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Abstract. In recent years, precision agriculture that uses modern infor-
mation and communication technologies is becoming very popular.
Raw and semi-processed agricultural data are usually collected through
various sources, such as: Internet of Thing (IoT), sensors, satellites,
weather stations, robots, farm equipment, farmers and agribusinesses,
etc. Besides, agricultural datasets are very large, complex, unstructured,
heterogeneous, non-standardized, and inconsistent. Hence, the agricul-
tural data mining is considered as Big Data application in terms of vol-
ume, variety, velocity and veracity. It is a key foundation to establishing a
crop intelligence platform, which will enable resource efficient agronomy
decision making and recommendations. In this paper, we designed and
implemented a continental level agricultural data warehouse by combin-
ing Hive, MongoDB and Cassandra. Our data warehouse capabilities: (1)
flexible schema; (2) data integration from real agricultural multi datasets;
(3) data science and business intelligent support; (4) high performance;
(5) high storage; (6) security; (7) governance and monitoring; (8) con-
sistency, availability and partition tolerant; (9) distributed and cloud
deployment. We also evaluate the performance of our data warehouse.
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1 Introduction

In 2017 and 2018, annual world cereal productions were 2,608 million tons [30] and
2,595 million tons [7], respectively. However, there were also around 124 million
people in 51 countries faced food crisis and food insecurity [8]. According to United
Nations [29], we need an increase 60% of cereal production to meet 9.8 billion peo-
ple needs by 2050. To satisfy the massively increase demand for food, crop yields
must be significantly increased by using new farming approaches, such as preci-
sion agriculture. As reported in [6], precision agriculture is vitally important for
the future and can make a significant contribution to food security and safety.

The precision agriculture’s current mission is to use the decision-support
system based on Big Data approaches to provide precise information for more
control of farming efficiency and waste, such as awareness, understanding, advice,
early warning, forecasting and financial services. An efficient agricultural data
warehouse (DW) is required to extract useful knowledge and support decision-
making. However, currently there are very few reports in the literature that
c© Springer Nature Switzerland AG 2019
K. Chen et al. (Eds.): BigData 2019, LNCS 11514, pp. 1–17, 2019.
https://doi.org/10.1007/978-3-030-23551-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23551-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-23551-2_1


2 V. M. Ngo et al.

focus on the design of efficient DWs with the view to enable Agricultural Big
Data analysis and mining. The design of large scale agricultural DWs is very
challenging. Moreover, the precision agriculture system can be used by different
kinds of users at the same time, for instance by both farmers and agronomists.
Every type of user needs to analyse different information sets thus requiring
specific analytics. The agricultural data has all the features of Big Data:

1. Volume: The amount of agricultural data is rapidly increasing and is inten-
sively produced by endogenous and exogenous sources. The endogenous data
is collected from operation systems, experimental results, sensors, weather
stations, satellites and farm equipment. The systems and devices in the agri-
cultural ecosystem can connect through IoT. The exogenous data concerns
the external sources, such as farmers, government agencies, retail agronomists
and seed companies. They can help with information about local pest and
disease outbreak tracking, crop monitoring, market accessing, food security,
products, prices and knowledge.

2. Variety: Agricultural data has many different forms and formats, such as
structured and unstructured data, video, imagery, chart, metrics, geo-spatial,
multi-media, model, equation and text.

3. Velocity: The produced and collected data increases at high rate, as sensing
and mobile devices are becoming more efficient and cheaper. The datasets
must be cleaned, aggregated and harmonised in real-time.

4. Veracity: The tendency of agronomic data is uncertain, inconsistent, ambigu-
ous and error prone because the data is gathered from heterogeneous sources,
sensors and manual processes.

In this research, firstly, we analyze popular DWs to handle agricultural Big
Data. Secondly, an agricultural DW is designed and implemented by combin-
ing Hive, MongoDB, Cassandra, and constellation schema on real agricultural
datasets. Our DW has enough main features of a DW for agricultural Big Data.
These are: (1) high storage, high performance and cloud computing adapt for the
volume and velocity features; (2) flexible schema and integrated storage struc-
ture to adapt the variety feature; (3) data ingestion, monitoring and security
adapt for the veracity feature. Thirdly, the effective business intelligent support
is illustrated by executing complex HQL/SQL queries to answer difficult data
analysis requests. Besides, an experimental evaluation is conducted to present
good performance of our DW storage. The rest of this paper is organised as
follows: in the next Section, we reviewed the related work. In Sects. 3, 4, and
5, we presented solutions for the above goals, respectively. Finally, Sect. 6 gives
some concluding remarks.

2 Related Work

Data mining can be used to design an analysis process for exploiting big agricul-
tural datasets. Recently, many papers have been published that exploit machine
learning algorithms on sensor data and build models to improve agricultural
economics, such as [23–25]. In these, the paper [23] predicted crop yield by using
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self-organizing-maps supervised learning models; namely supervised Kohonen
networks, counter-propagation artificial networks and XY-fusion. The paper [24]
predicted drought conditions by using three rule-based machine learning; namely
random forest, boosted regression trees, and Cubist. Finally, the paper [25] pre-
dicted pest population dynamics by using time series clustering and structural
change detection which detected groups of different pest species. However, the
proposed solutions are not satisfied the problems of agricultural Big Data, such
as data integration, data schema, storage capacity, security and performance.

From a Big Data point of view, the papers [14] and [26] have proposed “smart
agricultural frameworks”. In [14], the platform used Hive to store and analyse
sensor data about land, water and biodiversity which can help increase food
production with lower environmental impact. In [26], the authors moved toward
a notion of climate analytics-as-a-service by building a high-performance ana-
lytics and scalable data management platform which is based on modern infras-
tructures, such as Amazon web services, Hadoop and Cloudera. However, the
two papers did not discuss how to build and implement a DW for a precision
agriculture.

Our approach is inspired by papers [20,27,28] and [19] which presented ways
of building a DW for agricultural data. In [28], the authors extended entity-
relationship model for modelling operational and analytical data which is called
the multi-dimensional entity-relationship model. They introduced new represen-
tation elements and showed the extension of an analytical schema. In [27], a
relational database and an RDF triple store, were proposed to model the overall
datasets. In that, the data are loaded into the DW in RDF format, and cached in
the RDF triple store before being transformed into relational format. The actual
data used for analysis was contained in the relational database. However, as the
schemas in [28] and [27] were based on entity-relationship models, they cannot
deal with high-performance, which is the key feature of a data warehouse.

In [20], a star schema model was used. All data marts created by the star
schemas are connected via some common dimension tables. However, a star
schema is not enough to present complex agricultural information and it is dif-
ficult to create new data marts for data analytics. The number of dimensions
of DW proposed by [20] is very small; only 3-dimensions – namely, Species,
Location, and Time. Moreover, the DW concerns livestock farming. Overcom-
ing disadvantages of the star schema, the paper [19] proposed a constellation
schema for an agricultural DW architecture in order to facilitate quality criteria
of a DW. However, it did not describe how to implement the proposed DW.
Finally, all papers [19,20,27,28] did not used Hive, MongoDB or Cassandra in
their proposed DWs.

3 Analyzing Cassandra, MongoDB and Hive
in Agricultural Big Data

In general, a DW is a federated repository for all the data that an enterprise
can collect through multiple heterogeneous data sources belonging to various
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enterprise’s business systems or external inputs [9,13]. A quality DW should
adapt many important criteria [1,15], such as: (1) Making information easily
accessible; (2) Presenting and providing right information at the right time; (3)
Integrating data and adapting to change; (4) Achieving tangible and intangible
benefits; (5) Being a secure bastion that protects the information assets; and (6)
Being accepted by DW users. So, to build an efficient agricultural DW, we need
to take into account these criteria.

Currently, there are many popular databases that support efficient DWs,
such as such as Redshift, Mesa, Cassandra, MongoDB and Hive. Hence, we
are analyzing the most popular and see which is the best suited for our data
problem. In these databases, Redshift is a fully managed, petabyte-scale DW
service in the cloud which is part of the larger cloud-computing platform Amazon
Web Services [2]. Mesa is highly scalable, petabyte data warehousing system
which is designed to satisfy a complex and challenging set of users and systems
requirements related to Google’s Internet advertising business [10]. However,
Redshift and Mesa are not open source. While, Cassandra, MongoDB and Hive
are open source databases, we want to use them to implement agriculture DW.
Henceforth, the Cassandra and MongoDB terms are used to refer to DWs of
Cassandra and MongoDB databases.

There are many papers studying Cassandra, MongoDB and Hive in the view
of general DWs. In the following two subsections, we present advantages, dis-
advantages, similarities and differences between Cassandra, MongoDB and Hive
in the context of agricultural DW. Specially, we analyze to find how to combine
these DWs together to build a DW for agricultural Big Data, not necessarily
best DW.

3.1 Advantages and Disadvantages

Cassandra, MongoDB and Hive are used widely for enterprise DWs. Cassan-
dra1 is a distributed, wide-column oriented DW from Apache that is highly
scalable and designed to handle very large amounts of structured data. It pro-
vides high availability with no single point of failure, tuneable and consistent.
Cassandra offers robust support for transactions and flexible data storage based
on ideas of DynamoDB and BigTable [11,18]. While, MongoDB2 is a powerful,
cross-platform, document oriented DW that provides, high performance, high
availability, and scalability [4,12]. It works on concept of collection and docu-
ment, JSON-like documents, with dynamic schemas. So, documents and data
structure can be changed over time. Secondly, MongoDB combines the ability
to scale out with features, such as ad-hoc query, full-text search and secondary
index. This provides powerful ways to access and analyze datasets.

Hive3 is an SQL data warehouse infrastructure on top of Hadoop4 for writing
and running distributed applications to summarize Big Data [5,16]. Hive can
1 http://cassandra.apache.org.
2 http://mongodb.com.
3 http://hive.apache.org.
4 http://hadoop.apache.org.

http://cassandra.apache.org
http://mongodb.com
http://hive.apache.org
http://hadoop.apache.org


Designing and Implementing Data Warehouse for Agricultural Big Data 5

be used as an online analytical processing (OLAP) system and provides tools
to enable data extract - transform - load (ETL). Hive’s metadata structure
provides a high-level, table-like structure on top of HDFS (Hadoop Distributed
File System). That will significantly reduce the time to perform semantic checks
during the query execution. Moreover, by using Hive Query Language (HQL),
similar to SQL, users can make simple queries and analyse the data easily.

Although, the three DWs have many advantages and have been used widely,
they have major limitations. These limitations impact heavily on their use as
agricultural DW.

1. In Cassandra: (1) Query Language (CQL) does not support joint and sub-
query, and has limited support for aggregations that are difficult to analyze
data; (2) Ordering is done per-partition and specified at table creation time.
The sorting of thousands or millions of rows can be fast in development but
sorting billion ones is a bad idea; (3) A single column value is recommended
not be larger than 1 MB that is difficult to contain videos or high quality
images, such as LiDAR images, 3-D images and satellite images.

2. In MongoDB: (1) The maximum BSON document size is 16 MB that is dif-
ficult to contain large data such as video, audio and high quality image; (2)
JSON’s expressive capabilities are limited because the only types are null,
boolean, numeric, string, array, and object; (3) We cannot automatically roll-
back more than 300 MB of data. If we have more than that, manual inter-
vention is needed.

3. Hive is not designed for: (1) Online transaction processing; (2) Real-time
queries; (3) Large data on network; (4) Trivial operations; (5) Row-level
update; and (6) Iterative execution.

3.2 Feature Comparison

Table 1 lists technical features used to compare Hive, MongoDB and Cassandra.
For the ten overview features given in section A of Table 1, the three DWs differ in
data schema, query language and access methods. However, they all support map
reduce. Moreover, the ETL feature is supported by Hive, limited to Cassandra
and unsupported by MongoDB. The full-text search feature is only supported
by MongoDB. The secondary index and ad-hoc query features are supported by
Hive and MongoDB but not or restricted by Cassandra. The 9th feature being the
Consistency – Availability – Partition tolerant classification (CAP) theorem says
how the database system behaves when facing network instability. It implies that
in the presence of a network partition, one has to choose between consistency and
availability. Hive and Cassandra choose availability. While, MongoDB chooses
consistency. Finally, the structure of Hive and MongoDB are master - slave while
Cassandra has peer - to - peer structure.

The section B of Table 1 describes five industrial features, such as governance,
monitoring, data lifecycle management, workload management, and replication-
recovery. All of Hive, MongoDB and Cassandra support these features. Hive
supports governance and data lifecycle management features via Hadoop. Cas-
sandra is based on Java Management Extensions (JME) for governance.
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Table 1. Technical features

No. Features Hive MongoDB Cassandra

A. Overview Features

1 Data scheme Yes No-Schema Flexible Schema

2 Query language HQL JS-like syntax CQL

3 Accessing method JDBC, ODBC, Thrift JSON Thrift

4 Map reduce Yes Yes Yes

5 ETL Yes No Limited

6 Full-text search No Yes No

7 Ad-hoc query Yes Yes No

8 Secondary index Yes Yes Restricted

9 CAP AP CP AP

10 Structure Master – Slave Master – Slave Peer – to – Peer

B. Industrial Features

1 Governance Yes (via Hadoop) Yes Yes (via JME)

2 Monitoring Yes Yes Yes

3 Data lifecycle management Yes (via Hadoop) Yes Yes

4 Workload management Yes Yes Yes

5 Replication-Recovery Yes Yes Yes

The data management and DW features are described in section A and
section B of Table 2, respectively. The data management features are security,
high storage capacity, and data ingestion and pre-processing. The DWs have
support for these features, except Cassandra does not support for data inges-
tion and pre-processing. Hive has the best for high storage capacity. The DW
features are business intelligent, data science and high performance. Hive sup-
ports well business intelligent and data science but it is not suitable for real-time
performance. MongoDB is very fast but it is limited in supporting for business
intelligent and data science. Cassandra also is very fast and supports business
intelligent but has limited capabilities for data science.

Table 2. Data Management and Data Warehouse Features

No. Features Hive MongoDB Cassandra

A. Data Management Features

1 Security Yes Yes Yes

2 High storage capacity Yes (best) Yes Yes

3 Data ingestion and pre-processing Yes Yes No

B. Data Warehouse Features

1 Business intelligent Very good Limited Good

2 Data science Very good Limited Limited

3 High performance Non-real time Real time Real time
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4 Agricultural Data Warehouse

The general architecture of a typical DW includes four separate and distinct
modules being Raw Data, ETL, Integrated Information and Data Mining. In
the scope of this paper, we focus on the Integrated Information module which
is a logically a centralised repository. It includes DW storage, data marts, data
cubes and OLAP engine.

The DW storage is organised, stored and accessed using a suitable schema
defined in the metadata. It can be either directly accessed or used to creating
data marts which is usually oriented to a particular business function or enter-
prise department. A data cube is a data structure that allows fast analysis of
data according to the multiple dimensions that define a business problem. The
data cubes are created by the OLAP engine.

4.1 OLAP

OLAP is a category of software technology that provides the insight and under-
standing of data in multiple dimensions through fast, consistent, interactive
access to enable analysts or managers to make better decisions. By using roll-
up, drill-down, slice-dice and pivot operations, OLAP performs multidimensional
analysis in a wide variety of possible views of information that provide complex
calculations, trend analysis and sophisticated data modelling with a short exe-
cution time. So, OLAP is a key way to exploit information in a DW to allow
end-users to analyze and explore data in multidimensional views.

The OLAP systems are categorised into three types: namely relational OLAP
(ROLAP), multidimensional OLAP (MOLAP) and hybrid OLAP (HOLAP). In
our agricultural Big Data context, HOLAP is more suitable than ROLAP and
MOLAP because:

1. ROLAP has quite slow performance. Each ROLAP report is an SQL query in
the relational database that requires a significant execution time. In addition,
ROLAP does not meet all the users’ needs, especially complex queries.

2. MOLAP requires that all calculations should be performed during the data
cube construction. So, it handles only a limited amount of data and does not
scale well. In addition, MOLAP is not capable of handling detailed data.

3. HOLAP inherits relational technique of ROLAP to store large data volumes
and detailed information. Additionally, HOLAP also inherits multidimen-
sional techniques of MOLAP to perform complex calculations and has good
performance.

4.2 The Proposed Architecture

Based on the analyis in Sect. 3, Hive is chosen for building our DW storage and it
is combining with MongoDB to implement our Integrated Information module.
So, Hive contains database created from the our DW schema in the initialization
period. This is for the following reasons:
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1. Hive is based on Hadoop which is the most powerful tool of Big Data. Besides,
HQL is similar to SQL which is familiar to the majority of users. Especially,
Hive supports well high storage capacity, business intelligent and data science
more than MongoDB and Cassandra. These features of Hive are useful to
make an agricultural DW and apply data mining technologies.

2. Hive does not have real-time performance so it needs to be combined with
MongoDB or Cassandra to improve performance of our Integrated Informa-
tion module.

3. MongoDB is more suitable than Cassandra to complement Hive because: (1)
MongoDB supports joint operation, full text search, ad-hoc query and second
index which are helpful to interact with users. While Cassandra does not
support these features; (2) MongoDB has the same master – slave structure
with Hive that is easy to combine. While the structure of Cassandra is peer
- to - peer; (3) Hive and MongoDB are more reliable and consistent. So the
combination between Hive and MongoDB supports fully the CAP theorem
while Hive and Cassandra are the same AP systems.

Our DW architecture for agricultural Big Data is illustrated in Fig. 1 which
contains three modules, namely Integrated Information, Products and Raw Data.
The Integrated Information module includes two components being MongoDB
component and Hive component. Firstly, the MongoDB component will receive
real-time data, such as user data, logs, sensor data or queries from Products
module, such as web application, web portal or mobile app. Besides, some results
which need to be obtained in real-time will be transferred from the MongoDB
to Products. Second, the Hive component will store the online data from and
send the processed data to the MongoDB module. Some kinds of queries having

Fig. 1. Our agricultural data warehouse architecture
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complex calculations will be sent directly to Hive. After that, Hive will send the
results directly to the Products module.

In Raw Data module, almost data in Operational Databases or External
Data components is loaded into Cassandra component. It means that we use
Cassandra to represent raw data storage. In the idle times of the system, the
update raw data in Cassandra will be imported into Hive through the ELT tool.
This improves the performance of ETL and helps us deploy our system on cloud
or distributed systems better.

4.3 Our Schema

The DW uses schema to logically describe the entire datasets. A schema is a col-
lection of objects, including tables, views, indexes, and synonyms which consist
of some fact and dimension tables [21]. The DW schema can be designed through
the model of source data and the requirements of users. There are three kind of

Fig. 2. A part of our data warehouse schema for Precision Agriculture
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schemas, namely star, snowflake and constellation. With features of agricultural
data, the agricultural DW schema needs to have more than one fact table and
be flexible. So, the constellation schema, also known galaxy schema, is selected
to design our DW schema.

We developed a constellation schema for our agricultural DW and it is par-
tially described in Fig. 2. It includes 3 fact tables and 19 dimension tables. The
FieldFact fact table contains data about agricultural operations on fields. The
Order and Sale fact tables contain data about farmers’ trading operations. The
FieldFact, Order and Sale facts have 12, 4 and 4 dimensions, and have 6, 6 and
5 measures, respectively. While, dimension tables contain details about each
instance of an object involved in a crop yield.

The main attributes of these dimension tables are described in the Table 3.
The key dimension tables are connected to their fact table. However, there are
some dimension tables connected to more than one fact table, such as Crop and
Farmer. Besides, the CropState, Inspection and Site dimension tables are not
connected to any fact table. The CropState and Inspection tables are used to
support the Crop table. While, the Site table supports the Field table.

Table 3. Descriptions of some dimension tables

No. Dim. tables Particular attributes

1 Business BusinessID, Name, Address, Phone, Mobile, Email

2 Crop CropID, CropName, VarietyID, VarietyName, EstYield, SeasontSart,

SeasonEnd, BbchScale, ScientificName, HarvestEquipment, EquipmentWeight

3 CropState CropStateID, CropID, StageScale, Height, MajorStage, MinStage, MaxStage,

Diameter, MinHeight, MaxHeight, CropCoveragePercent

4 Farmer FarmerID, Name, Address, Phone, Mobile, Email

5 Fertiliser FertiliserID, Name, Unit, Status, Description, GroupName

6 Field FieldID, Name, SiteID, Reference, Block, Area, WorkingArea, FieldGPS,

Notes

7 Inspection InspectionID, CropID, Description, ProblemType, Severity, ProblemNotes,

AreaValue, AreaUnit, Order, Date, Notes, GrowthStage

8 Nutrient NutrientID, NutrientName, Date, Quantity

9 OperationTime OperationTimeID, StartDate, EndDate, Season

10 Pest PestID, CommonName, ScientificName, PestType, Description, Density,

MinStage, MaxStage, Coverage, CoverageUnit

11 Plan PlanID, PName, RegisNo, ProductName, ProductRate, Date, WaterVolume

12 Product ProductID, ProductName, GroupName

13 Site SiteID, FarmerID, SName, Reference, Country, Address, GPS, CreatedBy

14 Spray SprayID, SProductName, ProductRate, Area, Date, WaterVol, ConfDuration,

ConfWindSPeed, ConfDirection, ConfTemp, ConfHumidity, ActivityType

15 Soil SoilID, PH, Phosphorus, Potassium, Magnesium, Calcium, CEC, Silt, Clay,

Sand, TextureLabel, TestDate

16 Supplier SupplierID, Name, ContactName, Address, Phone, Mobile, Email

17 Task TaskID, Desc, Status, TaskDate, TaskInterval, CompDate, AppCode

18 Treatment TreatmentID, TreatmentName, FormType, LotCode, Rate, ApplCode,

LevlNo, Type, Description, ApplDesc, TreatmentComment

19 WeatherStation WeatherStationID, Name, MeasureDate, AirTemp, SoilTemp, WindSpeed
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5 Experiments

Fig. 3. Data in UK and Ireland [22]

Through the proposed architecture
in Sect. 4.2, our DW inherited many
advantages from Hive, MongoDB and
Cassandra presented in Sect. 3, such
as high performance, high storage,
large scale analytic and security. In
the scope of this paper, we evaluated
our DW schema and data analysis
capacity on real agricultural datasets
through complex queries. In addition,
the time performance of our agricul-
tural DW storage was also evaluated
and compared to MySQL on many
particular built queries belonging to
different query groups.

5.1 Data Analyzing Demo

The input data for the DW was pri-
marily obtained from an agronomy
company which supplies data from its operational systems, research results and
field trials. Specially, we are supplied real agricultural data in iFarms, B2B sites,
technology centres and demonstration farms. Their specific positions in several
European countries are presented in Figs. 3 and 4 [22]. There is a total of 29
datasets. On average, each dataset contains 18 tables and is about 1.4 GB in
size. The source datasets are loaded on our CONSUS DW Storage based on the
schema described in Sect. 4.3 through an ETL tool. From the DW storage, we
can extract and analyze useful information through tasks using complex HQL
queries or data mining algorithms. These tasks could not be executed if the
separate 29 datasets have not been integrated into our DW storage.

Fig. 4. Data in Continental Europe [22]
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Fig. 5. A screenshort of executing the query example in our Hive

An example for a complex request: “List crops, fertilisers, corresponding
fertiliser quantities in spring, 2017 in every field and site of 3 farmers (crop
companies) who used the large amount of Urea in spring, 2016”. In our schema,
this query can be executed by a HQL/SQL query as shown in Fig. 5. To execute
this request, the query needs to exploit data in the FieldFact fact table and the
six dimension tables, namely Crop, Field, Site, Farmer, Fertiliser and Opera-
tionTime. The query consists of two subqueries which return 3 farmers (crop
companies) that used the largest amount of Urea in spring, 2016.

5.2 Performance Analysis

The performance analysis was implemented using MySQL 5.7.22, JDK 1.8.0 171,
Hadoop 2.6.5 and Hive 2.3.3 which run on Bash on Ubuntu 16.04.2 on Windows 10.
All experiments were run on a laptop with an Intel Core i7 CPU (2.40 GHz) and 16
GB memory. We only evaluate reading performance of our DW storage because a
DW is used for reporting and data analysis. The database of our storage is dupli-
cated into MySQL to compare performance. By combining popular HQL/SQL
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commands, namely Where, Group by, Having, Left (right) Join, Union and Order
by, we create 10 groups for testing. Every group has 5 queries and uses one, two
or more commands (see Table 4). Besides, every query also uses operations, such
as And, Or, ≥, Like, Max, Sum and Count, to combine with the commands.

All queries were executed three times and we took the average value of the
these executions. The different times in runtime between MySQL and our storage
of query qi is calculated as Timesqi = RTmysql

qi /RT ours
qi . Where, RTmysql

qi and
RT ours

qi are respectively average runtimes of query qi on MySQL and our storage.
Besides, with each group Gi, the different times in runtime between MySQL
and our storage TimesGi

= RTmysql
Gi

/RT ours
Gi

. Where, RTGi
= Average(RTqi)

is average runtime of group Gi on MySQL or our storage.

Table 4. Command combinations of queries

Group Queries Where Group by Having Left (right) Joint Union Order by

1 1–5 x

2 6–10 x x

3 11–15 x x

4 16–20 x x

5 21–25 x x

6 26–30 x x x

7 31–35 x x x

8 36–40 x x x x

9 41–45 x x x x x

10 45–50 x x x x x

Figure 6 describes different times between MySQL and our storage in runtime
of every query belongs to 10 groups. Unsurprisingly, although running on one
computer, but with large data volume, our storage is faster than MySQL at
46/50 queries and all 10 query groups. MySQL is faster than our storage at 3
queries 12th, 13th and 18th belonging to groups 3rd and 4th. Two databases are
same at the query 25th belonging to group 5th. Within each query group, to have
a fair performance comparison, the queries combine randomly fact tables and
dimensional tables. This makes the complex of queries having far high difference.
Combining with different size and structure of the tables, it make the runtime
of queries being huge differences although belonging a group, as presented in
Fig. 6.



14 V. M. Ngo et al.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

1

Queries (qi)

D
iff

er
en

t
ti

m
es

(T
im

es
q
i
)

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10

Fig. 6. Different times between MySQL and our storage in runtime of every Query
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Fig. 7. Different times between MySQL and
our storage in runtime of every group

Beside comparing runtime in
every query, we aslo compare runtime
of every group presented in Fig. 7.
Comparing to MySQL, our storage
is more than at most (6.24 times)
at group 1st which uses only Where
command, and at least (1.22 times)
at group 3rd which uses Where and
Joint commands.

Figure 8 presents the average run-
time of the 10 query groups on
MySQL and our storage. Mean, the
run time of a reading query on
MySQL and our storage is 687.8 s and
216.1 s, respectively. It means that
our storage is faster 3.19 times. In the future, by deploying our storage solu-
tion on cloud or distributed systems, we believe that the performance will be
even much better than MySQL.
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Fig. 8. Average Runtimes of MySQL and our storage in every Groups

6 Conclusion and Future Work

In this paper, we compared and analyzed some existing popular open source DWs
in the context of agricultural Big Data. We designed and implemented the agri-
cultural DW by combining Hive, MongoDB and Cassandra DWs to exploit their
advantages and overcome their limitations. Our DW includes necessary mod-
ules to deal with large scale and efficient analytics for agricultural Big Data.
Additionally, the presented schema herein was optimised for the real agricul-
tural datasets that were made available to us. The schema been designed as a
constellation so it is flexible to adapt to other agricultural datasets and quality
criteria of agricultural Big Data. Moreover, using the short demo, we outlined a
complex HQL query that enabled knowledge extraction from our DW to opti-
mize of agricultural operations. Finally, through particular reading queries using
popular HQL/SQL commands, our DW storage outperforms MySQL by far.

In the future work, we shall pursue the deployment of our agricultural DW
on a cloud system and implement more functionalities to exploit this DW. The
future developments will include: (1) Sophisticated data mining techniques [3]
to determine crop data characteristics and combine with expected outputs to
extract useful knowledge; (2) Predictive models based on machine learning algo-
rithms; (3) An intelligent interface for data access; (4) Combination with the
high-performance knowledge map framework [17].
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