Skip to main content

Disruption of the Microbiota-Gut-Brain (MGB) Axis and Mental Health of Astronauts During Long-Term Space Travel

  • Reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

As the successful launch of the SpaceX Falcon Heavy initiates a new era in space exploration, with an interplanetary mission to Mars in sight, NASA has identified health priorities for its basic research agenda, with diet and mental health being at the top. Some NASA studies have examined the emerging role of the human microbiome, reporting changes in both astronauts and experimental animals under space conditions. Other observations have pointed to the critical behavioral changes in astronauts and animals in space. However, the relationship between gut microbiota, the brain, and behavior has been overlooked in this context. This review introduces to space research the concept of a link between gut microbiota and the mental health of space travelers. The bidirectional microbiota-gut-brain [MGB] axis is linked to physiological changes, symptoms and behavior in astronauts and animals. In that context, the significant role of the cerebellum in the regulation of visceral functions, movement, cognition, and emotions should not be overlooked. Disruption of the MGB axis including the cerebellum and physiological, behavioral, and cognitive changes in astronauts provide the basis for the hypothesis of converging impacts of environmental factors including diet, microgravity, stress, and radiation on gut microbiota. It posits the central role of microbiota in the response of the human body to space and astronauts’ health status during long-term space travel. This review also probes the unique physiological and behavioral mechanisms in male vs. female organisms. All of the factors above may affect the selection of candidates for long-term space travel. This chapter concludes with a consideration of how to minimize the effect of space travel on gut microbiota and mental health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abele M, Bürk K, Laccone F, Dichgans J, Klockgether T (2001) Restless legs syndrome in spinocerebellar ataxia types 1, 2, and 3. J Neurol 248:311–314

    Article  CAS  PubMed  Google Scholar 

  • Amata J, Matus-Amata P, Watkins LR, Maier SF (1998) Escapable and inescapable stress differentially alter extracellular levels of 5-HT in the basolateral amygdala of the rat. Brain Res 812:113–120

    Article  Google Scholar 

  • Badran BW, Dowdle LT, Mithoefer OJ, LaBate NT, Coatsworth J, Brown JC et al (2018) Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review. Brain Stimul 11:492–500

    Article  PubMed  Google Scholar 

  • Bagga D, Reichert JL, Koschutnig K, Aigner CS, Holzer P, Koskinen K et al (2018) Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes. https://doi.org/10.1080/19490976.2018.1460015

  • Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Tvrt RB et al (2015) Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum 14:197–220

    Article  PubMed  Google Scholar 

  • Becker EB, Stoodley CJ (2013) Autism spectrum disorder and the cerebellum. Int Rev Neurobiol 113:1–34

    Article  CAS  PubMed  Google Scholar 

  • Bellone JA, Gifford PS, Nishiyama NC, Hartman RE, Mao XW (2016) Long-term effects of simulated microgravity or chronic exposure to low-dose gamma radiation on behavior and blood-brain barrier integrity. NPJ Microgravity 2:16019

    Article  PubMed  PubMed Central  Google Scholar 

  • Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J et al (2011) The intestinal microbiota affect central levels of brain-derived neurotrophic factor and behavior in mice. Gastroenterology 141:599–609

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom KS, Sham HP, Zarepour MV, Vallance BA (2012) Innate host responses to enteric bacterial pathogens: a balancing act between resistance and tolerance. Cell Microbiol 14:475–484

    Article  CAS  PubMed  Google Scholar 

  • Bibbo S, Ianiro G, Giorgio V et al (2016) The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci 20:4742–4749

    CAS  PubMed  Google Scholar 

  • Browning KN, Travagli RA (2014) Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 4:1339–1368

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao X, Lin P, Jing P, Li C (2013) Characteristics of gastrointestinal microbiome in children with autism spectrum disorder: a systemic review. Shanghai Arch Psychiatry 25:342–353

    PubMed  PubMed Central  Google Scholar 

  • Cebolla AM, Petieau M, Dan B, Balazs L, MsIntyre J, Cheron G (2016) Cerebellar contribution to visuo-attentional alpha rhythm: insights from weightlessness. Sci Rep 6:37824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra V, Fadl AA, Sha J, Chopra S, Galindo CL, Chopra AK (2006) Alterations in the virulence potential of enteric pathogens and bacterial-host cell interactions under simulated microgravity conditions. J Toxicol Environ Health 69:1345–1370

    Article  CAS  Google Scholar 

  • Ciarleglio CM, Resuehr HE, McMahon DG (2011) Interactions of the serotonin and circadian systems: nature and nurture in rhythms and blues. Neuroscience 197:8–16

    Article  CAS  PubMed  Google Scholar 

  • Ciorba MA, Stenson WF (2009) Probiotic therapy in radiation-induced intestinal injury and repair. Ann N Y Acad Sci 1165:190–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Clapp M, Aurora N, Herrera L, Bhatia M, Wilen E, Wakefield S (2017) Gut microbiota’s effect on mental health: the gut-brain axis. Clin Pract 7:131–145

    Article  Google Scholar 

  • Convertino V, Ludwig DA, Gray BD et al (1998) Effects of exposure to simulated microgravity on neuronal catecholamine release and blood pressure responses to norepinephrine and angiotensin. Clin Auton Res 8:101–110

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior. Nat Rev Neurosci 13:701712

    Article  CAS  Google Scholar 

  • Dagdeviren C, Javid F, Joe P, von Erlach T, Bensel T, Wei Z et al (2017) Flexible piezoelectric devices for gastrointestinal motility sensing. Nat Biomed Eng 1:807

    Article  CAS  PubMed  Google Scholar 

  • Dawson M, Schell A, Filion D (2000) The electrodermal system. In: Cacioppo JT, Tassinary LG, Berntson GG (eds) Handbook of psychophysiology, 3rd edn. Cambridge University Press, New York, pp 200–223

    Google Scholar 

  • Demertzi A, Ombergen AO, Tomilovskaya E, Jeurissen B, Pechenkova E, Di Perri C et al (2016) Cortical reorganization in astronaut’s brain after long-duration spaceflight. Brain Struct Funct 221:2873–2876

    Article  PubMed  Google Scholar 

  • Derrien M, van Hylckama Vlieg JET (2015) Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol 23:354–366

    Article  CAS  PubMed  Google Scholar 

  • Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Nat Acad Sci 108:3047–3052

    Article  PubMed  Google Scholar 

  • Foster JS, Wheeler RM, Pamphile R (2014) Host-microbiome interactions in microgravity: assessment and implications. Life 4:250–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster JA, Rinaman L, Cryan JF (2017) Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress 7:124–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Galland L (2014) The gut microbiome and the brain. J Med Food 17:1261–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel N, Bale TL, Epperson CN, Kornstein SG, Leon GR, Palinkas LA (2014) Effects of sex and gender on adaptation to space: behavioral health. J Women’s Health 23:975–986

    Article  Google Scholar 

  • Graf D, Di Cagno R, Fak F et al (2015) Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 16. https://doi.org/10.3402/mehd.v26.26164

  • Gueguinou N, Huin-Schohn G, Bascove M, Bueb JL, Tschirhart E, Legrand-Frossi C et al (2009) Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth’s orbit? J Leukoc Biol 86:1027–1038

    Article  CAS  PubMed  Google Scholar 

  • Ho P, Ross DA (2017) More than a gut feeling: the implications of gut microbiota in psychiatry. Biol Psychiatry 81:e35–e37

    Article  PubMed  PubMed Central  Google Scholar 

  • Holstein GR, Kukielka E, Martinelli GP (1999) Anatomical observations of the rat cerebellar nodules after 24 hr of spaceflight. J Gravit Physiol 6:P47–P50

    CAS  PubMed  Google Scholar 

  • Holzer P (2016) Neuropeptides, microbiota, and behavior. Int Rev Neurobiol 131:67–89

    Article  CAS  PubMed  Google Scholar 

  • Hunter CJ, Plaen IG (2014) Inflammatory signaling in NECL role of NFKB and cytokines. Pathophysiology 21:55–65

    Article  CAS  PubMed  Google Scholar 

  • Ichijo T, Yamaguchi N, Tanigaki F, Shirakawa M, Nasu M (2016) Four-year bacterial monitoring in the International Space Station – Japanese experiment module “Kibo” with culture-independent approach. NPJ Microgravity 2:16007

    Article  PubMed  PubMed Central  Google Scholar 

  • Ingalhalikar M, Smith A, Parker D, Satterthwaite TD, Elliott MA, Ruparel K et al (2014) Sex differences in the structural connectome of the human brain. Proc Natl Acad Sci USA 111: 823–828

    Article  CAS  PubMed  Google Scholar 

  • Isolation and hallucinations: the mental health challenges faced by astronauts (2014) The Guardian. https://www.theguardian.com/science/2014/oct/05/hallucinations-isolation-astronauts-mental-health-space-missions

  • Jašarević E, Morrison KE, Bale TL (2016) Sex differences in the gut microbiome–brain axis across the lifespan. Philos Trans R Soc Land B Biol Sci 371:20150122

    Article  CAS  Google Scholar 

  • Jenkins TA, Nguen JCD, Polglaze KE, Bertrand PP (2016) Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 8:56

    Article  PubMed Central  CAS  Google Scholar 

  • Jouvent E, Sun ZY, De Guio F, Duchesnay E, Duering M, Ropele S et al (2016) Shape of the central sulcus and disability after subcortical stroke: a motor reserve hypothesis. Stroke 47:1023–1029

    Article  PubMed  Google Scholar 

  • Kahn BE, Isen AM (1993) The influence of positive affect on variety seeking among safe, enjoyable products. J Consum Res 20:257–270

    Article  Google Scholar 

  • Kaur I, Simons ER, Castro VA, Ott CM, Pierson DL (2005) Changes in monocyte functions of astronauts. Brain Behav Immun 19:547–554

    Article  CAS  PubMed  Google Scholar 

  • Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP (2015) Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 9:392

    PubMed  PubMed Central  Google Scholar 

  • Klingenberg Barford K (2017) Space travel changes gut bacteria in mice. Sci Nord 6:25

    Google Scholar 

  • Kondrashova VG, Vdovenko VY, Kolpakov IE, Popova AS, Mishchenko LP, Gritsenko TV et al (2014) Gut microbiota among children living in areas contaminated by radiation and having the cardiac connective tissue dysplasia syndrome. Probl Radiac Med Radiobiol 19:277–286

    CAS  PubMed  Google Scholar 

  • Koppelmans V, Bloomberg JJ, Mulavara AP, Seidler RD (2016) Brain structural plasticity with spaceflight. NPJ Microgravity 2:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramer LA, Sargsyan AE, Hasan KM, Polk JD, Hamilton DR (2012) Orbital and intracranial effects of microgravity: findings at 3-T MR imaging. Radiology 263:819–827

    Article  PubMed  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  PubMed  Google Scholar 

  • Marin IA, Goertz JE, Ren T, Rich SS, Onengut-Gumuscu S, Farber E et al (2017) Microbiota alteration is associated with the development of stress-induced despair behavior. Sci Rep 7:43859

    Article  PubMed  PubMed Central  Google Scholar 

  • Mark S, Scott GBI, Donoviel DB, Leveton LB, Mahoney E, Charles JB et al (2014) The impact of sex and gender on adaptation to space: executive summary. J Women’s Health 23:941–947

    Article  Google Scholar 

  • Maslowski KM, Mackay CR (2011) Diet, gut microbiota, immune responses. Nat Immunol 12:5–9

    Article  CAS  PubMed  Google Scholar 

  • Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K (2014) Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci 34:15490–15496

    Article  PubMed  PubMed Central  Google Scholar 

  • Migeotte P-F, Kim Prisk G, Paiva M (2003) Microgravity alters respiratory sinus arrhythmia and short-term heart rate variability in humans. Am J Heart Circ Physiol 284:H1995–H2006

    Article  CAS  Google Scholar 

  • Nagai M, Hoshide S, Kario K (2010) The insular cortex and cardiovascular system: a new insight into the brain-heart axis. J Am Soc Hypertens 4:174–182

    Article  PubMed  Google Scholar 

  • NASA (2013) Bacteria sent into space behave in mysterious ways

    Google Scholar 

  • NASA (2014a) Study reveals immune system is dazed and confused during spaceflight. https://www.nasa.gov/content/study-reveals-immune-system-is-dazed-and-confused-during-spaceflight-u

  • NASA (2014b) Effect of spaceflight on microbial gene expression and virulence (Microbe) – 10.11.17. https://www.nasa.gov/mission_pages/station/research/experiments/87.html

  • NASA (2015) NASA’s efforts to manage health and human performance risks for space exploration. Report No. IG-16-003. https://www.nasa.gov/mission-pages/station/research/experiments/2164.html

  • NASA (2017a) Why space radiation matters. https://www.nasa.gov/analogs/nsrl/why-space-radiation-matters

  • NASA (2017b) Study investigates how men and women adapt differently to spaceflight. https://www.nasa.gov/content/men-women-spaceflight-adaptation

  • NASA (2018) Twins study confirms preliminary findings. https://www.nasa.gov/feature/nasa-twins-study-confirms-preliminary-findings

  • Newberg AB, Alavi A (1998) Changes in the central nervous system during long-duration space flight: implications for neuroimaging. Adv Space Res 22:185–196

    Article  CAS  PubMed  Google Scholar 

  • Ni H, Balini K, Zhou Y, Gridley DS, Maks C, Kennedy AR et al (2011) Effect of solar particle event radiation on gastrointestinal tract bacterial translocation and immune activation. Radiat Res 175:485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noor S, Ridgway KI, Scovell L, Kemsley EK, Lund E, Jamieson C et al (2010) Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota. BMC Gastroenterol 10:134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ott CM, Bruce RJ, Pierson DL (2004) Microbial characterization of free-floating condensate aboard the Mir space station. Microb Ecol 47:133–134

    Article  CAS  PubMed  Google Scholar 

  • Packey CD, Ciorba MA (2010) Microbial influences on the small intestinal response to radiation injury. Curr Opin Gastroenterol 26:88–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Platts SH, Merz NB, Barr Y, Fu Q, Gulati M, Hughson R et al (2014) Effects of sex and gender on adaptation to space: cardiovascular alterations. J Women’s Health 23:950–955

    Article  Google Scholar 

  • Rapozo DCM, Bernadazzi C, de Souza HSP (2017) Diet and microbiota in inflammatory bowel disease: the gut in disharmony. World J Gastroenterol 23:2124–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reschke MF, Cohen HS, Cerisano JM, Clayton JA, Cromwell R, Danielson RW et al (2014) Effect of sex on adaptation to space: neurosensory systems. J Women’s Health 23:959–962

    Article  Google Scholar 

  • Ritchie LE, Taddeo SS, Weeks BR et al (2015) Space environmental factors impacts upon murine colon microbiota and mucosal homeostasis. PLoS One. https://doi.org/10.1371/journal.pone.0125792

  • Roberts DR, Albrecht MH, Collins HR et al (2017) Effects of spaceflight on astronaut brain structure as indicated on MRI. N Engl J Med 377:1746–1753

    Article  PubMed  Google Scholar 

  • Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI et al (2015) The composition of the gut microbiota throughout life, with emphasis on early life. Microb Ecol Health Dis 26:26050

    PubMed  Google Scholar 

  • Rosenzweig JA, Abogunde O, Thomas K, Lawal A, Nguyen AY, Sodipe A et al (2010) Spaceflight and modeled microgravity effects on microbial growth and virulence. Appl Microbiol Biotechnol 85:885–891

    Article  CAS  PubMed  Google Scholar 

  • Sajdel-Sulkowska EM (2008) Brain development, environment and sex: what can we learn from studying graviperception, gravitransduction and gravireaction of the developing CNS to altered gravity? Cerebellum 7:223–239

    Article  CAS  PubMed  Google Scholar 

  • Sajdel-Sulkowska EM, Li G-H, Ronca AE, Baer LA, Sulkowski GM, Koibuchi N et al (2001) Effects of hypergravity exposure on the developing central nervous system: possible involvement of thyroid hormone. Exp Biol Med 226:790–798

    Article  CAS  Google Scholar 

  • Sajdel-Sulkowska EM, Nguon K, Sulkowski ZL, Rosen GD, Baxter MG (2005) Purkinje cell loss accompanies motor impairment in rats developing at altered gravity. Neuroreport 16:2037–2040

    Article  PubMed  Google Scholar 

  • Sajdel-Sulkowska EM, Bialy M, Cudnoch-Jedrzejewska A (2015) Altered BDNF levels, “leaky gut” and abnormal gut microbiome in autism. In: Brain-derived neurotrophic factor BDNF: therapeutic approaches, role in neuronal development and effects on cognitive health. Nova Science Publishers, Inc. Hauppauge, NY, USA, pp 147–180

    Google Scholar 

  • Sajdel-Sulkowska EM, Makowska-Zubrycka M, Czarzasta K, Kasarello K, Aggarval V, Bialy M, Szczepanska-Sadowska, E, Cudnoch-Andrzejewska A (2018) Common genetic variants link the abnormalities in the gut-brain axis in prematurity and autism. Cerebellum. https://doi.org/10.1007/512311-018-0970-1

  • Shin NR, Whon TW, Bae JW (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33:496–503

    Article  CAS  PubMed  Google Scholar 

  • Sonnenberg JL, Backhed F (2016) Diet-microbiota interactions as moderators of human metabolism. Nature 535:56–64

    Article  CAS  Google Scholar 

  • Sudo N (2014) Microbiome, HPA axis and production of endocrine hormones in the gut. Adv Exp Med Biol 817:177–194

    Article  CAS  PubMed  Google Scholar 

  • Sussman D, Pang EW, Jetly R, Dunkley BT, Taylor MJ (2016) Neuroanatomical features in soldiers with post-traumatic stress disorder. BMC Neurosci 17:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X et al (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368:1575–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor PW (2015) Impact of space flight on bacterial virulence and antibiotic susceptibility. Infect Drug Resist 8:249–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Nuclear Regulatory Commission reports (n.d.). US. NRC. https://www.nrc.gov/

  • Tillish K, Mayer EA, Gupta A, Gill Z, Brazeilles R, Le Neve B et al (2017) Brain structure and response to emotional stimuli as related to gut microbial profiles in healthy women. Psychosom Med 79:905–913

    Article  Google Scholar 

  • Trøseid M, Ueland T, Hov JR (2015) Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med 277:717–726

    Article  PubMed  CAS  Google Scholar 

  • Voorhies AA, Lorenzi HA (2016) The challenge of maintaining a healthy microbiome during long-duration space missions. Front Astron Space Sci 3:23–29

    Article  Google Scholar 

  • Wang Y, Hensley MK, Tasman A et al (2016) Heart rate variability and skin conductance during repetitive TMS course in children with autism. Appl Psychophysiol Biofeedback 41:47–60

    Article  PubMed  Google Scholar 

  • Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC et al (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455: 1109–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC et al (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106:3698–3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willson JW, Ott CM, Honer zu Bentrup K, Ramamurthy R, Quick L, Porwollik S et al (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator HfQ. Proc Natl Acad Sci USA 104:16299–16304

    Article  Google Scholar 

  • Zhu J-N, Wang JJ (2008) The cerebellum in feeding control: possible function and mechanism. Cell Mol Neurobiol 28:469–478

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the CePT infrastructure financed by the European Regional Development Fund with the Operational Programme “Innovative Economy” for 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta M. Sajdel-Sulkowska .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sajdel-Sulkowska, E.M. (2022). Disruption of the Microbiota-Gut-Brain (MGB) Axis and Mental Health of Astronauts During Long-Term Space Travel. In: Manto, M.U., Gruol, D.L., Schmahmann, J.D., Koibuchi, N., Sillitoe, R.V. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-23810-0_54

Download citation

Publish with us

Policies and ethics