®

Check for
updates

AlivelnLean: A Verified LLVM Peephole
Optimization Verifier

Juneyoung Lee!®) | Chung-Kil Hur!, and Nuno P. Lopes?

! Seoul National University,
Seoul, Republic of Korea
juneyoung.lee@sf.snu.ac.kr
2 Microsoft Research, Cambridge, UK

Abstract. Ensuring that compiler optimizations are correct is impor-
tant for the reliability of the entire software ecosystem, since all soft-
ware is compiled. Alive [12] is a tool for verifying LLVM’s peephole opti-
mizations. Since Alive was released, it has helped compiler developers
proactively find dozens of bugs in LLVM, avoiding potentially hazardous
miscompilations. Despite having verified many LLVM optimizations so
far, Alive is itself not verified, which has led to at least once declaring
an optimization correct when it was not.

We introduce AlivelnLean, a formally verified peephole optimization
verifier for LLVM. As the name suggests, AliveInLean is a reengineered
version of Alive developed in the Lean theorem prover [14]. Assuming
that the proof obligations are correctly discharged by an SMT solver,
AlivelnLean gives the same level of correctness guarantees as state-of-
the-art formal frameworks such as CompCert [11], Peek [15], and Vel-
lvm [26], while inheriting the advantages of Alive (significantly more
automation and easy adoption by compiler developers).

Keywords: Compiler verification - Peephole optimization - LLVM -
Lean - Alive

1 Introduction

Verifying compiler optimizations is important to ensure reliability of the soft-
ware ecosystem. Various frameworks have been proposed to verify optimizations
of industrial compilers. Among them, Alive [12] is a tool for verifying peephole
optimizations of LLVM that has been successfully adopted by compiler develop-
ers. Since it was released, Alive has helped developers find dozens of bugs.
Figure 1 shows the structure of Alive. An optimization pattern of interest
written in a domain-specific language is given as input. Alive parses the input,
and encodes the behavior of the source and target programs into logic formulas in
the theory of quantified bit-vectors and arrays. Finally, several proof obligations
are created from the encoded behavior, and then checked by an SMT solver.
Alive relies on the following three-fold trust base. Firstly, the semantics of
LLVM’s intermediate representation and SMT expressions. Secondly, Alive’s ver-
ification condition generator. Finally, the SMT solver used to discharge proof
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Fig. 1. The structure of Alive and AlivelnLean

obligations. None of these are formally verified, and thus an error in any of these
may result in an incorrect answer.

To address this problem, we introduce AlivelnLean, a formally verified peep-
hole optimization verifier for LLVM. AliveInLean is written in Lean [14], an
interactive theorem proving language. Its semantics of LLVM IR (Intermedi-
ate Representation) and SMT expressions are rigorously tested using Lean’s
metaprogramming language [5] and system library. AliveInLean’s verification
condition generator is formally verified in Lean.

Using AlivelnLean requires less human effort than directly proving the opti-
mizations on formal frameworks thanks to automation given by SMT solvers. For
example, verifying the correctness of a peephole optimization on a formal frame-
work requires more than a hundred lines of proofs [15]. However, the correctness
of AlivelnLean relies on the correctness of the used SMT solver. To counteract
the dependency on SMT solvers, proof obligations can be cross-checked with
multiple SMT solvers. Moreover, there is substantial work towards making SMT
solvers generate proof certificates [2,3,6,7].

AlivelnLean is a proof of concept. It currently does not support all operations
that Alive does like, e.g., memory-related operations. However, AliveInLean sup-
ports all integer peephole optimizations, which is already useful in practice as
most bugs found by Alive were in integer optimizations [12].

2 Overview

We give an overview of AlivelnLean’s features from a user’s perspective.

Verifying Optimizations. AliveInLean reads optimization(s) from a file and
checks their correctness. A user writes an optimization of interest in a DSL with
similar syntax to that of LLVM IR:
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Name: AddSub:1309

%lhs = and i4 %a, %b

%rhs = or i4 %a, %b

%r = add i4 %lhs, Y%rhs
=>

%r = add i4 %a, %b

This example transformation corresponds to rewriting (%a & %b) + (%a |
%b) to %ha + Yb, given 4-bits integers %a and %b. The last variable %r, or root vari-
able, is assumed to be the return value of the programs. AliveInLean encodes the
behavior of each program and generates verification conditions (VCs). Finally,
AlivelnLean calls Z3 to discharge the VCs.

Proving Useful Properties. AlivelnLean can be used as a formal framework
to prove lemmas using interactive theorem proving. This is helpful when a user
wants to show a property of a program which is hard to represent as a transfor-
mation.

For example, one may want to prove that the divisor of udiv (unsigned
division) is never poison! if it did not raise undefined behavior (UB). The lemma
below states this in Lean. This lemma says that the divisor val is never poison
if the state st’ after executing the udiv instruction (step) has no UB.

lemma never_poison:
forall .. (HSTEP: some st’ = step st (udiv isz name opl op2))
(HNOUB: not (has_ub st’))
(HVAL: some val = get_value st op2 (ty.int isz)),
not (is_poison wval)

Testing Specifications. AliveInLean supports random testing of AliveInLean’s
specifications (for which no verification is possible). For example, the step func-
tion in the above example implements a specification of the LLVM IR, and it
can be tested with respect to the behavior of the LLVM compiler. Another trust-
base is the specification of SMT expressions, which defines a relation between
expressions (with no free variable) and their corresponding concrete values.
These tests help build confidence in the validity of VC generation. Running
tests is helpful when a user wants to use a different version of LLVM or modify
AlivelnLean’s specifications (e.g., adding a new instruction to IR).

3 Verifying Optimizations

In this section we introduce the different components of AlivelnLean that work
together to verify an optimization.

! poison is a special value of LLVM representing a result of an erroneous computation.
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3.1 Semantics Encoder

Given a program and an initial state, the semantics encoder produces the final
state of the program as a set of SMT expressions. The IR interpreter is simi-
lar, but works over concrete values rather than symbolic ones. The semantics
encoder and the IR interpreter share the same codebase (essentially the LLVM
IR semantics). The code is parametric on the type of the program state. For
example, the type of undefined behavior can be either initialized as the bool
type of Lean or the Bool SMT expression type. Given the type, Lean can auto-
matically resolve which operations to use to update the state using typeclass
resolution.

3.2 Refinement Encoder

Given a source program, a transformed program, and an initial state, the refine-
ment encoder emits an SMT expression that encodes the refinement check
between the final states of the two programs. To obtain the final states, the
semantics encoder is used.

The refinement check proves that (1) the transformed program only triggers
UB when the original program does (i.e., UB can only be removed), (2) the root
variable of the transformed program is only poison when it is also poison in the
original program, and (3) variables’ values in the final states of the two programs
are the same when no UB is triggered and the original value is not poison.

3.3 Parser and Z3 Backend

The parser for Alive’s DSL is implemented using Lean’s parser monad and file
1/0 library. SMT expressions are processed with Z3 using Lean’s SMT interface.

4 Correctness of AliveInLean

We describe how the correctness of AlivelnLean is proved. First, we explain
the correctness proof of the semantics encoder and the refinement encoder. We
show that if the SMT expression encoded by refinement encoder is valid, the
optimization is indeed correct. Next, we explain how the trust-base is tested.

4.1 Semantics Encoding

Given an IR interpreter run, a semantics encoder encoder is correct with respect
to run if for any IR program and input state, the final program state generated
by run and the symbolic state encoded by encoder are equivalent.

To formally define its correctness, an equivalence relation between SMT
expressions and concrete values is defined. We say that an SMT expression e
and a Lean value v are equivalent, or e ~ v, if e has no free variables and it
evaluates to v. The equivalence relation is inductively defined with respect to
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the structure of an SMT expression. To deal with free variables, an environment
7 is defined, which is a set of pairs (x, ) where z is a variable and v is a concrete
value. nfe] is an expression with all free variables x replaced with v if (z,v) € 7.

Next, we define a program state. A state s is defined as (u,r) where u is an
undefined behavior flag and r is a register file. r is a list of (z,v) where x is a
variable and v is a value. v is defined as (sz,4,p) where sz is its size in bits, 4 is
an integer value, and p is a poison flag.

There are two kinds of states: a symbolic state, and a concrete state. A
symbolic state sy is a state whose u, i, p are SMT expressions. A concrete state
S is a state whose all attributes are concrete values. We say that s; and s. are
equivalent, or sg ~ s, if s; has no free variable in its attributes and they are
equivalent. n[s,] is a symbolic state with the environment 7 applied to u, i, p.

Now, the correctness of encoder with respect to run is defined as follows. It
states that the result of encoder is equivalent to the result of run.

Theorem 1. For all initial states ss, Sc, program p, and environment n s.t.
n[ss] ~ s, we have that n]encoder(p, ss)] ~ run(p, s¢).

4.2 Refinement Encoding

Function check(psrc, Digt, 5s) generates an SMT expression that encodes refine-
ment between the source and target programs, respectively, psrc and pig;.

We first define refinement between two concrete states. As Alive does,
AlivelnLean only checks the value of the root variable of a program. Given a
root variable 7, a concrete state s/ refines s., or s, C s, if (1) s. has unde-
fined behavior, or (2) both s. and s/ have values assigned to r, say v and
v', and v = poison V v/ = v. A target program p:g refines program pg. if
run(pige, Se) C run(pgpe, Sc) holds for any initial concrete state s,.

The correctness of check is stated as follows.

Theorem 2. Given an initial symbolic state s, if no[check(Dsre, Pigt, Ss)] ~
true for any no, then for any environment n and initial state s. s.t. n[ss] ~ s,
we have that run(pigt, Sc) T 7un(psre, Se)-

This theorem says that if the returned expression of check evaluates to true
in any environment, program py,; refines program pgr..

4.3 Validity of Trust-Base

Testing Specification of SMT Expressions. Specifications of SMT expres-
sions are traversed using Lean’s metaprogramming language and tested. The
testing we have done is different from QuickChick [4] because QuickChick evalu-
ates expressions in Coq. The approach cannot be used here because SMT expres-
sions need to be evaluated in an SMT solver (e.g., Z3). Example spec:

forall {sz : size} (s1 s2 : sbitvec sz) (bl b2 : bitvector sz),
bv_equiv s1 bl -> bv_equiv s2 b2 >
bv_equiv (sbitvec.add s1 s2) (bitvector.add bl b2)
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This spec says that if SMT expressions s1, s2 of a bit-vector type (sbitvec)
are equivalent to two concrete bit-vector values b1, b2 in Lean (bitvector), an
add expression of s1, s2 is equivalent to the result of adding b1 and b2. Function
bitvector.add must be called in Lean, so its operands (b1, b2) are assigned
random values in Lean. sbitvec.add is translated to SMT’s bvadd expression,
and s1 and s2 are initialized as BitVec variables in an SMT solver. The testing
function generates an SMT expression with random inputs like the following;:

(assert (forall ((s1 (_ BitVec 4))) (forall ((s2 (_ BitVec 4)))
(=> (= s1 #xA) (=> (= s2 #x2) (= (bvadd s1 s2) #xC))))))

The size of bitvector (sz) is initialized to 4, and b1, b2 were randomly initial-
ized to 10 (#xA) and 2 (#x2). A specification is incorrect if the generated SMT
expression is not valid.

Testing Specification of LLVM IR. Specification of LLVM IR is tested using
randomly generated IR programs. IR programs of 5-10 randomly chosen instruc-
tions are generated, compiled with LLVM, and ran. The result of the execution
of the program is compared with the result of AliveInLean’s IR interpreter.

5 Evaluation

For the evaluation, we used a computer with an Intel Core i5-6600 CPU and 8 GB
of RAM, and Z3 [13] for SMT solving. To test whether AliveInLean and Alive
give the same result, we used all of the 150 integer optimizations from Alive’s
test suite that are supported by AliveInLean. No mismatches were observed.

To test the SMT specification, we randomly generated 10,000 tests for each
of the operations (18 bit-vector and 15 boolean). This test took 3 CPU hours.

The LLVM IR specification was tested by running 1,000,000 random IR pro-
grams in our interpreter and comparing the output with that of LLVM. This
comparison needs to take into account that some programs may trigger UB or
yield a poison value, which gives freedom to LLVM to produce a variety of results.
These tests took 10 CPU hours overall. Four admitted arithmetic lemmas were
tested as well. As a side-effect of the testing, we found several miscompilation
bugs in LLVM.?

AliveInLean® consists of 11.9K lines of code. The optimization verifier con-
sists of 2.2K LoC, the specification tester is 1.5K, and the proof has 8.1K lines.
It took 3 person-months to implement the tool and prove its correctness.

6 Related Work

We introduce previous work on compiler verification and validation and compare
it with AliveInLean. Also, we give an overview on previous work on semantics
of compiler intermediate representations (IRs).

2 https://llvm.org/PR40657.
3 https://github.com/Microsoft /AliveInLean.
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6.1 Compiler Verification

Proving Correctness on Formal Semantics. The correctness of compilation
can be proved on a formal semantics of a language that is written in a theorem
proving language such as Coq. Vellvm [26] is a Coq formalization of the semantics
of LLVM IR. CompCert [11] is a verified C compiler written in Coq, and its
compilation to assembly languages including x86, PowerPC is proved correct.

However, it is hard to apply this approach to existing industrial compilers
because proving correctness of optimizations requires non-trivial effort. Peek [15]
is a framework for implementing and verifying peephole optimizations for x86
on CompCert. They implemented 28 peephole optimizations which required 3.3k
lines of code and 6.6k lines of proofs (~350 LoC each). Even if this is small
compared to the size of CompCert, the burden is non-trivial considering that
LLVM has more than 1,000 peephole optimizations [12].

Another problem with this approach is that changing the semantics requires
modification of the proof. The semantics of poison and undef value of LLVM
is currently not consistent and thus it triggers miscompilations of some pro-
grams [10]. Therefore, compiler developers regularly test various undef seman-
tics with existing optimizations, which would be a non-trivial task if correctness
proofs had to be manually updated.

Translation Validation and Credible Compilation. In translation valida-
tion [18], a pair of an original program and an optimized program is given to
a validation tool at compile time to check the correctness of the optimization.
Several such tools exist for LLVM [20,22,25]. Translation validation is, however,
slow, and it cannot tell whether an optimization is correct in general. Consider
this optimization:

z=0-(x/0C)
=>
z=x/ -C

If C is a constant, -C can be computed at compile time. However, this opti-
mization is wrong only if C is INT_MIN. To show that compilation is fully correct,
translation validation would need to be run for every combination of inputs.

Credible compilation [19], or witnessing compiler [16,17], is an approach to
improve translation validation by accepting witnesses generated by a compiler.
Crellvm [8] is a credible compilation framework for LLVM. It requires modifica-
tions to the compiler, which makes it harder to apply and maintain.

6.2 Solver-Aided Programming Languages

Proving correctness of optimizations can be represented as a search problem
that finds a counter-example for the optimization. Tools like Z3, CVC4 can be
used to solve the search problem. Translation of a high-level search problem to
the external solver’s input has been considered bug-prone, and frameworks like
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Rosette [21] and Smten [23] address this issue by providing higher-level languages
for describing the search problem. SpaceSearch [24] helps programmers prove the
correctness of the description by supporting Coq and Rosette backends from a
single specification. AliveInLean provides a stronger guarantee of correctness
because translation to SMT expressions is also written in Lean, leaving Lean as
the sole trust-base.

6.3 Semantics of Compiler IR

Correctly encoding semantics of compiler IR is important for the validity of
a tool. LLVM IR is an SSA-based intermediate representation which is used
to represent a program being compiled. LLVM LangRef [1] has an informal
definition of the LLVM IR, but there are a few known problems. [10] shows
that the semantics of poison and undef values are inconsistent. [9] shows that
the semantics of pointer<integer casting is inconsistent. AliveInLean supports
poison but not undef, following the suggestion from [10]. AliveInLean does not
support memory-related operations including load, store, and pointer < integer
casting.

7 Discussion

AlivelnLean has several limitations. As discussed before, AliveInLean does not
support memory operations. Correctly encoding the memory model of LLVM
IR is challenging because the memory model of LLVM IR is more complex than
either a byte array or a set of memory objects [9]. Supporting branch instruc-
tions and floating point would help developers prove interesting optimizations.
Supporting branches is a challenging job especially when loops are involved.

Maintainability of AliveInLean highly relies on one’s proficiency in Lean.
Changing the semantics of an IR instruction breaks the proof, and updating it
requires proficiency in Lean. However, we believe that only relevant parts in the
proof need to be updated as the proof is modularized.

Alive has features that are absent in AlivelnLean. Alive supports defining a
precondition for an optimization, inferring types of variables if not given, and
showing counter-examples if the optimization is wrong. We leave this as future
work.

8 Conclusion

AlivelnLean is a formally verified compiler optimization verifier. Its verification
condition generator is formally verified with a machine-checked proof. Using
AlivelnLean, developers can easily check the correctness of compiler optimiza-
tions with high reliability. Also, they can use AlivelnLean as a formal framework
like Vellvm to prove properties of interest in limited cases. The extensive random
testing did not find problems in the trust base, increasing its trustworthiness.
Moreover, as a side-effect of the IR semantics testing, we found several bugs in
LLVM.
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