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Abstract. When it comes to visitors’ experiences at museums and her-
itage attractions, objects speak for themselves. With the aim of enhanc-
ing a traditional museum visit, a mobile Augmented Reality (AR) frame-
work was developed during the M5SAR project. This paper presents
two modules, the wall and human shape segmentation with AR content
superimposition. The first, wall segmentation, is achieved by using a
BRISK descriptor and geometric information, having the wall delimited,
and the AR contents superposed over the detected wall contours. The
second module, person segmentation, is achieved by using an OpenPose
model, which computes the body joints. These joints are then combined
with volumes to achieve AR clothes content superimposition. This paper
shows the usage of both methods in a real museum environment.

Keywords: Augmented Reality · Wall detection · Human detection ·
Wall overlapping · Clothes overlapping · HCI

1 Introduction

Augmented Reality (AR) [3] is no longer an emergent technology, thanks mainly
to the mobile devices increasing hardware capabilities and new algorithms. As
cornerstone, AR empowers a higher level of interaction between the user and
real world objects, extending the experience on how the user sees and feels those
objects, by creating a new level of edutainment that was not available before.
While many mobile applications (App) already regard museums [31,56], the use
of AR in those spaces is much less common, albeit not new, see e.g. [21,46,49,58].

The Mobile Image Recognition based Augmented Reality (MIRAR) frame-
work [45] (developed under M5SAR1 project [49]) focuses on the development
of mobile multi-platform AR systems. One of the MIRAR’s requirements is to
only use the mobile devices RGB cameras to achieve its goals. A framework that
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integrates our presented goals is completely different from the existing AR soft-
ware development kits – SDK, frameworks, content management systems, etc.
[2,11,37].

This paper focuses on two particular modules of MIRAR, namely: (a) the
recognition of walls, and (b) the segmentation of human shapes. While the first
module intends to project AR contents onto the walls (e.g., to project text or
media), the second contemplates the overlap of clothes onto persons. The wall
detection and recognition is supported upon the same principles of the object’s
recognition (BRISK descriptor) but uses images from the environment to achieve
it. On the other hand, the human detection and segmentation uses Convolutional
Neural Networks (CNN) for the detection (namely, the OpenPose model [9]). The
overlapping of contents in the museum environment is done over the area limited
by the wall or using the body joints along with clothes volumes to put contents
over the persons. The main contribution of this paper is the integration of AR
contents in walls and persons in real environments.

The paper is structured as follows. The contextualization and a brief state
of the art is presented in Sect. 2, followed by the wall segmentation and con-
tent overlapping sub-module in Sect. 3, and the human shape segmentation and
content overlapping in Sect. 4. The paper concludes with a final discussion and
future work, Sect. 5.

2 Contextualization and State of the Art

AR image-based markers [12] allow adding in any environment easily detectable
pre-set signals (e.g. paintings and statues), and then use computer vision tech-
niques to sense them. In the AR context, there are some image-based commercial
and open source SDK and content management systems, such as Catchoom [11],
ARtoolKit [2] or Layar [37]. Each of the above solutions has pros and cons and, to
the best of your knowledge, none has implemented wall and person segmentation
with information overlapping.

The ability of segmenting the planar surfaces of any environment continues
to be a challenge in computer vision, mainly if only a monocular camera is used.
One of the directest approach to an environment’s scanning is the use of RGB-D
cameras [25] or LiDaR devices [30] to directly acquire a 3D scan of the cameras’
reach. A more indirect approach – more based on computation than hardware
– is the Simultaneous Localization and Asynchronous Mapping (SLAM) [13].
SLAM’s methods for indoor and outdoor navigation has shown new advances
either by using the Direct Sparse Odometry [15], or with a feature matching
method like the ORB SLAM [42] or even a Semi-Dense [17] or Large-Scale Direct
Monocular SLAM [16].

Another usual approach is the cloud of points method or the structure from
motion, which is part of the SLAM’s universe, relying on multiple frames to
be able to calculate a relation in-between the features – 3D points – and the
camera’s position. There have been developments in the outdoor, or landmark,
recognition [4], an also simple objects detection and its layout prediction using
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the cloud of oriented gradients [48]. Another example, proving the possibilities
of a proper environment’s layout analysis, is the use of a structure from motion
algorithm using the natural straight lines in an environment, through represen-
tation, triangulation and bundle adjustment [6].

One of the main novelties is the use of CNN to solve any complex computer
vision challenge, including environment’s layout prediction [54], although the
current state is not useful in runtime. On the other hand, in every common
human-based construction there can be found the presence of lines or edges in
its geometric perspective. These vanishing lines allows us to predict the orien-
tation and position of planes [26]. It is even possible to compute a relative pose
estimation using the present lines in the environment [14]. These techniques,
applied to the indoor layouts’ prediction, allows us to compute the existence of
natural planar surfaces [51], even by using the edges of maps available on any
indoor layout [39]. One major advance in the outdoor camera localization is the
PoseNet [33], which also uses a CNN. It is important to stress that none of those
methods presents the superimposing of contents over an environment know a
priori, on a monocular mobile device and in runtime.

The second module to be presented in this work focuses on human segmen-
tation and pose estimation, which is also a challenging problem due to several
factors, such as body parts occlusions, different viewpoints, or human motion
[20]. In the majority of models based on monocular cameras, the estimation of
occluded limbs is not reliable. Nevertheless, good results for a single person’s
pose estimation can be achieved [20]. Conversely, pose estimation for multiple
people is a more difficult task because humans occlude and interact between
them. To deal with this task, two types of approaches are commonly used: (a)
top-down approach [27], where a human detector is used to find each person
and then running the pose estimation on every detection. However, top-down
approach does not work if the detector fails to detect a person, or if a limb
from other people appears in a single person’s bounding box. Moreover, the run-
time needed for these approaches is affected by the number of people in the
image, i.e., more people means greater computational cost. (b) The bottom-up
approach [10,20] estimates human poses individually using pixel information.
The bottom-up approach can solve both problems cited above: the information
from the entire picture can distinguish between the people’s body parts, and the
efficiency is maintained even as the number of persons in the image increases.

As in the wall detection, the best results for pose estimation are achieved
using R-CNN (Regions - CNN) [23] or evolutions, such as the Fast R-CNN [22],
Faster R-CNN [47] or the Single Shot MultiBox Detector (SSD) [29]. A compar-
ison between those methods can be found in [29]. The results show that SSD
has the highest mAP (mean average precision) and speed. With good results,
OpenPose [10] can also be used for pose estimation, being based on Part Affinity
Fields (PAFs) and confidence maps (or heatmaps). The method’s overall process
can be divided in two steps: estimate the body parts (ankles, shoulders, etc.)
and connect body parts to form limbs that result in a pose. In more detail, the
method takes an input image and then it simultaneously infers heatmaps and
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PAFs. Next, a bipartite matching algorithm is used to associate body parts and,
at last, the body parts are grouped to form poses. The OpenPose can be used
with a monocular camera and run in “real-time” on mobile devices. Additionally,
the estimated 2D poses can be used to predict 3D poses using a “lifting” system,
that does not need additional cameras [55].

Several methods exist for clothes overlapping. A popular one is Virtual Fit-
ting Room (VFR) [18], which combines AR technologies with depth and colour
data in order to provide strong body recognition functionality and effectively
address the clothes overlapping process. Most of these VFR applications overlap
3D models or pictures of a clothing within the live video feed and then track the
movements of the user. In the past, markers were used to capture the person
[1]. In that case, specific joints are used to place the markers, which differ in
colours according to the actual position on the body. From a consumer’s point
of view, a general disadvantage is the time consumed placing the markers and
the discomfort of using them. Isikdogan and Kara [32] use the distance between
the Kinect sensor and the user to scale a 2D model over the detected person,
only depicting the treatment of t-shirts. Another similar approach, presented
in [18], uses 3D clothing with skeleton animation. Two examples of the several
commercial applications are FaceCake [19] and Fitnect [34].

3 Wall Detection and Information Overlapping

Previously, the authors followed two distinct approaches to solve the environ-
ments’ surfaces detection [45,50,59,60]. A first approach assumes that the van-
ishing lines present in the environment follow an expected geometric shape;
and a second approach focuses on retrieving the walls’ proportions using the
features extraction and matching method, followed by the homographies’ com-
putation. The methods were then combined in order to achieve a harmonious
detection, recognition and localization of the environment, allowing to dynami-
cally superimpose different types of content over the walls, such as images, video,
animations, or 3D objects.

As detailed next, the present algorithm is designed to work over regular plane
walls, which are known a priori through a previously bundle creation phase.
Being the purpose of this AR application the ability to run seamlessly on any
current monocular smartphones, from which only a RGB image is provided by
the camera (i.e., without any additional depth information), it is important to
assure an ideal performance using less computational’ eager algorithms.

Our current algorithm divides itself in five different stages: (a) the bundle cre-
ation, (b) the recognition and localization, (c) corners’ adjustment, (d) tracking,
and (e) superimposition.

The first stage of the algorithm – the bundle creation (a) – is pre-executed,
i.e., not performed during runtime. For this task two distinct types of bundles
are generated: a FLANN (Fast Library for Approximate Nearest Neighbours)
[41] Index (FI) bundle, and a FLANN Based Matcher (FBM) bundle. This odd
combination is due to a better performance being obtained by a hybrid version
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Fig. 1. Top two rows, from top left to bottom right: Example of five templates following
of the same wall. Bottom row, pre-processing of the templates. Left to right, input image
with the complete desired height of the wall, mask applied over removing the wooden
frames, features retrieved and computed.

of both FLANN matchers instead of only one, as presented in [60]. Reasons for
this choices will be better detailed during the recognition and localization (b)
phase.

Museums’ environments are full of detail and some of its areas gather enough
significant information to be considered keypoints, which can be detected and
define by computing its descriptors. In this approach, the BRISK keypoint detec-
tor and descriptor extractor [38] is used, due to its capabilities of performing well
with image scaling. Images of continuous walls, as can be seen in Fig. 1 top two
rows, allow not only to project content, but also retrieve the users’ localization
through the sparse unique keypoints inside the artworks. The retrieved features
are stored during the bundle creation, allowing the comparison during runtime
with the ones obtained from the smartphones’ cameras.

As observed in [60], the paintings’ wooden frames are rich in similar features,
which often would lead to cross-matched in between them. To prevent this false
matches, the templates are pre-processed before training the FLANN indexes,
defining masks where only the features from the artworks could be obtained, as
it can be seen on Fig. 1 bottom row. Additional final templates examples can be
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Fig. 2. Example of some of the templates used during the bundle creation stage.

observe on Fig. 2. The motive behind the shape and form of the templates will
be explained in detail during the next phases.

Although FBM is built upon FI, previous performance tests showed that the
bare FI returns results similar to the ones obtained with FBM, but with an
average of 60.66% less processing time [60], which justifies the choice of building
an FI bundle. While both methods retrieve the same template index, the FBM
also retrieves the matching between features, which is essential for the compu-
tation of the homography. Following this necessity, a bundle is created for each
matching method, which allows to generate a hybrid FLANN matching method.
This method, starts by searching across our templates with the FI bundle and
then only process the top retrieved results with FBM, which was proved to be a
faster matching method, when compared to using exclusively FBM [60].

Both methods – FI and FBM – used the same index parameters, and the
same searching algorithm, the Locality-Sensitive Hashing (LSH), which performs
extremely well with non-patent binary descriptors. The LSH used a single hash
table with a key size of 12, and only 1 multiprobe level. The addition of a
multiprobe to the LSH, allows to reduce the number of hash tables, obtaining
a better computational performance without affecting precision. As presented
in [60], it was noted an average reduction of 76.56% of processing time across
different binary features detectors and descriptors (AKAZE, BRISK, ORB) [53]
while using only 1 hash table, versus the 6 hash tables originally recommended.

The runtime computation starts with the recognition and localization stage
(b). While no localization information or previous match is available, the
retrieved frame from the camera is resized to a resolution of 640 × 480 pix-
els (px), and processed with the BRISK feature detector through the FI feature
matcher, returning a list of probabilities for the index of each template, as can
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Fig. 3. Pipeline of the environments’ superimposition algorithm. Left to right, top
to bottom: input frame, keypoints and descriptor computation, homography’s calcu-
lation, demonstration of the relation between matches and the homography, Canny
edge detection, Probabilistic Hough Transform, vanishing lines post-processing, con-
tent superimposed.

be seen on the top-left and top-centre of Fig. 3. Similar to the top-5 rank in
CNN, the image with highest probability is not occasionally matched, although
one within the top-5 is used. Then the FBM is applied through the top-5 indexes
and the results are subjected to the Lowe’s ratio test, where only the matches
with distances to each other with a relation between 55% and 80% are consid-
ered. If at least 20 of these matches are obtained, then the algorithm continues,
otherwise it skips this frame’s processing. It is also important to stress that in
order to achieve a near real-time performance, the previous frame’s processing
time is correlated with the total amount of descriptors for the current frame,
with all being firstly sorted by their response parameter, which correlates the
level of similarity between the templates and frames’ descriptors.

With the computation of the homography’s matrix between the correlated
matches of the template and the camera’s frame, the perspective transformation
of the 2D template can be computed as an object within the 3D world, which
can be observe in Fig. 3 – top-right. Normally, the homography only requires
4 matches to be able to calculate but, with the user navigating through out
the museum, steady results for this AR application were obtained only when
the minimum limit of matches was increased to 20 points. We also discard the
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bad homographies verifying if the computed matrix presents a possible solution
which could match our desired output: direction, proportion, and perspective.
A demonstration of this process can be seen in Fig. 3 – centre-left and right.

During the bundle creation stage (a) the templates’ shape form where made
for a specific purpose: the ability to find the upper and bottom margins of
any specific wall, as well the left and right limits when necessary. The current
arrangement of templates is divided between two rooms, one regular – cuboid
– and one irregular. The aim for the regular room is to be able to localize
the exact position and angle that the user is pointing. Furthermore, using the
continuous templates from the same wall, as shown in Fig. 1 – top two rows, an
automated mixed 3D layout of the museum’s room is being designed, with the
objetive of further exploring the AR applications without the need for advanced
3D calculations. In the irregular room, the walls are used to project any desired
content, e.g., a video-documentary related to the artwork exposed on that specific
wall without the ability to project over the entire environment’s layout.

With the homography already known, the next step is the corner’s adjust-
ment stage (c), which is the result of the combination of several meth-
ods [45,50,59,60]. The frame’s edges are computed by applying a Gaussian filter
to blur the frame, followed by a dynamic Canny edge detection [8] using the
Otsu threshold [43] to replace the high Canny’s threshold, which decides if a
pixel is accepted as an edge, while the lower threshold, which decides if a pixel
is rejected, varies with a direct proportion of 10% to the higher. The computed
edges can be seen on the centre-right of Fig. 3. Afterwards, the Probabilistic
Hough Transform [36] is applied in order to retrieve the lines present in the
frame, as seen in the bottom-left of Fig. 3.

Next, the obtained lines are filtered by discarding the extremely uneven lines
in relation to the horizon line, followed by the calculation of the similar ones,
resulting only in the expected environment’s vanishing lines. The lines’ inter-
secting points were clustered using a K-means clustering method, where the
densest cluster is chosen, and its centroid is considered as the vanishing point of
said lines. Considering the original location of the homography’s corner points,
with the known vanishing point, these corners can be adjusted to existing lines
in the environment – upper and lower limit of the wall –, as observed in the
bottom-centre of the Fig. 3.

Previously, the application of Kalman filters to the vanishing point and its
corresponding corner’s coordinates was introduced in [60], allowing for a better
perception of the user’s movement, and consequently smoothing the transitions
of the superimposed content. Although the current state of the present algorithm
retains this step, Kalman filters are no longer used for tracking, with its main
function being the validation of a proper template’s perspective found on the
processed frames. More precisely, the Kalman filtering of the coordinates allows
to predict their next position and estimate if the ones retrieved behaved as noise
or valid inputs. This favors the obtention of more precise coordinates in time
with more harmonious trajectories – it is important to refer that the obtained
homographies are not perfect and their perspective fluctuates significantly, which
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leads to noisy coordinates. This probably is due to the recursiveness of the
Kalman filters but, there was only the need to adjust the uncertainty matrix to
our specific application and no additional past information is required to be able
to process in real time. Before advancing to the last two stages of the algorithm,
the previous steps are computed again using a mask retrieved from the calculated
coordinates. When the Kalman filters stabilizes, the process proceeds to the next
stage.

Regarding the tracking stage (d), with the corresponding template’s coordi-
nates found, the good features to track within our current frame’s mask are com-
puted, using the Shi-Tomasi method [52]. Afterwards, the optical flow between
the previous and the current frame is calculated using the iterative Lucas-Kanade
method with pyramids [7]. Using this method, a more accurate homography
between frames can be computed, which results in a more fluid and smooth
tracking using even less computation than our previous approach. It should
be noticed some important aspect of this approach such as the fact that the
smartphones’ cameras are different between brands and models, sometimes even
between the operating system versions, which results in different features match
across the devices. Through this method, a lighter computational tracking in
any device and in multiple conditions was possible. The Shi-Tomasi corners con-
tinues to be obtained through the tracking, which enables the visitor to continue
walking through the museum without the AR experience – which enables the
visitor to explore the content in a higher detail.

Following the previous stage, the superimposition stage (e) can finally pro-
cessed. With the improved tracking stage, the overlay of content over the envi-
ronments’ previous known walls, allowing the visitors’ movement, is possible,
without affecting the projected content. The result can be seen in the bottom-
right of Fig. 3. Although, it is only presented the projection of content over the
corresponding template’s shape, it is also possible to use the template’s mask and
re-purpose the artwork’s surrounding empty walls with content without covering
the artwork. With the different templates, specific content can be projected on
different walls throughout the museum’s divisions.

4 Person Detection and Clothes Overlapping

As mention, the goal of the Person Detection and Clothes Overlapping module
is to use a mobile device to project AR content (clothes) over persons that are in
a museum. On other words, the goal is “to dress” museums’ users with clothes
from the epoch of the museums’ objects. The module has two main steps: (i) the
person detection and pose estimation, and the (ii) clothes overlapping. Those
steps will be explained in detail in the following sections.

The implementation was done in Unity [57] using the OpenCV library (Asset
for Unity). In order to verify the implementation’s reliability, computational
tests were done in a desktop computer and in a mobile device, namely using a
Windows 10 desktop with an Intel i7-6700 running at 3.40 GHz and an ASUS
Zenpad 3S 10′′ tablet.
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Fig. 4. Left to right, example of confusion between left and right ankle, the cor-
rect detected pose, and the pose estimation with spatial size of the CNN equal to
368× 368 px and 192× 192 px. (Color figure online)

The method used for pose estimation was OpenPose (see Sect. 2 and [10,
35]). OpenPose was implemented on TensorFlow [24] and the CNN architecture
for feature extraction is MobileNets [28]. The extracted features serve as input
for the OpenPose algorithm, that produces confidence maps (or heatmaps) and
PAFs maps which are concatenated. The concatenation consists of 57 parts:
18 keypoint confidence maps plus 1 background, and 38 (= 19× 2) PAFs. The
component joint/body part of the body, e.g., the right knee, the right hip, or the
left shoulder, are shown in Fig. 4, where red and blue circles indicate the person’s
left and right body parts. A pair of connected parts, limb, e.g., the right shoulder
connection with the neck are shown in the same figure, the green line segments.

A total amount of 90 frames of expected user navigation were the input to the
CNN. Furthermore, two input sizes images for the CNN were tested: 368× 368
and 192× 192 px. Depending on the size of the input, the average process time
for each frame was 236 ms/2031 ms (milliseconds) and 70 ms/588 ms, respectively
in the desktop and tablet. As expected, reducing the input size images of the
CNN allow attaining improvements on the execution time, but the accuracy of
the results dropped. The pose is always estimated, but the confidence map for
a body part to be considered valid must be above 25% of the maximum value
estimated in the confidence map (this value was empirically chosen), otherwise
is not considered. A missing body part example for a 192× 192px image which
was detected in the 368× 368 px image is shown in Fig. 4, right most image.
The same figure also shows an example of error that sometimes occurs in the
identification of the right and left hands/legs (left most image).

Besided the presented cases, a stabilization method was needed because pose
estimated (body part) can wrongly “change” position, for instance due to light
changes. The stabilization is done using groups of body parts from the estimated
pose. The body parts selection for each group is based on the change that body
parts do when any single one moves, see Fig. 5.
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Fig. 5. Pose estimation stabilization groups.

Fig. 6. Examples of volume 2D views.

The stabilization algorithm is as follows: (a) for each one of the 5 groups
present in Fig. 5, a group of RoIs (one for each body part), with 2% of the
width and height of the frame (value chosen empirically), is used to validate if
all the body parts from the group have changed position or not. (b) To allow a
body part to change position, all the other group body parts must change, i.e.,
they must have a position change bigger than the RoIs mentioned before. (c)
Depending of the group, if one or two body part(s) have a value bigger than the
predefined RoIs, this wrong body part(s) is/are replaced by the correct ones,
that was/were estimated in a previous frame.

To solve the incorrect detection of the body parts problem, the estimated
pose view is used, i.e., to distinguish between right and left body parts it is
necessary to validate if the body is in a front or in a back view. (d) This is done
by observing that in a front view, the x coordinates of the right side body parts
should be smaller than the ones from the left side. To replace a missing body
part from a pose is used the previously estimated pose.

In the second phase, the clothes overlapping methods has as input the esti-
mated body parts. For clothes overlapping, three methods were tested: (i) seg-
ments, (ii) textures, and (iii) volumes. The first two methods were presented in
[5], showing some lack precision and the limitation of only working in frontal
view.

For the third method (volumes), the two main steps are: (a) rotate and resize
the volume, (b) project the (clothes) volume over the person.

In the first step, (a.1) a clothe volume was developed in 3DS MAX [40]
and (a.2) imported to Unity. Then, (a.3) the volume was rotated horizontally
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Fig. 7. Created views conditions represented horizontally. A detected part is repre-
sented by 1 and not detected by 0.

Fig. 8. Left, volume keypoints. Right, example of a limb’s angle.

accordingly to four pose views, as presented in Fig. 6 where frontal, back, side
right, and side left views of the volume can be seen. (a.4) The views were then
associated to the OpenPose detected and non detected body parts (namely: nose,
right eye, left eye, right ear and left ear) according with the conditions presented
in Fig. 7, where 1 represents a detected body part, and 0 a non detected body
part. Additionally, (a.5) to strengthen the assurance of front or back view, the
x coordinates distance between right and left hips and shoulders coordinates
should be more than 5% of the frame width (this value was empirically chosen).
(a.6) A previous view is used if none of the above conditions are met. Finally,
(a.7) the volume is resized using the distance between ankles and neck which is
an approximation to the person’s height.

The resized volume is now project over the detected person (b). To achieve
the referred projection, the volume body parts keypoints (see Fig. 8 left) are
(b.1) overlapped over the estimated OpenPose pose body part keypoints, and
(b.2) rotated accordingly to the angle (αi) between a vertical alignment and each
OpenPose’s i-limb, see Fig. 8 right.
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Fig. 9. Examples of human shape superimposition using “volumes”.

Fig. 10. Examples of both modules working together.
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Figure 9 shown results of the overlapped volume in a museum environment.
The overlapping volumes over a person takes an average processing time of
6.1 ms/31.4 ms for the desktop and mobile respectively. In general, the overall
process takes a mean time of 76.1 ms (70 ms + 6.1 ms) and 590.4 ms (559 ms +
31.4 ms) for the desktop and mobile.

5 Conclusions

This paper presents two modules to be integrated in MIRAR framework [45],
namely: the wall segmentation with overlapping of information and the human
shapes segmentation with clothes overlapping. Furthermore, the modules were
integrated as it can be seen in the examples in Fig. 10.

Regarding the walls’ detection and information overlapping, the current
results present a functional and fluid experience of content superimposition even
with visitors’ movements or with acute angles between the camera’s position
and the superimposed walls. Nevertheless, further tests in different conditions
and new environments’ implementations are required to improve and evolve the
present algorithm into a more broad and stable performance.

For human clothes overlapping in real involvements (museum in this case),
the proposed method combines OpenPose body parts detection with volumes
overlapping. For better pose estimation accuracy in mobile devices, a stabiliza-
tion method and the pose views were created. For real-time performances on
mobile devices an OpenPose model with a MobileNet architecture was used and
two input image sizes were tested (namely, 368× 368 and 192× 192px). The
smallest size is the best option for mobile devices in term of execution time, but
it is worse in term of accuracy, nevertheless is a good trade-off for the application.

For future work, a faster and more accurate performance with OpenPose
could be achieved by testing new network architectures, new training strategies
and other datasets. Another way to get better pose estimation results could
be achieved by testing models like PersonLab [44] or others. For this specific
module, other way to do pose view estimation is to train a model to do body/foot
keypoints estimation and use the foot keypoints position to know the pose view.
Additionally, to predict 3D poses by using the estimated 2D poses, the “lifting”
system implementation could be done. In the case of the indoor localization
through only computer vision is still not resolved, with the necessity of creating
a new compatible method to our present tracking system. There is also a need
to develop a mixed 3D layout of the regular museums’ rooms in order to be able
to totally replace the environment if needed. This would also allow, especially
with the seamless tracking, the possibility of superimposing advanced 3D models
contents that could offer better information, orientation or navigation through
the user’s visit, fully immersing the visitor in this new era museums’ experience.
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16. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular
SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014.
LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10605-2 54

www.spic.pt
http://artoolkit.org/
https://doi.org/10.1007/978-3-319-16628-5_13
https://doi.org/10.1007/978-3-319-16628-5_13
http://arxiv.org/abs/1812.08008
http://catchoom.com/
https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.1007/978-3-319-10605-2_54


AR Contents Superimposition on Walls and Persons 643

17. Engel, J., Sturm, J., Cremers, D.: Semi-dense visual odometry for a monocular
camera. In: Proceedings IEEE International Conference on Computer Vision, pp.
1449–1456 (2013)

18. Erra, U., Scanniello, G., Colonnese, V.: Exploring the effectiveness of an augmented
reality dressing room. Multimedia Tools Appl., 1–31 (2018)

19. Facecake: Facecake (2016). http://www.facecake.com/. Accessed 17 September
2018

20. Fang, H., Xie, S., Tai, Y.-W., Lu, C.: RMPE: regional multi-person pose estimation.
In: Proceedings IEEE International Conference on Computer Vision, vol. 2 (2017)

21. Gimeno, J., Portales, C., Coma, I., Fernandez, M., Martinez, B.: Combining tra-
ditional and indirect augmented reality for indoor crowded environments. A case
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