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Abstract. We present VERIFAI, a software toolkit for the formal design and
analysis of systems that include artificial intelligence (AI) and machine learning
(ML) components. VERIFAI particularly addresses challenges with applying for-
mal methods to ML components such as perception systems based on deep neural
networks, as well as systems containing them, and to model and analyze system
behavior in the presence of environment uncertainty. We describe the initial ver-
sion of VERIFAI, which centers on simulation-based verification and synthesis,
guided by formal models and specifications. We give examples of several use
cases, including temporal-logic falsification, model-based systematic fuzz test-
ing, parameter synthesis, counterexample analysis, and data set augmentation.
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1 Introduction

The increasing use of artificial intelligence (AI) and machine learning (ML) in systems,
including safety-critical systems, has brought with it a pressing need for formal meth-
ods and tools for their design and verification. However, AI/ML-based systems, such as
autonomous vehicles, have certain characteristics that make the application of formal
methods very challenging. We mention three key challenges here; see Seshia et al. [23]
for an in-depth discussion. First, several uses of AI/ML are for perception, the use of
computational systems to mimic human perceptual tasks such as object recognition and
classification, conversing in natural language, etc. For such perception components,
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writing a formal specification is extremely difficult, if not impossible. Additionally, the
signals processed by such components can be very high-dimensional, such as streams
of images or LiDAR data. Second, machine learning being a dominant paradigm in
AI, formal tools must be compatible with the data-driven design flow for ML and also
be able to handle the complex, high-dimensional structures in ML components such as
deep neural networks. Third, the environments in which AI/ML-based systems oper-
ate can be very complex, with considerable uncertainty even about how many (which)
agents are in the environment (both human and robotic), let alone about their intentions
and behaviors. As an example, consider the difficulty in modeling urban traffic envi-
ronments in which an autonomous car must operate. Indeed, AI/ML is often introduced
into these systems precisely to deal with such complexity and uncertainty! From a for-
mal methods perspective, this makes it very hard to create realistic environment models
with respect to which one can perform verification or synthesis.

In this paper, we introduce the VERIFAI toolkit, our initial attempt to address
the three core challenges—perception, learning, and environments—that are outlined
above. VERIFAI takes the following approach:

• Perception: A perception component maps a concrete feature space (e.g. pixels) to
an output such as a classification, prediction, or state estimate. To deal with the lack
of specification for perception components, VERIFAI analyzes them in the context
of a closed-loop system using a system-level specification. Moreover, to scale to
complex high-dimensional feature spaces, VERIFAI operates on an abstract feature
space (or semantic feature space) [10] that describes semantic aspects of the envi-
ronment being perceived, not the raw features such as pixels.

• Learning: VERIFAI aims to not only analyze the behavior of ML components but
also use formal methods for their (re-)design. To this end, it provides features to
(i) design the data set for training and testing [9], (ii) analyze counterexamples to
gain insight into mistakes by the ML model, as well as (iii) synthesize parameters,
including hyper-parameters for training algorithms and ML model parameters.

• Environment Modeling: Since it can be difficult, if not impossible, to exhaus-
tively model the environments of AI-based systems, VERIFAI aims to provide
ways to capture a designer’s assumptions about the environment, including distri-
bution assumptions made by ML components, and to describe the abstract feature
space in an intuitive, declarative manner. To this end, VERIFAI provides users with
SCENIC [12,13], a probabilistic programming language for modeling environments.
SCENIC, combined with a renderer or simulator for generating sensor data, can pro-
duce semantically-consistent input for perception components.

VERIFAI is currently focused on AI-based cyber-physical systems (CPS), although
its basic ideas can also be applied to other AI-based systems. As a pragmatic choice, we
focus on simulation-based verification, where the simulator is treated as a black-box,
so as to be broadly applicable to the range of simulators used in industry.1 The input to

1 Our work is complementary to the work on industrial-grade simulators for AI/ML-based CPS.
In particular, VERIFAI enhances such simulators by providing formal methods for modeling
(via the SCENIC language), analysis (via temporal logic falsification), and parameter synthesis
(via property-directed hyper/model-parameter synthesis).
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VERIFAI is a “closed-loop” CPSmodel, comprising a composition of the AI-based CPS
system under verification with an environment model, and a property on the closed-loop
model. The AI-based CPS typically comprises a perception component (not necessar-
ily based on ML), a planner/controller, and the plant (i.e., the system under control).
Given these, VERIFAI offers the following use cases: (1) temporal-logic falsification;
(2) model-based fuzz testing; (3) counterexample-guided data augmentation; (4) coun-
terexample (error table) analysis; (5) hyper-parameter synthesis, and (6) model param-
eter synthesis. The novelty of VERIFAI is that it is the first tool to offer this suite of use
cases in an integrated fashion, unified by a common representation of an abstract feature
space, with an accompanying modeling language and search algorithms over this fea-
ture space, all provided in a modular implementation. The algorithms and formalisms
in VERIFAI are presented in papers published by the authors in other venues (e.g., [7–
10,12,15,22]). The problem of temporal-logic falsification or simulation-based verifi-
cation of CPS models is well studied and several tools exist (e.g. [3,11]); our work was
the first to extend these techniques to CPS models with ML components [7,8]. Work
on verification of ML components, especially neural networks (e.g., [14,26]), is com-
plementary to the system-level analysis performed by VERIFAI. Fuzz testing based on
formal models is common in software engineering (e.g. [16]) but our work is unique in
the CPS context. Similarly, property-directed parameter synthesis has also been studied
in the formal methods/CPS community, but our work is the first to apply these ideas to
the synthesis of hyper-parameters for ML training and ML model parameters. Finally,
to our knowledge, our work on augmenting training/test data sets [9], implemented in
VERIFAI, is the first use of formal techniques for this purpose. In Sect. 2, we describe
how the tool is structured so as to provide the above features. Sect. 3 illustrates the use
cases via examples from the domain of autonomous driving.

2 VERIFAI Structure and Operation

VERIFAI is currently focused on simulation-based analysis and design of AI compo-
nents for perception or control, potentially those using ML, in the context of a closed-
loop cyber-physical system. Figure 1 depicts the structure and operation of the toolkit.

Inputs and Outputs: Using VERIFAI requires setting up a simulator for the domain
of interest. As we explain in Sect. 3, we have experimented with multiple robotics
simulators and provide an easy interface to connect a new simulator. The user then con-
structs the inputs to VERIFAI, including (i) a simulatable model of the system, including
code for one or more controllers and perception components, and a dynamical model
of the system being controlled; (ii) a probabilistic model of the environment, specifying
constraints on the workspace, the locations of agents and objects, and the dynamical
behavior of agents, and (iii) a property over the composition of the system and its envi-
ronment. VERIFAI is implemented in Python for interoperability with ML/AI libraries
and simulators across platforms. The code for the controller and perception component
can be arbitrary executable code, invoked by the simulator. The environment model
typically comprises a definition in the simulator of the different types of agents, plus a
description of their initial conditions and other parameters using the SCENIC probabilis-
tic programming language [12]. Finally, the property to be checked can be expressed
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Fig. 1. Structure and operation of VERIFAI.

using Metric Temporal Logic (MTL) [2,24], objective functions, or arbitrary code mon-
itoring the property. The output of VERIFAI depends on the feature being invoked. For
falsification, VERIFAI returns one or more counterexamples, simulation traces violat-
ing the property [7]. For fuzz testing, VERIFAI produces traces sampled from the dis-
tribution of behaviors induced by the probabilistic environment model [12]. Error table
analysis involves collecting counterexamples generated by the falsifier into a table, on
which we perform analysis to identify features that are correlated with property failures.
Data augmentation uses falsification and error table analysis to generate additional data
for training and testing an ML component [9]. Finally, the property-driven synthesis of
model parameters or hyper-parameters generates as output a parameter evaluation that
satisfies the specified property.

Tool Structure: VERIFAI is composed of four main modules, as described below:

• Abstract Feature Space and SCENIC Modeling Language: The abstract feature space
is a compact representation of the possible configurations of the simulation. Abstract
features can represent parameters of the environment, controllers, or of ML compo-
nents. For example, when analyzing a visual perception system for an autonomous
car, an abstract feature space could consist of the initial poses and types of all vehi-
cles on the road. Note that this abstract space, compared to the concrete feature space
of pixels used as input to the controller, is better suited to the analysis of the overall
closed-loop system (e.g. finding conditions under which the car might crash).

VERIFAI provides two ways to construct abstract feature spaces. They can be con-
structed hierarchically, combining basic domains such as hyperboxes and finite sets
into structures and arrays. For example, we could define a space for a car as a struc-
ture combining a 2D box for position with a 1D box for heading, and then create an
array of these to get a space for several cars. Alternatively, VERIFAI allows a feature
space to be defined using a program in the SCENIC language [12]. SCENIC provides
convenient syntax for describing geometric configurations and agent parameters,
and, as a probabilistic programming language, allows placing a distribution over the
feature space which can be conditioned by declarative constraints.
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• Searching the Feature Space: Once the abstract feature space is defined, the next
step is to search that space to find simulations that violate the property or pro-
duce other interesting behaviors. Currently, VERIFAI uses a suite of sampling meth-
ods (both active and passive) for this purpose, but in the future we expect to also
integrate directed or exhaustive search methods including those from the adver-
sarial machine learning literature (e.g., see [10]). Passive samplers, which do not
use any feedback from the simulation, include uniform random sampling, simu-
lated annealing, and Halton sequences [18] (quasi-random deterministic sequences
with low-discrepancy guarantees we found effective for falsification [7]). Distribu-
tions defined using SCENIC are also passive in this sense. Active samplers, whose
selection of samples is informed by feedback from previous simulations, include
cross-entropy sampling and Bayesian optimization. The former selects samples and
updates the prior distribution by minimizing cross-entropy; the latter updates the
prior from the posterior over a user-provided objective function, e.g. the satisfaction
level of a specification or the loss of an analyzed model.

• Property Monitor: Trajectories generated by the simulator are
evaluated by the monitor, which produces a score for a given property or
objective function. VERIFAI supports monitoring MTL properties using the
py-metric-temporal-logic [24] package, including both the Boolean and
quantitative semantics of MTL. As mentioned above, the user can also specify a cus-
tom monitor as a Python function. The result of the monitor can be used to output
falsifying traces and also as feedback to the search procedure to direct the sampling
(search) towards falsifying scenarios.

• Error Table Analysis: Counterexamples are stored in a data structure called the error
table, whose rows are counterexamples and columns are abstract features. The error
table can be used offline to debug (explain) the generated counterexamples or online
to drive the sampler towards particular areas of the abstract feature space. VERIFAI
provides different techniques for error table analysis depending on the end use (e.g.,
counter-example analysis or data set augmentation), including principal component
analysis (PCA) for ordered feature domains and subsets of the most recurrent values
for unordered domains (see [9] for further details).

The communication between VERIFAI and the simulator is implemented in a client-
server fashion using IPv4 sockets, where VERIFAI sends configurations to the simulator
which then returns trajectories (traces). This architecture allows easy interfacing to a
simulator and even with multiple simulators at the same time.

3 Features and Case Studies

This section illustrates the main features of VERIFAI through case studies demonstrat-
ing its various use cases and simulator interfaces. Specifically, we demonstrate model
falsification and fuzz testing of an autonomous vehicle (AV) controller, data augmenta-
tion and error table analysis for a convolutional neural network, and model and hyper-
parameter tuning for a reinforcement learning-based controller.
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3.1 Falsification and Fuzz Testing

VERIFAI offers a convenient way to debug systems through systematic testing. Given
a model and a specification, the tool can use active sampling to automatically search
for inputs driving the model towards a violation of the specification. VERIFAI can also
perform model-based fuzz testing, exploring random variations of a scenario guided
by formal constraints. To demonstrate falsification and fuzz testing, we consider two
scenarios involving AVs simulated with the robotics simulator Webots [25]. For the
experiments reported here, we used Webots 2018 which is commercial software.

In the first example, we falsify the controller of an AV which is responsible for
safely maneuvering around a disabled car and traffic cones which are blocking the
road. We implemented a hybrid controller which relies on perception modules for
state estimation. Initially, the car follows its lane using standard computer vision (non-
ML) techniques for line detection [20]. At the same time, a neural network (based on
squeezeDet [27]) estimates the distance to the cones. When the distance drops below
15m, the car performs a lane change, afterward switching back to lane-following.

The correctness of the AV is characterized by an MTL formula requiring the vehi-
cle to maintain a minimum distance from the traffic cones and avoid overshoot while
changing lanes. The task of the falsifier is to find small perturbations of the initial scene
(generated by SCENIC) which cause the vehicle to violate this specification. We allowed
perturbations of the initial positions and orientations of all objects, the color of the dis-
abled car, and the cruising speed and reaction time of the ego car.

Our experiments showed that active samplers driven by the robustness of the MTL
specification can efficiently discover scenes that confuse the controller and yield faulty
behavior. Figure 2 shows an example, where the neural network detected the orange car
instead of the traffic cones, causing the lane change to be initiated too early. As a result,
the controller performed only an incomplete lane change, leading to a crash.

Fig. 2.A falsifying scene automatically discovered by VERIFAI. The neural network misclassifies
the traffic cones because of the orange vehicle in the background, leading to a crash. Left: bird’s-
eye view. Right: dash-cam view, as processed by the neural network.

In our second experiment, we used VERIFAI to simulate variations on an actual
accident involving an AV [5]. The AV, proceeding straight through an intersection, was
hit by a human turning left. Neither car was able to see the other because of two lanes of
stopped traffic. Figure 3 shows a (simplified) SCENIC program we wrote to reproduce
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Fig. 3. Left: Partial SCENIC program for the crash scenario. Car is an object class defined in the
Webots world model (not shown), on is a SCENIC specifier positioning the object uniformly at
random in the given region (e.g. the median line of a lane), (-0.5, 0.5) indicates a uniform
distribution over that interval, and X @ Y creates a vector with the given coordinates (see [12]
for a complete description of SCENIC syntax). Right: (1) initial scene sampled from the program;
(2) the red car begins its turn, unable to see the green car; (3) the resulting collision. (Color figure
online)

the accident, allowing variation in the initial positions of the cars. We then ran simu-
lations from random initial conditions sampled from the program, with the turning car
using a controller trying to follow the ideal left-turn trajectory computed from Open-
StreetMap data using the Intelligent Intersections Toolbox [17]. The car going straight
used a controller which either maintained a constant velocity or began emergency break-
ing in response to a message from a simulated “smart intersection” warning about the
turning car. By sampling variations on the initial conditions, we could determine how
much advance notice is necessary for such a system to robustly avoid an accident.

3.2 Data Augmentation and Error Table Analysis

Fig. 4. This image generated by our renderer was
misclassified by the NN. The network reported
detecting only one car when there were two.

Data augmentation is the process of
supplementing training sets with the
goal of improving the performance
of ML models. Typically, datasets
are augmented with transformed ver-
sions of preexisting training examples.
In [9], we showed that augmentation
with counterexamples is also an effec-
tive method for model improvement.

VERIFAI implements a counterexample-guided augmentation scheme, where a fal-
sifier (see Sect. 3.1) generates misclassified data points that are then used to augment the
original training set. The user can choose among different sampling methods, with pas-
sive samplers suited to generating diverse sets of data points while active samplers can
efficiently generate similar counterexamples. In addition to the counterexamples them-
selves, VERIFAI also returns an error table aggregating information on the misclassifi-
cations that can be used to drive the retraining process. Figure 4 shows the rendering of
a misclassified sample generated by our falsifier.
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For our experiments, we implemented a renderer that generates images of road sce-
narios and tested the quality of our augmentation scheme on the squeezeDet convolu-
tional neural network [27], trained for classification. We adopted three techniques to
select augmentation images: (1) randomly sampling from the error table, (2) selecting
the top k-closest (similar) samples from the error table, and (3) using PCA analysis to
generate new samples. For details on the renderer and the results of counterexample-
driven augmentation, see [9]. We show that incorporating the generated counterexam-
ples during re-training improves the accuracy of the network.

3.3 Model Robustness and Hyperparameter Tuning

In this final section, we demonstrate how VERIFAI can be used to tune test parameters
and hyperparameters of AI systems. For the following case studies, we use OpenAI
Gym [4], a framework for experimenting with reinforcement learning algorithms.

First, we consider the problem of testing the robustness of a learned controller for
a cart-pole, i.e., a cart that balances an inverted pendulum. We trained a neural net-
work to control the cart-pole using Proximal Policy Optimization algorithms [21] with
100k training episodes. We then used VERIFAI to test the robustness of the learned
controller, varying the initial lateral position and rotation of the cart as well as the mass
and length of the pole. Even for apparently robust controllers, VERIFAI was able to
discover configurations for which the cart-pole failed to self-balance. Figure 5 shows
1000 iterations of the falsifier, where sampling was guided by the reward function used
by OpenAI to train the controller. This function provides a negative reward if the cart
moves more than 2.4m or if at any time the angle maintained by the pole is greater than
12◦. For testing, we slightly modified these thresholds.

Fig. 5. The green dots represent model parameters for which the cart-pole controller behaved
correctly, while the red dots indicate specification violations. Out of 1000 randomly-sampled
model parameters, the controller failed to satisfy the specification 38 times. (Color figure online)

Finally, we used VERIFAI to study the effects of hyperparameters when training a
neural network controller for a mountain car. In this case, the controller must learn to
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exploit momentum in order to climb a steep hill. Here, rather than searching for coun-
terexamples, we look for a set of hyperparameters under which the network correctly
learns to control the car. Specifically, we explored the effects of using different training
algorithms (from a discrete set of choices) and the size of the training set. We used the
VERIFAI falsifier to search the hyperparameter space, guided again by the reward func-
tion provided by OpenAI Gym (here the distance from the goal position), but negated
so that falsification implied finding a controller which successfully climbs the hill. In
this way VERIFAI built a table of safe hyperparameters. PCA analysis then revealed
which hyperparameters the training process is most sensitive or robust to.

4 Conclusion

We presented VERIFAI, a toolkit for the formal design and analysis of AI/ML-based
systems. Our implementation, plus the examples described in Sect. 3, are available in
the tool distribution [1], including detailed instructions and expected output.

In future work, we plan to explore additional applications of VERIFAI, and to
expand its functionality with new algorithms. Towards the former, we have already
interfaced VERIFAI to the CARLA driving simulator [6], for more sophisticated exper-
iments with autonomous cars, as well as to the X-Plane flight simulator [19], for testing
an ML-based aircraft navigation system. More broadly, although our focus has been
on CPS, we note that VERIFAI’s architecture is applicable to other types of systems.
Finally, for extending VERIFAI itself, we plan to move beyond directed simulation by
incorporating symbolic methods, such as those used in finding adversarial examples.
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