
Overfitting in Synthesis: Theory
and Practice

Saswat Padhi1(B), Todd Millstein1, Aditya Nori2, and Rahul Sharma3

1 University of California, Los Angeles, USA
{padhi,todd}@cs.ucla.edu

2 Microsoft Research, Cambridge, UK
adityan@microsoft.com

3 Microsoft Research, Bengaluru, India
rahsha@microsoft.com

Abstract. In syntax-guided synthesis (SyGuS), a synthesizer’s goal is
to automatically generate a program belonging to a grammar of possi-
ble implementations that meets a logical specification. We investigate
a common limitation across state-of-the-art SyGuS tools that perform
counterexample-guided inductive synthesis (CEGIS). We empirically
observe that as the expressiveness of the provided grammar increases,
the performance of these tools degrades significantly.

We claim that this degradation is not only due to a larger search
space, but also due to overfitting. We formally define this phenomenon
and prove no-free-lunch theorems for SyGuS, which reveal a fundamental
tradeoff between synthesizer performance and grammar expressiveness.

A standard approach to mitigate overfitting in machine learning is to
run multiple learners with varying expressiveness in parallel. We demon-
strate that this insight can immediately benefit existing SyGuS tools.
We also propose a novel single-threaded technique called hybrid enumer-
ation that interleaves different grammars and outperforms the winner
of the 2018 SyGuS competition (Inv track), solving more problems and
achieving a 5× mean speedup.

1 Introduction

The syntax-guided synthesis (SyGuS) framework [3] provides a unified format to
describe a program synthesis problem by supplying (1) a logical specification for
the desired functionality, and (2) a grammar of allowed implementations. Given
these two inputs, a SyGuS tool searches through the programs that are permitted
by the grammar to generate one that meets the specification. Today, SyGuS is at
the core of several state-of-the-art program synthesizers [5,14,23,24,29], many
of which compete annually in the SyGuS competition [1,4].

We demonstrate empirically that five state-of-the-art SyGuS tools are very
sensitive to the choice of grammar. Increasing grammar expressiveness allows the
tools to solve some problems that are unsolvable with less-expressive grammars.
However, it also causes them to fail on many problems that the tools are able
to solve with a less expressive grammar. We analyze the latter behavior both

S. Padhi—Contributed during an internship at Microsoft Research, India.
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 315–334, 2019.
https://doi.org/10.1007/978-3-030-25540-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_17

316 S. Padhi et al.

theoretically and empirically and present techniques that make existing tools
much more robust in the face of increasing grammar expressiveness.

We restrict our investigation to a widely used approach [6] to SyGuS called
counterexample-guided inductive synthesis (CEGIS) [37, §5]. In this approach,
the synthesizer is composed of a learner and an oracle. The learner iteratively
identifies a candidate program that is consistent with a given set of examples (ini-
tially empty) and queries the oracle to either prove that the program is correct,
i.e., meets the given specification, or obtain a counterexample that demonstrates
that the program does not meet the specification. The counterexample is added
to the set of examples for the next iteration. The iterations continue until a
correct program is found or resource/time budgets are exhausted.

Overfitting. To better understand the observed performance degradation, we
instrumented one of these SyGuS tools (Sect. 2.2). We empirically observe that
for a large number of problems, the performance degradation on increasing gram-
mar expressiveness is often accompanied by a significant increase in the number
of counterexamples required. Intuitively, as grammar expressiveness increases so
does the number of spurious candidate programs, which satisfy a given set of
examples but violate the specification. If the learner picks such a candidate, then
the oracle generates a counterexample, the learner searches again, and so on.

In other words, increasing grammar expressiveness increases the chances for
overfitting, a well-known phenomenon in machine learning (ML). Overfitting
occurs when a learned function explains a given set of observations but does not
generalize correctly beyond it. Since SyGuS is indeed a form of function learning,
it is perhaps not surprising that it is prone to overfitting. However, we identify
its specific source in the context of SyGuS—the spurious candidates induced by
increasing grammar expressiveness—and show that it is a significant problem
in practice. We formally define the potential for overfitting (Ω), in Definition 7,
which captures the number of spurious candidates.

No Free Lunch. In the ML community, this tradeoff between expressiveness
and overfitting has been formalized for various settings as no-free-lunch (NFL)
theorems [34, §5.1]. Intuitively such a theorem says that for every learner there
exists a function that cannot be efficiently learned, where efficiency is defined by
the number of examples required. We have proven corresponding NFL theorems
for the CEGIS-based SyGuS setting (Theorems 1 and 2).

A key difference between the ML and SyGuS settings is the notion of
m-learnability. In the ML setting, the learned function may differ from the true
function, as long as this difference (expressed as an error probability) is rela-
tively small. However, because the learner is allowed to make errors, it is in turn
required to learn given an arbitrary set of m examples (drawn from some dis-
tribution). In contrast, the SyGuS learning setting is all-or-nothing—either the
tool synthesizes a program that meets the given specification or it fails. There-
fore, it would be overly strong to require the learner to handle an arbitrary set
of examples.

Overfitting in Synthesis: Theory and Practice 317

Instead, we define a much weaker notion of m-learnability for SyGuS, which
only requires that there exist a set of m examples for which the learner succeeds.
Yet, our NFL theorem shows that even this weak notion of learnability can always
be thwarted: given an integer m ≥ 0 and an expressive enough (as a function
of m) grammar, for every learner there exists a SyGuS problem that cannot be
learned without access to more than m examples. We also prove that overfitting
is inevitable with an expressive enough grammar (Theorems 3 and 4) and that
the potential for overfitting increases with grammar expressiveness (Theorem 5).

Mitigating Overfitting. Inspired by ensemble methods [13] in ML, which aggre-
gate results from multiple learners to combat overfitting (and underfitting), we
propose PLearn—a black-box framework that runs multiple parallel instances
of a SyGuS tool with different grammars. Although prior SyGuS tools run mul-
tiple instances of learners with different random seeds [7,20], to our knowledge,
this is the first proposal to explore multiple grammars as a means to improve
the performance of SyGuS. Our experiments indicate that PLearn significantly
improves the performance of five state-of-the-art SyGuS tools—CVC4 [7,33],
EUSolver [5], LoopInvGen [29], SketchAC [20,37], and Stoch [3, III F].

However, running parallel instances of a synthesizer is computationally
expensive. Hence, we also devise a white-box approach, called hybrid enumera-
tion, that extends the enumerative synthesis technique [2] to efficiently interleave
exploration of multiple grammars in a single SyGuS instance. We implement
hybrid enumeration within LoopInvGen1 and show that the resulting single-
threaded learner, LoopInvGen+HE, has negligible overhead but achieves per-
formance comparable to that of PLearn for LoopInvGen. Moreover, LoopIn-
vGen+HE significantly outperforms the winner [28] of the invariant-synthesis
(Inv) track of 2018 SyGuS competition [4]—a variant of LoopInvGen specifi-
cally tuned for the competition—including a 5× mean speedup and solving two
SyGuS problems that no tool in the competition could solve.

Contributions. In summary, we present the following contributions:

(Section 2) We empirically observe that, in many cases, increasing grammar
expressiveness degrades performance of existing SyGuS tools due to over-
fitting.

(Section 3) We formally define overfitting and prove no-free-lunch theorems for
the SyGuS setting, which indicate that overfitting with increasing grammar
expressiveness is a fundamental characteristic of SyGuS.

(Section 4) We propose two mitigation strategies – (1) a black-box technique
that runs multiple parallel instances of a synthesizer, each with a different
grammar, and (2) a single-threaded enumerative technique, called hybrid enu-
meration, that interleaves exploration of multiple grammars.

(Section 5) We show that incorporating these mitigating measures in existing
tools significantly improves their performance.

1 Our implementation is available at https://github.com/SaswatPadhi/LoopInvGen.

https://github.com/SaswatPadhi/LoopInvGen

318 S. Padhi et al.

2 Motivation

In this section, we first present empirical evidence that existing SyGuS tools are
sensitive to changes in grammar expressiveness. Specifically, we demonstrate that
as we increase the expressiveness of the provided grammar, every tool starts fail-
ing on some benchmarks that it was able to solve with less-expressive grammars.
We then investigate one of these tools in detail.

2.1 Grammar Sensitivity of SyGuS Tools

We evaluated 5 state-of-the-art SyGuS tools that use very different techniques:

– SketchAC [20] extends the Sketch synthesis system [37] by combining both
explicit and symbolic search techniques.

– Stoch [3, III F] performs a stochastic search for solutions.
– EUSolver [5] combines enumeration with unification strategies.
– Reynolds et al. [33] extend CVC4 [7] with a refutation-based approach.
– LoopInvGen [29] combines enumeration and Boolean function learning.

Fig. 1. Grammars of quantifier-free predi-
cates over integers (We use the |=+ operator
to append new rules to previously defined
nonterminals.)

We ran these five tools on 180
invariant-synthesis benchmarks, which
we describe in Sect. 5. We ran the
benchmarks with each of the six
grammars of quantifier-free predi-
cates, which are shown in Fig. 1.
These grammars correspond to widely
used abstract domains in the analy-
sis of integer-manipulating programs—
Equalities, Intervals [11], Octagons [25],
Polyhedra [12], algebraic expressions
(Polynomials) and arbitrary integer
arithmetic (Peano) [30]. The *S opera-
tor denotes scalar multiplication, e.g.,
(*S 2 x), and *N denotes nonlinear mul-
tiplication, e.g., (*N x y).

In Fig. 2, we report our findings
on running each benchmark on each
tool with each grammar, with a 30-
minute wall-clock timeout. For each
〈tool, grammar〉 pair, the y-axis shows
the number of failing benchmarks that the same tool is able to solve with a less-
expressive grammar. We observe that, for each tool, the number of such failures
increases with the grammar expressiveness. For instance, introducing the scalar
multiplication operator (*S) causes CVC4 to fail on 21 benchmarks that it is
able to solve with Equalities (4/21), Intervals (18/21), or Octagons (10/21). Similarly,
adding nonlinear multiplication causes LoopInvGen to fail on 10 benchmarks
that it can solve with a less-expressive grammar.

Overfitting in Synthesis: Theory and Practice 319

Fig. 2. For each grammar, each tool, the ordinate shows the number of benchmarks
that fail with the grammar but are solvable with a less-expressive grammar.

Fig. 3. Observed correlation between synthesis time and number of rounds, upon
increasing grammar expressiveness, with LoopInvGen [29] on 180 benchmarks

2.2 Evidence for Overfitting

To better understand this phenomenon, we instrumented LoopInvGen [29] to
record the candidate expressions that it synthesizes and the number of CEGIS
iterations (called rounds henceforth). We compare each pair of successful runs
of each of our 180 benchmarks on distinct grammars.2 In 65% of such pairs, we
observe performance degradation with the more expressive grammar. We also
report the correlation between performance degradation and number of rounds
for the more expressive grammar in each pair in Fig. 3.

In 67% of the cases with degraded performance upon increased grammar
expressiveness, the number of rounds remains unaffected—indicating that this
slowdown is mainly due to a larger search space. However, there is significant evi-
dence of performance degradation due to overfitting as well. We note an increase
in the number of rounds for 27% of the cases with degraded performance. More-
over, we notice performance degradation in 79% of all cases that required more
rounds on increasing grammar expressiveness.

Thus, a more expressive grammar not only increases the search space, but also
makes it more likely for LoopInvGen to overfit—select a spurious expression,
which the oracle rejects with a counterexample, hence requiring more rounds. In
the remainder of this section, we demonstrate this overfitting phenomenon on
the verification problem shown in Fig. 4, an example by Gulwani and Jojic [17],
which is the fib_19 benchmark in the Inv track of SyGuS-Comp 2018 [4].

2 We ignore failing runs since they require an unknown number of rounds.

320 S. Padhi et al.

Fig. 4. The fib_19 benchmark [17]

For Fig. 4, we require an inductive
invariant that is strong enough to prove
that the assertion on line 6 always holds.
In the SyGuS setting, we need to synthe-
size a predicate I : Z

4 → B defined on a
symbolic state σ = 〈m,n, x, y〉, that satis-
fies ∀σ : ϕ(I, σ) for the specification ϕ:3

ϕ(I, σ)
def
=

(
0 ≤ n ∧ 0 ≤ m ≤ n ∧ x = 0 ∧ y = m

)
=⇒ I(σ) (precondition)

∧ ∀σ′ :
(
I(σ) ∧ T (σ, σ′)

)
=⇒ I(σ′) (inductiveness)

∧ (
x ≥ n ∧ I(σ)

)
=⇒ y = n (postcondition)

where σ′ = 〈m′, n′, x′, y′〉 denotes the new state after one iteration, and T is a
transition relation that describes the loop body:

T (σ, σ′) def
= (x < n) ∧ (x′ = x + 1) ∧ (m′ = m) ∧ (n′ = n)

∧ [
(x′ ≤ m ∧ y′ = y) ∨ (x′ > m ∧ y′ = y + 1)

]

Fig. 5. Performance of LoopInvGen [29] on the fib_19 benchmark (Fig. 4). In (b)
and (c), we show predicates generated at various rounds (numbered in bold).

In Fig. 5(a), we report the performance of LoopInvGen on fib_19 (Fig. 4)
with our six grammars (Fig. 1). It succeeds with all but the least-expressive
grammar. However, as grammar expressiveness increases, the number of rounds
increase significantly—from 19 rounds with Intervals to 88 rounds with Peano.

LoopInvGen converges to the exact same invariant with both Polyhedra and
Peano but requires 30 more rounds in the latter case. In Figs. 5(b) and (c), we
list some expressions synthesized with Polyhedra and Peano respectively. These
expressions are solutions to intermediate subproblems—the final loop invariant
is a conjunction of a subset of these expressions [29, §3.2]. Observe that the
expressions generated with the Peano grammar are quite complex and unlikely
to generalize well. Peano’s extra expressiveness leads to more spurious candidates,
increasing the chances of overfitting and making the benchmark harder to solve.
3 We use B, N, and Z to denote the sets of all Boolean values, all natural numbers

(positive integers), and all integers respectively.

Overfitting in Synthesis: Theory and Practice 321

3 SyGuS Overfitting in Theory

In this section, first we formalize the counterexample-guided inductive synthesis
(CEGIS) approach [37] to SyGuS, in which examples are iteratively provided
by a verification oracle. We then state and prove no-free-lunch theorems, which
show that there can be no optimal learner for this learning scheme. Finally, we
formalize a natural notion of overfitting for SyGuS and prove that the potential
for overfitting increases with grammar expressiveness.

3.1 Preliminaries

We borrow the formal definition of a SyGuS problem from prior work [3]:

Definition 1 (SyGuS Problem). Given a background theory T, a function
symbol f : X → Y , and constraints on f : (1) a semantic constraint, also called
a specification, φ(f, x) over the vocabulary of T along with f and a symbolic
input x, and (2) a syntactic constraint, also called a grammar, given by a (pos-
sibly infinite) set E of expressions over the vocabulary of the theory T; find an
expression e ∈ E such that the formula ∀x ∈ X : φ(e, x) is valid modulo T.

We denote this SyGuS problem as 〈fX→Y | φ, E〉
T

and say that it is satisfiable
iff there exists such an expression e, i.e., ∃ e ∈ E : ∀x ∈ X : φ(e, x). We call e a
satisfying expression for this problem, denoted as e |= 〈fX→Y | φ, E〉

T
.

Recall, we focus on a common class of SyGuS learners, namely those that
learn from examples. First we define the notion of input-output (IO) examples
that are consistent with a SyGuS specification:

Definition 2 (Input-Output Example). Given a specification φ defined on
f : X → Y over a background theory T, we call a pair 〈x, y〉 ∈ X × Y an input-
output (IO) example for φ, denoted as 〈x, y〉 �≈ T φ iff it is satisfied by some valid
interpretation of f within T, i.e.,

〈x, y〉 �≈ T φ
def= ∃ e∗ ∈ T : e∗(x) = y ∧ (

∀x ∈ X : φ(e∗, x)
)

The next two definitions respectively formalize the two key components of a
CEGIS-based SyGuS tool: the verification oracle and the learner.

Definition 3 (Verification Oracle). Given a specification φ defined on a
function f : X → Y over theory T, a verification oracle Oφ is a partial func-
tion that given an expression e, either returns ⊥ indicating ∀x ∈ X : φ(e, x)
holds, or gives a counterexample 〈x, y〉 against e, denoted as e �×φ 〈x, y〉, such
that

e �×φ 〈x, y〉 def= ¬φ(e, x) ∧ e(x) �= y ∧ 〈x, y〉 �≈ T φ

We omit φ from the notations Oφ and �×φ when it is clear from the context.

322 S. Padhi et al.

Definition 4 (CEGIS-based Learner). A CEGIS-based learner LO(q, E) is
a partial function that given an integer q ≥ 0, a set E of expressions, and access
to an oracle O for a specification φ defined on f : X → Y , queries O at most q
times and either fails with ⊥ or generates an expression e ∈ E. The trace

[
e0 �× 〈x0, y0〉, . . . , ep−1 �× 〈xp−1, yp−1〉, ep

]
where 0 ≤ p ≤ q

summarizes the interaction between the oracle and the learner. Each ei denotes
the ith candidate for f and 〈xi, yi〉 is a counterexample ei, i.e.,

(
∀j < i : ei(xj) = yj ∧ φ(ei, xj)

) ∧ (
ei �×φ 〈xi, yi〉

)

Note that we have defined oracles and learners as (partial) functions, and
hence as deterministic. In practice, many SyGuS tools are deterministic and this
assumption simplifies the subsequent theorems. However, we expect that these
theorems can be appropriately generalized to randomized oracles and learners.

3.2 Learnability and No Free Lunch

In the machine learning (ML) community, the limits of learning have been for-
malized for various settings as no-free-lunch theorems [34, §5.1]. Here, we provide
a natural form of such theorems for CEGIS-based SyGuS learning.

In SyGuS, the learned function must conform to the given grammar, which
may not be fully expressive. Therefore we first formalize grammar expressiveness:

Definition 5 (k-Expressiveness). Given a domain X and range Y , a gram-
mar E is said to be k-expressive iff E can express exactly k distinct X → Y
functions.

A key difference from the ML setting is our notion of m-learnability, which
formalizes the number of examples that a learner requires in order to learn a
desired function. In the ML setting, a function is considered to m-learnable by a
learner if it can be learned using an arbitrary set of m i.i.d. examples (drawn from
some distribution). This makes sense in the ML setting since the learned function
is allowed to make errors (up to some given bound on the error probability), but
it is much too strong for the all-or-nothing SyGuS setting.

Instead, we define a much weaker notion of m-learnability for CEGIS-based
SyGuS, which only requires that there exist a set of m examples that allows the
learner to succeed. The following definition formalizes this notion.

Definition 6 (CEGIS-based m-Learnability). Given a SyGuS problem S =
〈fX→Y | φ, E〉

T
and an integer m ≥ 0, we say that S is m-learnable by a CEGIS-

based learner L iff there exists a verification oracle O under which L can learn a
satisfying expression for S with at most m queries to O, i.e., ∃O : LO(m, E) |= S.

Finally we state and prove the no-free-lunch (NFL) theorems, which make
explicit the tradeoff between grammar expressiveness and learnability. Intu-
itively, given an integer m and an expressive enough (as a function of m) gram-
mar, for every learner there exists a SyGuS problem that cannot be solved with-
out access to at least m + 1 examples. This is true despite our weak notion of
learnability.

Overfitting in Synthesis: Theory and Practice 323

Put another way, as grammar expressiveness increases, so does the number
of examples required for learning. On one extreme, if the given grammar is
1-expressive, i.e., can express exactly one function, then all satisfiable SyGuS
problems are 0-learnable—no examples are needed because there is only one
function to learn—but there are many SyGuS problems that cannot be satisfied
by this function. On the other extreme, if the grammar is |Y ||X|-expressive, i.e.,
can express all functions from X to Y , then for every learner there exists a
SyGuS problem that requires all |X| examples in order to be solved.

Below we first present the NFL theorem for the case when the domain X
and range Y are finite. We then generalize to the case when these sets may
be countably infinite. We provide the proofs of these theorems in the extended
version of this paper [27, Appendix A.1].

Theorem 1 (NFL in CEGIS-based SyGuS on Finite Sets). Let X and Y
be two arbitrary finite sets, T be a theory that supports equality, E be a grammar
over T, and m be an integer such that 0 ≤ m < |X|. Then, either:

– E is not k-expressive for any k >
∑m

i=0
|X|! |Y |i
(|X| − i)!

, or
– for every CEGIS-based learner L, there exists a satisfiable SyGuS problem

S = 〈fX→Y | φ, E〉
T
such that S is not m-learnable by L. Moreover, there exists

a different CEGIS-based learner for which S is m-learnable.

Theorem 2 (NFL in CEGIS-based SyGuS on Countably Infinite Sets).
Let X be an arbitrary countably infinite set, Y be an arbitrary finite or countably
infinite set, T be a theory that supports equality, E be a grammar over T, and m
be an integer such that m ≥ 0. Then, either:

– E is not k-expressive for any k > ℵ0, where ℵ0
def= |N|, or

– for every CEGIS-based learner L, there exists a satisfiable SyGuS problem
S = 〈fX→Y | φ, E〉

T
such that S is not m-learnable by L. Moreover, there exists

a different CEGIS-based learner for which S is m-learnable.

3.3 Overfitting

Last, we relate the above theory to the notion of overfitting from ML. In the
context of SyGuS, overfitting can potentially occur whenever there are multiple
candidate expressions that are consistent with a given set of examples. Some of
these expressions may not generalize to satisfy the specification, but the learner
has no way to distinguish among them (using just the given set of examples) and
so can “guess” incorrectly. We formalize this idea through the following measure:

Definition 7 (Potential for Overfitting). Given a problem S =
〈fX→Y | φ, E〉

T
and a set Z of IO examples for φ, we define the potential for

overfitting Ω as the number of expressions in E that are consistent with Z but
do not satisfy S, i.e.,

Ω(S, Z) def=

{∣
∣{e ∈ E | e �|= S ∧ ∀〈x, y〉 ∈ Z : e(x) = y

}∣
∣ ∀z ∈ Z : z �≈ T φ

⊥ (undefined) otherwise

324 S. Padhi et al.

Intuitively, a zero potential for overfitting means that overfitting is not pos-
sible on the given problem with respect to the given set of examples, because
there is no spurious candidate. A positive potential for overfitting means that
overfitting is possible, and higher values imply more spurious candidates and
hence more potential for a learner to choose the “wrong” expression.

The following theorems connect our notion of overfitting to the earlier NFL
theorems by showing that overfitting is inevitable with an expressive enough
grammar. The proofs of these theorems can be found in the extended version of
this paper [27, Appendix A.2].

Theorem 3 (Overfitting in SyGuS on Finite Sets). Let X and Y be two
arbitrary finite sets, m be an integer such that 0 ≤ m < |X|, T be a theory
that supports equality, and E be a k-expressive grammar over T for some k >
|X|! |Y |m

m! (|X| −m)!
. Then, there exists a satisfiable SyGuS problem S = 〈fX→Y | φ, E〉

T

such that Ω(S, Z) > 0, for every set Z of m IO examples for φ.

Theorem 4 (Overfitting in SyGuS on Countably Infinite Sets). Let X
be an arbitrary countably infinite set, Y be an arbitrary finite or countably infinite
set, T be a theory that supports equality, and E be a k-expressive grammar over T

for some k > ℵ0. Then, there exists a satisfiable SyGuS problem S = 〈fX→Y | φ, E〉
T

such that Ω(S, Z) > 0, for every set Z of m IO examples for φ.

Finally, it is straightforward to show that as the expressiveness of the gram-
mar provided in a SyGuS problem increases, so does its potential for overfitting.

Theorem 5 (Overfitting Increases with Expressiveness). Let X and Y
be two arbitrary sets, T be an arbitrary theory, E1 and E2 be grammars over T

such that E1 ⊆ E2, φ be an arbitrary specification over T and a function symbol
f : X → Y , and Z be a set of IO examples for φ. Then, we have

Ω
(
〈fX→Y | φ, E1〉 T

, Z
)

≤ Ω
(
〈fX→Y | φ, E2〉 T

, Z
)

4 Mitigating Overfitting

Ensemble methods [13] in machine learning (ML) are a standard approach to
reduce overfitting. These methods aggregate predictions from several learners to
make a more accurate prediction. In this section we propose two approaches,
inspired by ensemble methods in ML, for mitigating overfitting in SyGuS. Both
are based on the key insight from Sect. 3.3 that synthesis over a subgrammar has
a smaller potential for overfitting as compared to that over the original grammar.

4.1 Parallel SyGuS on Multiple Grammars

Our first idea is to run multiple parallel instances of a synthesizer on the same
SyGuS problem but with grammars of varying expressiveness. This framework,
called PLearn, is outlined in Algorithm1. It accepts a synthesis tool T , a SyGuS

Overfitting in Synthesis: Theory and Practice 325

Algorithm 1. The PLearn framework for SyGuS tools.
1 func PLearn (T : Synthesis Tool, 〈fX→Y | φ, E〉

T
: Problem, E1...p : Subgrammars)

2 � Requires: ∀ Ei ∈ E1...p : Ei ⊆ E
3 parallel for i ← 1, . . . , p do
4 Si ← 〈fX→Y | φ, Ei〉

T

5 ei ← T (Si)

6 if ei �= ⊥ then return ei
7 return ⊥

problem 〈fX→Y | φ, E〉
T
, and subgrammars E1...p,4 such that Ei ⊆ E . The parallel

for construct creates a new thread for each iteration. The loop in PLearn
creates p copies of the SyGuS problem, each with a different grammar from E1...p,
and dispatches each copy to a new instance of the tool T . PLearn returns the
first solution found or ⊥ if none of the synthesizer instances succeed.

Since each grammar in E1...p is subsumed by the original grammar E , any
expression found by PLearn is a solution to the original SyGuS problem. More-
over, from Theorem5 it is immediate that PLearn indeed reduces overfitting.

Theorem 6 (PLearn Reduces Overfitting). Given a SyGuS problem S =
〈fX→Y | φ, E〉

T
, if PLearn is instantiated with S and subgrammars E1...p such that

∀ Ei ∈ E1...p : Ei ⊆ E, then for each Si = 〈fX→Y | φ, Ei〉 T
constructed by PLearn,

we have that Ω(Si, Z) ≤ Ω(S, Z) on any set Z of IO examples for φ.

A key advantage of PLearn is that it is agnostic to the synthesizer’s imple-
mentation. Therefore, existing SyGuS learners can immediately benefit from
PLearn, as we demonstrate in Sect. 5.1. However, running p parallel SyGuS
instances can be prohibitively expensive, both computationally and memory-
wise. The problem is worsened by the fact that many existing SyGuS tools
already use multiple threads, e.g., the SketchAC [20] tool spawns 9 threads.
This motivates our hybrid enumeration technique described next, which is a
novel synthesis algorithm that interleaves exploration of multiple grammars in
a single thread.

4.2 Hybrid Enumeration

Hybrid enumeration extends the enumerative synthesis technique, which enu-
merates expressions within a given grammar in order of size and returns the
first candidate that satisfies the given examples [2]. Our goal is to simulate
the behavior of PLearn with an enumerative synthesizer in a single thread.
However, a straightforward interleaving of multiple PLearn threads would be
highly inefficient because of redundancies – enumerating the same expression
(which is contained in multiple grammars) multiple times. Instead, we propose
a technique that (1) enumerates each expression at most once, and (2) reuses
previously enumerated expressions to construct larger expressions.
4 We use the shorthand X1,...,n to denote the sequence 〈X1, . . . , Xn〉.

326 S. Padhi et al.

To achieve this, we extend a widely used [2,15,31] synthesis strategy, called
component-based synthesis [21], wherein the grammar of expressions is induced
by a set of components, each of which is a typed operator with a fixed arity.
For example, the grammars shown in Fig. 1 are induced by integer components
(such as 1, +, mod, =, etc.) and Boolean components (such as true, and, or, etc.).
Below, we first formalize the grammar that is implicit in this synthesis style.

Definition 8 (Component-Based Grammar). Given a set C of typed com-
ponents, we define the component-based grammar E as the set of all expressions
formed by well-typed component application over C , i.e.,

E = { c(e1, . . . , ea) | (c : τ1 × · · · × τa → τ) ∈ C ∧ e1 . . . a ⊂ E
∧ e1 : τ1 ∧ · · · ∧ ea : τa }

where e : τ denotes that the expression e has type τ .

We denote the set of all components appearing in a component-based gram-
mar E as components(E). Henceforth, we assume that components(E) is known
(explicitly provided by the user) for each E . We also use values(E) to denote the
subset of nullary components (variables and constants) in components(E), and
operators(E) to denote the remaining components with positive arities.

The closure property of component-based grammars significantly reduces the
overhead of tracking which subexpressions can be combined together to form
larger expressions. Given a SyGuS problem over a grammar E , hybrid enumer-
ation requires a sequence E1...p of grammars such that each Ei is a component-
based grammar and that E1 ⊂ · · · ⊂ Ep ⊆ E . Next, we explain how the subset
relationship between the grammars enables efficient enumeration of expressions.

Given grammars E1 ⊂ · · · ⊂ Ep, observe that an expression of size k in Ei

may only contain subexpressions of size {1, . . . , (k − 1)} belonging to E1...i. This
allows us to enumerate expressions in an order such that each subexpression e is
synthesized (and cached) before any expressions that have e as a subexpression.
We call an enumeration order that ensures this property a well order.

Definition 9 (Well Order). Given arbitrary grammars E1...p, we say that a
strict partial order � on E1...p × N is a well order iff

∀ Ea, Eb ∈ E1...p : ∀ k1, k2 ∈ N : [Ea ⊆ Eb ∧ k1 < k2] =⇒ (Ea, k1) � (Eb, k2)

Motivated by Theorem 5, our implementation of hybrid enumeration uses a
particular well order that incrementally increases the expressiveness of the space
of expressions. For a rough measure of the expressiveness (Definition 5) of a pair
(E , k), i.e., the set of expressions of size k in a given grammar E , we simply
overapproximate the number of syntactically distinct expressions:

Theorem 7. Let E1...p be component-based grammars and Ci = components(Ei).
Then, the following strict partial order �∗ on E1...p × N is a well order

∀ Ea, Eb ∈ E1...p : ∀m,n ∈ N : (Ea,m) �∗ (Eb, n) ⇐⇒ |Ca |m < |Cb |n

Overfitting in Synthesis: Theory and Practice 327

We now describe the main hybrid enumeration algorithm, which is listed in
Algorithm2. The HEnum function accepts a SyGuS problem 〈fX→Y | φ, E〉

T
, a set

E1...p of component-based grammars such that E1 ⊂ · · · ⊂ Ep ⊆ E , a well order
�, and an upper bound q ≥ 0 on the size of expressions to enumerate. In lines
4–8, we first enumerate all values and cache them as expressions of size one. In
general C[j, k][τ] contains expressions of type τ and size k from Ej \Ej−1. In line
9 we sort (grammar, size) pairs in some total order consistent with �. Finally, in
lines 10–20, we iterate over each pair (Ej , k) and each operator from E1...j and
invoke the Divide procedure (Algorithm3) to carefully choose the operator’s
argument subexpressions ensuring (1) correctness – their sizes sum up to k − 1,
(2) efficiency – expressions are enumerated at most once, and (3) completeness
– all expressions of size k in Ej are enumerated.

The Divide algorithm generates a set of locations for selecting arguments
to an operator. Each location is a pair (x, y) indicating that any expression
from C[x, y][τ] can be an argument, where τ is the argument type required by
the operator. Divide accepts an arity a for an operator o, a size budget q, the
index l of the least-expressive grammar containing o, the index j of the least-
expressive grammar that should contain the constructed expressions of the form
o(e1, . . . , ea), and an accumulator α that stores the list of argument locations.
In lines 7–9, the size budget is recursively divided among a − 1 locations. In
each recursive step, the upper bound (q −a+1) on v ensures that we have a size
budget of at least q − (q − a + 1) = a − 1 for the remaining a − 1 locations. This
results in a call tree such that the accumulator α at each leaf node contains the
locations from which to select the last a−1 arguments, and we are left with some
size budget q ≥ 1 for the first argument e1. Finally in lines 4–5, we carefully
select the locations for e1 to ensure that o(e1, . . . , ea) has not been synthesized
before—either o ∈ components(Ej) or at least one argument belongs to Ej \Ej−1.5

We conclude by stating some desirable properties satisfied by HEnum. Their
proofs are provided in the extended version of this paper [27, Appendix A.3].

Theorem 8 (HEnum is Complete up to Size q). Given a SyGuS problem
S = 〈fX→Y | φ, E〉

T
, let E1...p be component-based grammars over theory T such

that E1 ⊂ · · · ⊂ Ep = E, � be a well order on E1...p × N, and q ≥ 0 be an upper
bound on size of expressions. Then, HEnum(S, E1...p,�, q) will eventually find a
satisfying expression if there exists one with size ≤ q.

Theorem 9 (HEnum is Efficient). Given a SyGuS problem S =
〈fX→Y | φ, E〉

T
, let E1...p be component-based grammars over theory T such that

E1 ⊂ · · · ⊂ Ep ⊆ E, � be a well order on E1...p × N, and q ≥ 0 be an upper bound
on size of expressions. Then, HEnum(S, E1...p,�, q) will enumerate each distinct
expression at most once.

5 We use as the cons operator for sequences, e.g., x 〈y, z〉 = 〈x, y, z〉.

328 S. Padhi et al.

Algorithm 2. Hybrid enumeration to combat overfitting in SyGuS
1 func HEnum (〈fX→Y | φ, E〉

T
: Problem, E1...p : Grammars, � : WO, q : Max. Size)

2 � Requires: component-based grammars E1 ⊂ · · · ⊂ Ep ⊆ E and v as the input variable

3 C ← {}
4 for i ← 1 to p do
5 V ← if i = 1 then values(E1) else [values(Ei) \ values(Ei−1)]

6 for each (e : τ) ∈ V do
7 C[i, 1][τ] ← C[i, 1][τ] ∪ {e}
8 if ∀x ∈ X : φ(λv. e, x) then return λv. e

9 R ← Sort(�, E1...p × {2, . . . , q})
10 for i ← 1 to | R | do
11 (Ej , k) ← R[i]

12 for l ← 1 to j do
13 O ← if l = 1 then operators(E1) else [operators(El) \ operators(El−1)]

14 for each (o : τ1 × · · · × τa → τ) ∈ O do
15 L ← Divide(a, k − 1, l, j, 〈〉)
16 for each

〈
(x1, y1), . . . , (xa, ya)

〉
∈ L do

17 for each e1 . . . a ∈ C[x1, y1][τ1] × · · · × C[xa, ya][τa] do
18 e ← o(e1, . . . , ea)

19 C[j, k][τ] ← C[j, k][τ] ∪ {e}
20 if ∀x ∈ X : φ(λv. e, x) then return λv. e

21 return ⊥

Algorithm 3. An algorithm to divide a given size budget among subexpres-
sions 5

1 funcDivide (a : Arity, q : Size, l : Op. Level, j : Expr. Level, α : Accumulated Args.)
2 � Requires: 1 ≤ a ≤ q ∧ l ≤ j

3 if a = 1 then
4 if l = j ∨ ∃ 〈x, y〉 ∈ α : x = j then return

{
(1, q) α, . . . , (j, q) α

}

5 return
{
(j, q) α

}

6 L = {}
7 for u ← 1 to j do
8 for v ← 1 to (q − a + 1) do
9 L ← L ∪ Divide(a − 1, q − v, l, j, (u, v) α)
10 return L

5 Experimental Evaluation

In this section we empirically evaluate PLearn and HEnum. Our evaluation
uses a set of 180 synthesis benchmarks,6 consisting of all 127 official benchmarks
from the Inv track of 2018 SyGuS competition [4] augmented with benchmarks
from the 2018 Software Verification competition (SV-Comp) [8] and challenging
verification problems proposed in prior work [9,10]. All these synthesis tasks are

6 All benchmarks are available at https://github.com/SaswatPadhi/LoopInvGen.

https://github.com/SaswatPadhi/LoopInvGen

Overfitting in Synthesis: Theory and Practice 329

defined over integer and Boolean values, and we evaluate them with the six gram-
mars described in Fig. 1. We have omitted benchmarks from other tracks of the
SyGuS competition as they either require us to construct E1...p (Sect. 4) by hand
or lack verification oracles. All our experiments use an 8-core Intel® Xeon® E5
machine clocked at 2.30GHz with 32GB memory running Ubuntu® 18.04.

5.1 Robustness of PLearn

For five state-of-the-art SyGuS solvers – (a) LoopInvGen [29], (b) CVC4
[7,33], (c) Stoch [3, III F], (d) SketchAC [8,20], and (e) EUSolver [5] – we
have compared the performance across various grammars, with and without the
PLearn framework (Algorithm1). In this framework, to solve a SyGuS problem
with the pth expressiveness level from our six integer-arithmetic grammars (see
Fig. 1), we run p independent parallel instances of a SyGuS tool, each with one of
the first p grammars. For example, to solve a SyGuS problem with the Polyhedra
grammar, we run four instances of a solver with the Equalities, Intervals, Octagons
and Polyhedra grammars. We evaluate these runs for each tool, for each of the
180 benchmarks and for each of the six expressiveness levels.

Fig. 6. The number of failures on increasing grammar expressiveness, for state-of-the-
art SyGuS tools, with and without the PLearn framework (Algorithm 1)

Figure 6 summarizes our findings. Without PLearn the number of failures
initially decreases and then increases across all solvers, as grammar expressive-
ness increases. However, with PLearn the tools incur fewer failures at a given
level of expressiveness, and there is a trend of decreased failures with increased
expressiveness. Thus, we have demonstrated that PLearn is an effective mea-
sure to mitigate overfitting in SyGuS tools and significantly improve their
performance.

330 S. Padhi et al.

5.2 Performance of Hybrid Enumeration

To evaluate the performance of hybrid enumeration, we augment an existing syn-
thesis engine with HEnum (Algorithm2). We modify our LoopInvGen tool [29],
which is the best-performing SyGuS synthesizer from Fig. 6. Internally, Loop-
InvGen leverages Escher [2], an enumerative synthesizer, which we replace
with HEnum. We make no other changes to LoopInvGen. We evaluate the
performance and resource usage of this solver, LoopInvGen+HE, relative to
the original LoopInvGen with and without PLearn (Algorithm1).

Performance. In Fig. 7(a), we show the number of failures across our six gram-
mars for LoopInvGen, LoopInvGen+HE and LoopInvGen with PLearn,
over our 180 benchmarks. LoopInvGen+HE has a significantly lower failure
rate than LoopInvGen, and the number of failures decreases with grammar
expressiveness. Thus, hybrid enumeration is a good proxy for PLearn.

Fig. 7. L �LoopInvGen, H �LoopInvGen+HE, P �PLearn (LoopInvGen). H is
not only significantly robust against increasing grammar expressiveness, but it also has
a smaller total-time cost (τ) than P and a negligible overhead over L.

Resource Usage. To estimate how computationally expensive each solver is, we
compare their total-time cost (τ). Since LoopInvGen and LoopInvGen+HE
are single-threaded, for them we simply use the wall-clock time for synthesis as
the total-time cost. However, for PLearn with p parallel instances of LoopIn-
vGen, we consider the total-time cost as p times the wall-clock time for synthesis.

In Fig. 7(b), we show the median overhead (ratio of τ) incurred by PLearn
over LoopInvGen+HE and LoopInvGen+HE over LoopInvGen, at various
expressiveness levels. As we move to grammars of increasing expressiveness, the
total-time cost of PLearn increases significantly, while the total-time cost of
LoopInvGen+HE essentially matches that of LoopInvGen.

5.3 Competition Performance

Finally, we evaluate the performance of LoopInvGen+HE on the benchmarks
from the Inv track of the 2018 SyGuS competition [4], against the official winning
solver, which we denote LIG [28]—a version of LoopInvGen [29] that has been
extensively tuned for this track. In the competition, there are some invariant-
synthesis problems where the postcondition itself is a satisfying expression.

Overfitting in Synthesis: Theory and Practice 331

LIG starts with the postcondition as the first candidate and is extremely fast on
such programs. For a fair comparison, we added this heuristic to LoopInvGen
+HE as well. No other change was made to LoopInvGen+HE.

LoopInvGen solves 115 benchmarks in a total of 2191 seconds whereas
LoopInvGen+HE solves 117 benchmarks in 429 seconds, for a mean speedup of
over 5×. Moreover, no entrants to the competition could solve [4] the two addi-
tional benchmarks (gcnr_tacas08 and fib_20) that LoopInvGen+HE solves.

6 Related Work

The most closely related work to ours investigates overfitting for verification
tools [36]. Our work differs from theirs in several respects. First, we address
the problem of overfitting in CEGIS-based synthesis. Second, we formally define
overfitting and prove that all synthesizers must suffer from it, whereas they only
observe overfitting empirically. Third, while they use cross-validation to combat
overfitting in tuning a specific hyperparameter of a verifier, our approach is to
search for solutions at different expressiveness levels.

The general problem of efficiently searching a large space of programs for
synthesis has been explored in prior work. Lee et al. [24] use a probabilistic model,
learned from known solutions to synthesis problems, to enumerate programs in
order of their likelihood. Other approaches employ type-based pruning of large
search spaces [26,32]. These techniques are orthogonal to, and may be combined
with, our approach of exploring grammar subsets.

Our results are widely applicable to existing SyGuS tools, but some tools
fall outside our purview. For instance, in programming-by-example (PBE) sys-
tems [18, §7], the specification consists of a set of input-output examples. Since
any program that meets the given examples is a valid satisfying expression, our
notion of overfitting does not apply to such tools. However in a recent work, Inala
and Singh [19] show that incrementally increasing expressiveness can also aid
PBE systems. They report that searching within increasingly expressive gram-
mar subsets requires significantly fewer examples to find expressions that gener-
alize better over unseen data. Other instances where the synthesizers can have a
free lunch, i.e., always generate a solution with a small number of counterexam-
ples, include systems that use grammars with limited expressiveness [16,21,35].

Our paper falls in the category of formal results about SyGuS. In one such
result, Jha and Seshia [22] analyze the effects of different kinds of counterexam-
ples and of providing bounded versus unbounded memory to learners. Notably,
they do not consider variations in “concept classes” or “program templates,”
which are precisely the focus of our study. Therefore, our results are comple-
mentary: we treat counterexamples and learners as opaque and instead focus on
grammars.

7 Conclusion

Program synthesis is a vibrant research area; new and better synthesizers are
being built each year. This paper investigates a general issue that affects all

332 S. Padhi et al.

CEGIS-based SyGuS tools. We recognize the problem of overfitting, formalize it,
and identify the conditions under which it must occur. Furthermore, we provide
mitigating measures for overfitting that significantly improve the existing tools.

Acknowledgement. We thank Guy Van den Broeck and the anonymous reviewers for
helpful feedback for improving this work, and the organizers of the SyGuS competition
for making the tools and benchmarks publicly available.

This work was supported in part by the National Science Foundation (NSF) under
grants CCF-1527923 and CCF-1837129. The lead author was also supported by an
internship and a PhD Fellowship from Microsoft Research.

References

1. The SyGuS Competition (2019). http://sygus.org/comp/. Accessed 10 May 2019
2. Albarghouthi, A., Gulwani, S., Kincaid, Z.: Recursive program synthesis. In: Shary-

gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 934–950. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-39799-8_67

3. Alur, R., et al.: Syntax-guided synthesis. In: Formal Methods in Computer-Aided
Design, FMCAD, pp. 1–8. IEEE (2013). http://ieeexplore.ieee.org/document/
6679385/

4. Alur, R., Fisman, D., Padhi, S., Singh, R., Udupa, A.: SyGuS-Comp 2018: Results
and Analysis. CoRR abs/1904.07146 (2019). http://arxiv.org/abs/1904.07146

5. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthesis via
divide and conquer. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10205, pp. 319–336. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54577-5_18

6. Alur, R., Singh, R., Fisman, D., Solar-Lezama, A.: Search-based program synthesis.
Commun. ACM 61(12), 84–93 (2018). https://doi.org/10.1145/3208071

7. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

8. Beyer, D.: Software verification with validation of results. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 331–349. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5_20

9. Bounov, D., DeRossi, A., Menarini, M., Griswold, W.G., Lerner, S.: Inferring loop
invariants through gamification. In: Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, CHI, p. 231. ACM (2018). https://doi.org/
10.1145/3173574.3173805

10. Bradley, A.R., Manna, Z., Sipma, H.B.: The polyranking principle. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 1349–1361. Springer, Heidelberg (2005). https://doi.org/10.1007/
11523468_109

11. Cousot, P., Cousot, R.: Static determination of dynamic properties of generalized
type unions. In: Language Design for Reliable Software, pp. 77–94 (1977). https://
doi.org/10.1145/800022.808314

12. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints Among Vari-
ables of a Program. In: Conference Record of the Fifth Annual ACM Symposium
on Principles of Programming Languages. pp. 84–96. ACM Press (1978), https://
doi.org/10.1145/512760.512770

http://sygus.org/comp/
https://doi.org/10.1007/978-3-642-39799-8_67
http://ieeexplore.ieee.org/document/6679385/
http://ieeexplore.ieee.org/document/6679385/
http://arxiv.org/abs/1904.07146
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1145/3208071
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1145/3173574.3173805
https://doi.org/10.1145/3173574.3173805
https://doi.org/10.1007/11523468_109
https://doi.org/10.1007/11523468_109
https://doi.org/10.1145/800022.808314
https://doi.org/10.1145/800022.808314
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770

Overfitting in Synthesis: Theory and Practice 333

13. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F.
(eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45014-9_1

14. Ezudheen, P., Neider, D., D’Souza, D., Garg, P., Madhusudan, P.: Horn-ICE learn-
ing for synthesizing invariants and contracts. PACMPL 2(OOPSLA), 131:1–131:25
(2018). https://doi.org/10.1145/3276501

15. Feng, Y., Martins, R., Geffen, J.V., Dillig, I., Chaudhuri, S.: Component-based syn-
thesis of table consolidation and transformation tasks from examples. In: Proceed-
ings of the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI, pp. 422–436. ACM (2017). https://doi.org/10.1145/
3062341.3062351

16. Godefroid, P., Taly, A.: Automated synthesis of symbolic instruction encodings
from I/O samples. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI, pp. 441–452. ACM (2012). https://doi.org/10.
1145/2254064.2254116

17. Gulwani, S., Jojic, N.: Program verification as probabilistic inference. In: Pro-
ceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL, pp. 277–289. ACM (2007). https://doi.org/10.1145/
1190216.1190258

18. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends Program.
Lang. 4(1–2), 1–119 (2017). https://doi.org/10.1561/2500000010

19. Inala, J.P., Singh, R.: WebRelate: Integrating Web Data with Spreadsheets using
Examples. PACMPL 2(POPL), 2:1–2:28 (2018). https://doi.org/10.1145/3158090

20. Jeon, J., Qiu, X., Solar-Lezama, A., Foster, J.S.: Adaptive concretization for paral-
lel program synthesis. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9207, pp. 377–394. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21668-3_22

21. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering. ICSE, vol. 1, pp. 215–224. ACM (2010). https://doi.org/
10.1145/1806799.1806833

22. Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta
Informatica 54(7), 693–726 (2017). https://doi.org/10.1007/s00236-017-0294-5

23. Le, X.D., Chu, D., Lo, D., Le Goues, C., Visser, W.: S3: syntax- and semantic-
guided repair synthesis via programming by examples. In: Proceedings of the 11th
Joint Meeting on Foundations of Software Engineering. ESEC/FSE, pp. 593–604.
ACM (2017). https://doi.org/10.1145/3106237.3106309

24. Lee, W., Heo, K., Alur, R., Naik, M.: Accelerating search-based program synthesis
using learned probabilistic models. In: Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2018,
pp. 436–449. ACM (2018). https://doi.org/10.1145/3192366.3192410

25. Miné, A.: The octagon abstract domain. In: Proceedings of the Eighth Work-
ing Conference on Reverse Engineering, WCRE, p. 310. IEEE Computer Society
(2001). https://doi.org/10.1109/WCRE.2001.957836

26. Osera, P., Zdancewic, S.: Type-and-example-directed program synthesis. In: Pro-
ceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI, pp. 619–630. ACM (2015). https://doi.org/
10.1145/2737924.2738007

27. Padhi, S., Millstein, T., Nori, A., Sharma, R.: Overfitting in Synthesis: Theory and
Practice. CoRR abs/1905.07457 (2019). https://arxiv.org/pdf/1905.07457

https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1145/3276501
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/2254064.2254116
https://doi.org/10.1145/2254064.2254116
https://doi.org/10.1145/1190216.1190258
https://doi.org/10.1145/1190216.1190258
https://doi.org/10.1561/2500000010
https://doi.org/10.1145/3158090
https://doi.org/10.1007/978-3-319-21668-3_22
https://doi.org/10.1007/978-3-319-21668-3_22
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1007/s00236-017-0294-5
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.1109/WCRE.2001.957836
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2737924.2738007
https://arxiv.org/pdf/1905.07457

334 S. Padhi et al.

28. Padhi, S., Sharma, R., Millstein, T.: LoopInvGen: A Loop Invariant Generator
based on Precondition Inference. CoRR abs/1707.02029 (2018). http://arxiv.org/
abs/1707.02029

29. Padhi, S., Sharma, R., Millstein, T.D.: Data-driven precondition inference with
learned features. In: Proceedings of the 37th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI, pp. 42–56. ACM (2016).
https://doi.org/10.1145/2908080.2908099

30. Peano, G.: Calcolo geometrico secondo l’Ausdehnungslehre di H. Grassmann: pre-
ceduto dalla operazioni della logica deduttiva, vol. 3. Fratelli Bocca (1888)

31. Perelman, D., Gulwani, S., Grossman, D., Provost, P.: Test-driven synthesis. In:
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI, pp. 408–418. ACM (2014). https://doi.org/10.1145/2594291.2594297

32. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymor-
phic refinement types. In: Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI, pp. 522–538. ACM
(2016). https://doi.org/10.1145/2908080.2908093

33. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-
guided quantifier instantiation for synthesis in SMT. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 198–216. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21668-3_12

34. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, Cambridge (2014)

35. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data
driven approach for algebraic loop invariants. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 574–592. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37036-6_31

36. Sharma, R., Nori, A.V., Aiken, A.: Bias-variance tradeoffs in program analysis.
In: The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL, pp. 127–138. ACM (2014). https://doi.org/10.1145/
2535838.2535853

37. Solar-Lezama, A.: Program sketching. STTT 15(5–6), 475–495 (2013)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1707.02029
http://arxiv.org/abs/1707.02029
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2594291.2594297
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1145/2535838.2535853
https://doi.org/10.1145/2535838.2535853
http://creativecommons.org/licenses/by/4.0/

	Overfitting in Synthesis: Theory and Practice*-12pt
	1 Introduction
	2 Motivation
	2.1 Grammar Sensitivity of SyGuS Tools
	2.2 Evidence for Overfitting

	3 SyGuS Overfitting in Theory
	3.1 Preliminaries
	3.2 Learnability and No Free Lunch
	3.3 Overfitting

	4 Mitigating Overfitting
	4.1 Parallel SyGuS on Multiple Grammars
	4.2 Hybrid Enumeration

	5 Experimental Evaluation
	5.1 Robustness of PLearn
	5.2 Performance of Hybrid Enumeration
	5.3 Competition Performance

	6 Related Work
	7 Conclusion
	References

