ≤ bi) → ϕ(x), where

ai, bi ∈ Q are arbitrary constants, and ϕ is a quantifier-free formula with only
strict inequalities [22].

4.3 Type 2: Bounded Escape

We now introduce the second set of conditions for establishing ε-invariant sets.
This set of conditions can be used only when the ε-variations are considered. This
notion is inspired by the notion of k-step invariants [3] for discrete-time systems.
The ε-margin that we allow at the boundary of the invariants allows us to exploit
more techniques. Using reachable set computation, we can directly check if all
states stay within the barrier set at each step. To ensure that the conditions are
inductive and useful, we need to impose the following two requirements:

– (Contraction) Similar to the strengthening in barrier certificates, we require
that the system does not sit at the boundary: the dynamics at the boundary
should be contracting. The difference with Type 1 ε-barriers is that, this
condition is not imposed through the vector field on the boundary. Instead,
it is a reachability condition: after some amount of time, all states should
return to the interior of an appropriate set.
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– (Bounded Escape) Before reaching back to the invariant set, we allow the
system to step outside the invariant, but only up to a bounded distance from
the boundary.

The intuition is depicted in Fig. 2d. In the formal definition, we parameterize
the conditions with the time for contraction and the maximum deviation from
the invariant set, as follows.

Definition 12 (Type 2 Barrier Functions). Let T, ε ∈ R+ be arbitrary. We
say a continuous scalar function B defines a (T, ε)-elastic barrier function, iff
the following conditions hold:

1. For any x, init(x) implies B(x) ≤ −ε.
2. There exists ε′ > ε such that any state in B(x) ≤ −ε will enter B(x) ≤ −ε′

after time T .
3. During time [0, T ], the system may step outside of B(x) ≤ −ε but there exists

some ε∗ ∈ (0, ε] such that all states stay within B(x) ≤ −ε∗.

In all, we define the conditions with the following formula

BarrierT,ε(f, init, B) ≡df ∀Dx
(
init(x) → B(x) ≤ −ε

)

∧ ∃(0,ε]ε∗∀Dx∀[0,T ]t
(
(B(x) = −ε) → B(F (x, t)) ≤ −ε∗

)

∧ ∃(ε,∞)ε′∀Dx
(
(B(x) = −ε) → B(F (x, T )) ≤ −ε′

)

Theorem 6, shows that conditions in Definition 12 ensure that the system
never leaves the invariant B ≤ 0. The key is the second condition: induction
works because all states come back to the interior of the set defined by B ≤ −ε.
With the third condition only, we cannot perform induction because the set may
keep growing.

Theorem 6. For any T, ε ∈ R+, BarrierT,ε(f, init, B) → Safe(f, init, B).

Proof. For the purpose of contradiction, suppose starting from x0 ∈ init, the
system is unsafe. Using continuity of the barrier B and the solution function F ,
let t ∈ R≥0 be a time at which B(x(t)) = 0, where x(t) is by definition F (x0, t).
By the 1st property in Definition 12, we know B(x0) ≤ −ε < 0. Using continuity
of B and F , let t′ ∈ [0, t) be the supremum of all times at which B(x(t′)) = −ε.
By the 3rd property in Definition 12, we know t−t′ > T , and by the 2nd property
in Definition 12, we know B(x(t′ + T )) ≤ −ε′ < −ε. Using continuity of B and
F , we know there is a time t′′ ∈ (t′ + T, t) at which B(x(t′′)) = −ε. However,
this is in contradiction with t′ being the supremum. ��
Theorem 7. For any ε ∈ R+, there exists δ ∈ Q+ such that BarrierT,ε(f, init, B)
is a δ-robust formula.
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Example 3. We use this example to show how Type 2 ε-barriers can be used to
establish safety. Consider the following system.

[
ẋ1

ẋ2

]
=

[−0.1 −10
4 −2

] [
x1

x2

]

Let init be the set {x | −0.1 ≤ x1 ≤ 0.1,−0.1 ≤ x2 ≤ 0.1}, and let U , the unsafe
set, be the set {x | −2.0 ≤ x1 ≤ −1.1,−2.0 ≤ x2 ≤ −1.1}. The system is stable
and safe with respect to the designated unsafe set. However, the safety cannot
be shown using any invariant of the form B(x) := x2

1 +x2
2 − c ≤ 0, where c ∈ Q+

is a constant, in the standard definition. This is because the vector field on the
boundary of such sets do not satisfy the inductive conditions. Nevertheless, we
can show that for c = 1, B(x) is a Type 2 ε-barrier. The dReal query verifies the
conditions with ε = 0.1. Since U(x) → B(x) > ε and init(x) → B(x) < −ε′, we
know that the system cannot reach any unsafe states. Figure 3 (Right), illustrates
the example. The green set at the center represents init, and the red set represents
unsafe set U . The B(x) = 0 level set is not invariant, as evidenced in the figure
by the forward images at t = 0.14 and t = 0.28 leaving the set; however, as
the dReal query proves, the reachable set over 0 ≤ t ≤ 10 does not leave the
B(x) = 1.0 level set and is completely contained in the B(x) = −0.1 level set by
t = 0.4. Since U(x) → B(x) > 1.0 and init(x) → B(x) < −0.1, then the system
cannot reach any state in U .

5 Experiments

In this section, we show examples of nonlinear systems that can be verified to
be ε-stable or safe with ε-barriers.

Table 1. Results for the ε-Lyapunov functions. Each Lyapunov function is of the
form zTPz, where z is a vector of monomials over the state variables. We report the
constant values satisfying the ε-Lyapunov conditions, and the time that verification of
each example takes (in seconds).

Example α β γ ε ε′ Time (s)

T.R. Van der Pol 2.10 × 10−23 1.70 × 10−23 10−25 10−12 5 × 10−13 0.05

Norm. Pend. 7.07 × 10−23 3.97 × 10−23 10−50 10−12 5 × 10−13 0.01

Moore-Greitzer 2.95 × 10−19 2.55 × 10−19 10−20 10−10 5 × 10−11 0.04

Table 1 contains parameters we use to verify requirements of Definition 8
for ε-Lyapunov functions in our examples. Table 2 contains parameters we use
to verify requirements of Definition 11 for Type 1 ε-barrier functions in our
examples. The ε-Lyapunov functions in these examples are of the form V (x) :=
zT Pz, where z is a vector of products of the state variables and P is a constant
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Table 2. Results for the ε-barrier functions. Each barrier function B(x) is of the form
zTPz − �, where z is a vector of monomials over x. We indicate the highest degree of
the monomials used in z, the size of the P , the level � used for each barrier function,
and the value of ε and γ used to the check ∇fB(x) < −γ.

Example � ε γ degree (z) Size of P Time (s)

T.R. Van der Pol 90 10−5 10−5 3 9 × 9 6.47

Norm. Pend. [0.1, 10] 10−2 10−2 1 2 × 2 0.08

Moore-Greitzer [1.0, 10] 10−1 10−1 4 5 × 5 13.80

PTC 0.01 10−5 10−5 2 14 × 14 428.75

matrix obtained using simulation-guided techniques from [10]. All the P matrices
are given in [8].

Time-Reversed Van der Pol. The time-reversed Van der Pol system has been
used as an example in the previous sections. Figure 3 (Left) shows the direction
field of this system around the origin. Using dReal with δ := 10−25, we are able
to establish a 10−12-Lyapunov function and a 10−5-barrier function.

Normalized Pendulum. A standard pendulum system has continuous dynam-
ics containing a transcendental function, which causes difficulty for many tech-
niques. Here, we consider a normalized pendulum system with the follow-
ing dynamics, in which x1 and x2 represent angular position and velocity,
respectively. In our experiment, using δ = 10−50, we can prove that function
V := xT Px is ε-Lyapunov, where ε := 10−12.

[
ẋ1

ẋ2

]
=

[
x2

− sin(x1) − x2

]
(3)

Using δ := 0.01, we are able to prove that for any value � ∈ [0.1, 10], the function
B(x) := xT Px−�, with x being the system state, and P a constant matrix given
in [8], is a Type 1 0.01-barrier function.

Moore-Greitzer Jet Engine. Next, we consider a simplified version of the
Moore-Greitzer model for a jet engine. The system has the following dynamics,
in which x1 and x2 are states related to mass flow and pressure rise.

[
ẋ1

ẋ2

]
=

[−x2 − 3
2x2

1 − 1
2x3

1

3x1 − x2

]
(4)

In our experiment, using δ = 10−20 and z := [x2
1, x1x2, x

2
2, x1, x2]

T , we can prove
that function V := zT Pz is ε-Lyapunov, where ε := 10−10.

Using dReal with δ := 0.1, we are able to prove that for any value � ∈ [1, 10],
the function B(x) := zT Pz−�, with x being the system state, z being the vector
of monomials defined in the previous section, and P a constant matrix given
in [8], is a Type 1 0.1-barrier function.
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Powertrain Control System. Next, we consider a closed-loop model of a
powertrain control (PTC) system for an automotive application. The system
dynamics consist of four state variables, two associated with a plant and two for
a controller. The plant models fuel and air dynamics of an internal combustion
engine and the controller is designed to regulate the air-fuel (A/F) ratio within
a given range of an optimal value, referred as stoichiometric value. Two states
related to the plant represent the manifold pressure, p, and the ratio between
actual A/F ratio and stoichiometric value, r. The two associated with the con-
troller are the estimated manifold pressure, pest, and the internal state of the PI
controller, i. The system is highly nonlinear, with the following dynamics

ṗ = c1

⎛
⎝2û1

√
p

c11
−

(
p

c11

)2

− (
c3 + c4c2p + c5c2p

2 + c6c
2
2p

)
⎞
⎠

ṙ = 4

(
c3 + c4c2p + c5c2p

2 + c6c
2
2p

c13(c3 + c4c2pest + c5c2p2
est + c6c22pest)(1 + i + c14(r − c16))

− r

)

ṗest = c1

(
2û1

√
p

c11
−

(
p

c11

)2

− c13
(
c3 + c4c2pest + c5c2p

2
est + c6c

2
2pest

))

i̇ = c15(r − c16)

which followed the detailed description of the model and the constant parameter
values in [10]. We verified that there exists a function of the form B(x) = zT Pz−
0.01 (z consist of 14 monomials with a maximum degree of 2), where ∇fB(x) <
−γ, when B(x) = −ε.

6 Conclusion

We formulated new inductive proof rules for stability and safety for dynamical
systems. The rules are numerically robust, making them amenable to verification
using automated reasoning tools such as those based on δ-decision procedures.
We presented several examples demonstrating the value of the new approach,
including safety verification tasks for highly nonlinear systems. The examples
show that the framework can be used to prove stability and safety for examples
that were out of reach for existing tools. The new framework relies on the ability
to generate reasonable candidate Lyapunov functions, which are analogous to
ranking functions from program analysis. Future work will include improved
techniques for efficiently generating the ε-Lyapunov and ε-barrier functions and
related theoretical questions.
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