
Dynamic Network Anomaly Detection System
by Using Deep Learning Techniques

Peng Lin1,2, Kejiang Ye1(&), and Cheng-Zhong Xu3

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen 518055, China

{peng.lin,kj.ye}@siat.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China

3 Faculty of Science and Technology, University of Macau, Taipa, Macao,
Special Administrative Region of China

czxu@um.edu.mo

Abstract. The Internet and computer networks are currently suffering from
serious security threats. Those threats often keep changing and will evolve to
new unknown variants. In order to maintain the security of network, we design
and implement a dynamic network anomaly detection system using deep
learning methods. We use Long Short Term Memory (LSTM) to build a deep
neural network model and add an Attention Mechanism (AM) to enhance the
performance of the model. The SMOTE algorithm and an improved loss
function are used to handle the class-imbalance problem in the CSE-CIC-
IDS2018 dataset. The experimental results show that the classification accuracy
of our model reaches 96.2%, which is higher than other machine learning
algorithms. In addition, the class-imbalance problem is alleviated to a certain
extent, making our method have great practicality.

Keywords: Network anomaly detection � Deep learning � Attention � SMOTE

1 Introduction

Nowadays, due to the rapid development of Internet and cloud computing techniques,
the number of global networked devices has become very large [1]. However, under
such a large-scale network infrastructure, faults or attacks occur very frequently which
bring a very bad experience to users and cause serious economic losses. In order to
prevent network attacks, people often use firewalls as the first line of defense to ensure
that the network works properly and use Intrusion Detection System (IDS) as the
second line of defense to further improve system security.

IDS is a kind of network security device that monitors network traffics in real time
and will alert or take proactive measures when an anomaly is detected. Abnormal
network traffics refer to the network traffics that adversely affect the network, which
deviate greatly from normal network traffics in pattern. The cause of abnormal network
traffics can be the unreasonable network operation or external network attacks [2].

There are mainly three steps in IDSs. Firstly, IDS needs to track and collect the
network flow data. Secondly, IDS needs to clean the raw data and convert them to the

© Springer Nature Switzerland AG 2019
D. Da Silva et al. (Eds.): CLOUD 2019, LNCS 11513, pp. 161–176, 2019.
https://doi.org/10.1007/978-3-030-23502-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23502-4_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23502-4_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23502-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-23502-4_12

input-format needed for the next step. Finally, a classification engine is needed to
identify the network traffics as normal or abnormal.

Among the above three steps, the most important one is the classification operation,
which determines the detection performance of an IDS. The classification engine can be
implemented by signature-based methods and anomaly-based methods. The former
method implements the classification by comparing the network traffics with the sig-
natures of the abnormal traffics that have been already defined, while the latter one
generally learns the characteristics of abnormal traffics through some machine learning
(ML) algorithms and then uses the trained ML model to make a judgment. Although
the signature-based methods can achieve high accuracy and have a fast detection speed,
it is powerless for identifying unknown network traffics. In contrast, the anomaly-based
approaches are more flexible as well as having better generalization, and they perform
well even in the face of the classification tasks on unknown network traffics [3].
Nowadays, with new network attacks emerging, an excellent network anomaly
detection system should have the ability to discover unknown anomalies. The systems
discussed above are refer to as dynamic network anomaly detection systems, which are
usually implement by anomaly-based approaches.

In recent years, with the improvement of computing power and the outbreak of data
volume, deep neural networks (or deep learning) have attracted people’s attention
again. The strong nonlinear fitting ability of deep learning techniques make them
exhibit excellent performance in many fields [4]. Compared to traditional machine
learning algorithms, deep learning techniques have a faster processing speed when
dealing with big data and can learn the deep hidden representation of features with
higher accuracy.

Some researchers have used deep learning approaches to detect network anomaly.
Aksu et al. [5] compared the classification results of SVM and deep learning, and the
results show that the deep learning method performed better. But they only studied the
classification research on PortScan and normal network traffic. In the actual network
environment, the network traffic’s types are much more than two, which increases the
difficulty of detection. Zhu et al. [6] used Convolutional Neural Network (CNN) to
study the network traffics classification issue, but the accuracy obtained by the
experiment is not high. And there are also some researches [7, 8] that use the outdated
datasets such as KDD CUP99 [9] to do the experiments, which can no longer reflect the
characteristics of today’s network traffics.

To overcome the above challenges, this paper proposes a deep learning method to
implement the dynamic IDS. The main contributions are as follows:

• We study the issue of multi-classification, which is more challenging and practical.
• An up to date dataset CSE-CIC-IDS2018 [10] is used in our experiment, which can

reflect the characteristics of the latest network traffics.
• We use LSTM to establish our model, which has good performance in processing

time-correlated sequences such as network traffics.
• We use the SMOTE, an over-sampling algorithm to get more samples and then

optimize the loss function, which make some progress on the class-imbalance issue.
• Experimental results show that our method achieves an overall accuracy of 96.2%,

which is higher than other machine learning algorithms used in the experiment.

162 P. Lin et al.

The rest of this paper is organized as follows. We introduce the proposed methods
in Sect. 2 and give the implementation details in Sect. 3. In Sect. 4, we conduct the
network traffic classification experiments and analyze the experimental results. Sec-
tion 5 introduces the related work and Sect. 6 concludes the whole paper.

2 The Method

2.1 Long Short Term Memory (LSTM)

LSTM is a special recurrent neural network structure, which is proposed to solve the
problem of long-term dependence [11]. It adds the forget gate, input gate, and output
gate to the standard Recurrent Neural Network (RNN). The forget gate lets the neural
network forget the useless information, the input gate adds new content to the neural
network and the output gate determines the final output of current node. Figure 1
shows the structure of a single LSTM cell.

The process of forward propagation of LSTM can be described by the following
equation, where h tð Þ and C tð Þ are the two hidden states of the LSTM model, r represents
the sigmoid function, i, f and o are respectively the input gate, forget gate and output
gate, W are weight matrices for different peephole connections.

Update the output of the forget gate:

f tð Þ ¼ r Wf � h t�1ð Þ; xt
� �þ bf

� �

Update the output of the input gate:

i tð Þ ¼ r Wi � h t�1ð Þ; xt
� �þ bi

� �

�
C tð Þ ¼ tanh Wc � h t�1ð Þ; xt

� �þ bC
� �

Fig. 1. Structure diagram of a single LSTM cell

Dynamic Network Anomaly Detection System by Using Deep Learning Techniques 163

Update cell’s state:

C tð Þ ¼ f tð Þ � C t�1ð Þ þ i tð Þ � �
C tð Þ

Update the output of the output gate:

o tð Þ ¼ r Wo � h t�1ð Þ; xt
� �þ bo

� �

h tð Þ ¼ o tð Þ � tanh C tð Þ
� �

Classification engine is the most important part of the system, and we used LSTM
to implement it. LSTM can not only learn the current network traffics, but also can
remember previous network traffics’ characteristics. When it comes to the network
attacks, generally the attackers will carry out a series of continuous operations. So the
current network traffic is normal or not strongly related to the previous network traffics.

2.2 Attention Mechanism

The Attention Mechanism (AM) [13] in deep learning is actually imitating the attention
mechanism of the human brain. When reading a piece of text, we usually focus on
some keywords so that we can quickly summarize the main content of the text. If deep
neural network techniques have the ability to focus on different aspects of information,
it is beneficial for the extraction and representation of important information. It is the
inspiration for introducing attention mechanisms in neural networks. The core idea of
AM is to extract and represent the part of the information that is most relevant to the
target.

Attention mechanism can be seen as an automatic weighting scheme. In the sce-
nario of anomaly detection, the role of AM is to calculate the impacts of each network
traffic on the last network traffic. We can use the following formula to calculate the
attention value of each flow:

at ¼
exp uTt � uw

� �
P

t exp uTt � uw
� �

Where uw is the weight matrix and ut represents the implicit representation of the
LSTM hidden state (ht) at time t, and ut can be calculated by the following formula:

ut ¼ tanh Wwht þ bwð Þ

164 P. Lin et al.

where Ww is the weight matrix and bw is the bias. After obtaining the attention
probability distribution value at each moment, the feature vector v that contains the
network traffic information is calculated as follows:

v ¼
X
t

at � ht

Finally, we can use the softmax function to get the predicted label y:

y ¼ softmax Wv � vþ bvð Þ

2.3 Smote

We have used the CICIDS2017 dataset to conduct an experiment on network traffics
classification [14], but there was a serious class-imbalance problem in their experi-
mental results. In their results, four of the eight categories have the precisions rate
below 40%, and even three of them are close to 0. This is because in the IDS2017
dataset, the amounts of some categories are very small, the neural network cannot learn
the characteristics of these categories well. In this paper, we experimented with the
CSE-CIC-IDS2018 dataset and used the SMOTE [12] over-sampling algorithm to
synthesize new samples for the small size classes. The principle of the SMOTE
oversampling algorithm is as follows:

Let the size of a small size class be T , considering a sample i of the class, and its
feature vector is xi; i 2 1; . . .; Tf g:
a. Find k neighbors of the sample xi from all T samples of this small size class (For

example, using Euclidean Distance), and denoted it as xi nearð Þ; near 2 1; . . .; kf g;
b. A sample xi nnð Þ is randomly selected from the k neighbors, and a random number f1

between 0 and 1 is generated to synthesize a new sample xi1 as the following
Equation: xi1 ¼ xi þ f1 � xi nnð Þ � xi

� �
;

c. Repeat step b. N times to synthesize N new samples: xinew; new 2 1; . . .;Nf g

2.4 Loss Function

In this paper, Adam gradient descent method is used to further optimize the model. In
order to improve the efficiency, mini-batch algorithm is used for training. By calcu-
lating the gradient of the loss function, Adam can update the parameters of the model
step by step, and finally reach convergence. The loss function we use is the cross-
entropy function, which is defined as follows: L ¼ �P

i
y
0
i � logðyiÞ, where y

0
i is the

Dynamic Network Anomaly Detection System by Using Deep Learning Techniques 165

actual label of the sample while yi is the label predicted by the deep neural network. We
make some changes to the function, which enhances the accuracy of the classification
on small size classes:

L
0 ¼ �

X
i

wi � y0
i � logðyiÞ

We set different weights to each class. The weights of large size classes are setting
smaller and the weights of small size classes are setting larger. If the samples of small
size classes are classified incorrectly, the loss value of the system will increase rapidly
so that the updating parameters of the neural network will be closer to the direction of
small size classes. Note that the weights of small size classes cannot be the very large
values, otherwise the system will tend to classify most of the samples into these classes,
resulting in a very low overall accuracy.

3 Implementation

3.1 Dataset

We used CSE-CIC-IDS2018 as the experimental dataset, which was created by The
Canadian Institute for Cyber-security (CIC) and Communications Security Establish-
ment (CSE). The dataset includes seven different attack scenarios such as DDoS attack,
Botnet attack, Infiltration attack, BruteForce attack, DoS attack, Web attack, and
Heartleech (a type of DoS attack). By using the tool CICFlowMeter-V3, we can extract
more than 80 features of the raw network data and save them as several csv files. Some
of the features are listed in Table 1.

We compared the differences in sample sizes between CICIDS2017 and CSE-CIC-
IDS2018, and the results are shown in Table 2. It can be seen that the sample sizes of
the CSE-CIC-IDS2018 dataset have been comprehensively improved compared with
the CICIDS2017 dataset, especially in the Botnet attack and Infiltration attack, which
have increased by 143 times and 4497 times respectively. But the amount of samples
for Web Attack is very small, only 928 samples are provided.

Table 1. Some features in CSE-CIC-IDS2018 dataset

Feature name Description

fl_dur Flow duration
tot_fw_pk Total packets in the forward direction
tot_bw_pk Total packets in the backward direction
tot_l_fw_pkt Total size of packet in forward direction
fw_pkt_l_max Maximum size of packet in forward direction
fw_pkt_l_min Minimum size of packet in forward direction
fw_pkt_l_avg Average size of packet in forward direction
fw_pkt_l_std Standard deviation size of packet in forward direction

166 P. Lin et al.

3.2 Pre-processing

In the original dataset, there are some features have little impacts on whether the traffic
is abnormal or not, such as timestamps and IP addresses. The timestamp records the
time when the anomalous network traffic occurred, which are of little help in training
our neural network, so we removed this feature. In addition, as an anomaly detection
system, we hope it can classify the network traffics according to their behavioral
characteristics, and should not be biased against the IP address, so we also deleted the
column of feature.

After completing the above works, we divide the dataset into training set, test set
and validation set, which are 90%, 9% and 1% of the original data respectively. The
training set is used for training, the validation set is used for rapid evaluation of the
model during training, and the test set is used for final evaluation of the model. In
addition, we noticed that there are too many normal network traffic samples in the
dataset, which can easily affect the classification preference of the model. So we under-
sampled the normal traffics and only took 2 million records randomly. Furthermore, we
over-sampled the samples of Web attack and Infiltration attack by using SMOTE
algorithm. Oversampling is only implemented in training set. After dividing the dataset,
we shuffle the training set to ensure the loss value change smoothly during training.

3.3 Metrics

Three metrics are used to evaluate the performance of our experiment: Accuracy,
Precision and Recall rate. Accuracy represents the proportion of correctly classified
samples, and its formula is as follows:

Accuracy ¼ TPþ TN
TPþFN þ TN þFP

In all samples classified as Category-A, the proportion of those really belong to
Category-A is defined as precision. Generally, the higher the Precision, the lower the
False Alarm Rate (FAR) of the system will be.

Precision ¼ TP
TPþFP

Table 2. Differences in samples of two datasets

Normal DDoS PortScan BOT Inf Web
attack

BF DoS

CICIDS-2017 1743179 128027 158930 1966 36 2180 13835 252661
CSE-CIC-
IDS2018

6112151 687742 – 286191 161934 928 380949 654301

Dynamic Network Anomaly Detection System by Using Deep Learning Techniques 167

Recall rate represents the proportion of all samples in Category-A that are even-
tually classified as A. Recall rate reflects the system’s ability to detect anomalies. The
higher it is, the more anomalous traffics are detected correctly.

Recall ¼ TP
TPþFN

TP, FP, TN, FN represent True Positive, False Positive, True Negative and False
Negative respectively.

3.4 Experimental Setup

Tensorflow [15] that runs on the Ubuntu 16.04 OS is used to build the deep neural
network architecture. The server’s CPU is Intel Xeon E5-2650 v4 with 48 cores and
128 GB of memory. In addition, 4 Nvidia Titan XP GPUs are used as the accelerator.
The architecture of the deep neural network used in the experiment is shown in Fig. 2.
We use two LSTM layers and three full connected dense layers to build our model, and
add the attention mechanism to the LSTM.

4 Experiment

4.1 Performance

In this experiment, the hyperparameters that we need to optimize are: LSTM hidden
nodes, flow length, batch size, learning rate and activation function. We carried out a
lot of experiments, and found a set of optimal hyperparameters, which are as follows
(Table 3).

X1 X2 X3 X4 Xt

LSTM 1 LSTM 1 LSTM 1 LSTM 1 LSTM 1

LSTM 2 LSTM 2 LSTM 2 LSTM 2 LSTM 2

h1 h2 h3 h4 h5

Dense 1

Dense2

Dense3

So
m

ax

Y

X1 X2 X3 X4 Xt

LSTM 1 LSTM 1 LSTM 1 LSTM 1 LSTM 1

LSTM 2 LSTM 2 LSTM 2 LSTM 2 LSTM 2

h1 h2 h3 h4 ht

A en on

Dense1

Dense2

Dense3

So
m

ax

Y

. . .

. . .

Fig. 2. Architecture of our model

168 P. Lin et al.

Under this hyperparameters setting, the best performance of the deep neural net-
work is show in Table 4.

And the confusion matrix of results is shown in Table 5.

Table 3. Best hyperparameters of DNN

Name Value

LSTM hidden nodes 256
Flow length 10
Batch size 128
Learning rate 0.00005
Activation function Relu

Table 4. Best performance of DNN

Class Precision Recall

0 0.93 0.99
1 1.00 1.00
2 0.99 1.00
3 0.93 0.17
4 0.95 0.98
5 0.98 0.99
6 0.30 0.98

Table 5. Confusion matrix

Normal DDoS BOT Inf BF DoS Web attack

Normal 190500
99.07%

15 234 111 370 348 207

DDos 196 67721
99.71%

0 0 0 1 0

BOT 26 0 28238
99.91%

0 0 0 0

Inf 11425 0 0 2563
17.12%

904 76 0

BF 361 0 0 4 36895
98.10%

352 0

Dos 393 1 0 0 377 63842
98.80%

0

Web Attack 2 0 0 0 0 0 90
97.82%

Dynamic Network Anomaly Detection System by Using Deep Learning Techniques 169

As can be seen from the above results, the overall performance of the classifier is
very good. The average Precision and Recall rate are as high as 96%, reaching a
practical level. Six of the seven categories have a Precision that more than 93%, and
similarly there are six categories with a recall rate of over 98%.

In terms of Precision, the values for all categories have reached more than 93%
except the web attack samples. Precision of web attack is only 27%, but the reason is
obvious. Because the sample size of web attack is very small, the TP (True Positive) is
limited to a very small value, therefore, even if a small amount of network traffics that
don’t belong to web attack category are classified into this category, the denominator of
Precision’s formula will increase rapidly, making it difficult to achieve a high Precision.

In terms of Recall rate, the classifier also performs well. There are six of the seven
categories with a recall rate over 98%, indicating that most of the network traffics are
correctly classified to the category that they belong. In other words, the system can
detect most of the abnormal traffics. In addition, the classification performance of web
attack greatly exceeded our expectations. After using the SMOTE algorithm and
improved loss function, the Recall rate of web attack samples actually reached 98%,
while it was 0 before the optimization. But we also found that the Recall rate of
Infiltration samples which are processed by the same method with web attack was 17%,
and it was only 6% higher than before. For this phenomenon, we guess that the pattern
between web attack network traffics are similar. The new samples synthesized by
SMOTE algorithm can well reflect the characteristics of this kind of traffics, so the
neural network can fit them well. However, Infiltration is relatively rich in diversity.
The new data synthesized by SMOTE algorithm cannot reflect the characteristic dis-
tribution of Infiltration well, so the effect is not greatly improved. In addition, we also
find that most of the Infiltration samples are classified into the normal categories, which
indicates that they are similar in patterns, thus it is difficult for neural networks to
distinguish them.

Figure 3 shows the changes of Infiltration and Web attack before and after opti-
mization on Recall rate.

0.00%
11%

98%

17%

0.00%
20.00%
40.00%
60.00%
80.00%
100.00%
120.00%

Before
A er

Fig. 3. Changes of recall rate before and after optimization

170 P. Lin et al.

4.2 Influence of Hyperparameters

In the above experiments, we find that different hyperparameter settings have a great
impact on the results of the model. Now let’s explore the impacts of different hyper-
parameter settings, including LSTM hidden nodes, learning rate, flow length, and mini-
batch size. We introduce F1-Score to evaluate the whole system, defined as follows:

F1Score ¼ 2� Precision� Recall
PrecisionþRecall

Hidden nodes of LSTM. We changed the values of LSTM hidden nodes from 64 to
128, 256, 384 and 512 respectively and fixed the other hyperparameters. Each
experiment was done three times and then calculated the average value. Accuracy,
Precision and Recall rate were recorded when the model converged. The experimental
results are shown in Fig. 4. It can be seen that when LSTM hidden nodes are too few,
the neural network cannot learn the network traffics’ features very well, so its per-
formance is not very good. With the increase of hidden nodes, the classification per-
formance of model goes up. But when it reaches 256, the number of hidden nodes have
little influence on the classification effect. Continuing to increase hidden nodes will not
only prolong the training time, but also bring the risk of over-fitting. Thus, the best
hidden nodes is 256.

Learning Rate. Learning rate determines the speed of gradient descent so it plays a
vital role in the training. We fix the values of other hyperparameters and then change
the learning rates with logarithmic scales to 0.1, 0.01, 0.001, 0.0001 and 0.00001,
respectively. We find that the best interval of learning is [0.0001, 0.00001], so we
changed the learning rates again to 0.00001, 0.00003, 0.00005, 0.00007 and 0.00009
and repeat the experiments. The results are shown in Fig. 5. It can be seen that when
the learning rate is 0.0005, the performance of the model is optimal.

0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97

0 100 200 300 400 500 600

Recall

Precision

F1-Score

Fig. 4. Influence of LSTM hidden nodes

Dynamic Network Anomaly Detection System by Using Deep Learning Techniques 171

Flow Length. It is also important to choose the appropriate size of network traffics to
train. Let the flow length be n, change the values of n to 6, 8, 10, 12, 14 respectively,
and then do the experiments separately. The experimental results show the growth of n
has no significant impact on the performance of the system, as shown in Fig. 6. When n
is greater than 10, the classification performance can hardly be improved, so we set the
flow’s length to 10.

Batch Size. We also changed the batch size to 64, 128, 256, and 512 respectively and
found when the batch size equals to 256, the classification performance is the best.

4.3 Comparison

In order to show the benefits of our method, we compared with some traditional
machine learning algorithms, including: DecisionTree, GaussianNB, RandomForest,
KNN, SVM. The experimental results are shown in Table 6.

0.946
0.948

0.95
0.952
0.954
0.956
0.958

0.96
0.962
0.964

0.00001 0.00003 0.00005 0.00007 0.00009

Recall

Precision

F1-Score

Fig. 5. Influence of learning rate

0.958

0.959

0.96

0.961

0.962

0.963

5 7 9 11 13 15

Recall Precision F1-Score

Fig. 6. Influence of flow’s length

172 P. Lin et al.

According to the results, we can know that the proposed method of this paper
achieves both the highest Precision and Recall rate. The performance of traditional
machine learning algorithms are also not bad. The Precision and Recall rate of Decision
Tree, KNN and RandomForest algorithms both achieve more than 93%, but the
classification effect of GaussianNB and SVM is poor, which have big gaps with the our
method. In addition, we find that the training time of traditional machine learning
algorithms is much longer than that of deep learning algorithm. For large volume data,
the processing speed of traditional machine learning methods will become very slow.
While the deep learning technique can quickly see the convergence of training results
because of the mini-batch algorithm.

Based on the above experimental results, it can be concluded that the LSTM+AM
model proposed in this paper achieves the best results. To further demonstrate the
effectiveness of our model, we compared with other two deep learning algorithms:
(1) using classical Multi-Layer Perception (MLP); (2) using LSTM without AM. The
results are shown in Table 7.

From Table 7, we know that our method achieves the highest accuracy of 96.2%.
The LSTM method is followed by an accuracy of 93.3%, and the accuracy of MLP is
only 90.5%. The results show that: (1) LSTM method can indeed learn the previous
network traffic information, and can effectively combine the characteristics of historical
traffics to make classification. It can achieve better results than the classical multi-layer
neural network; (2) AM can focus on those more valuable network traffics, which can
help LSTM achieve better classification results.

Table 6. Comparison between ML methods

Decision tree Gaussian NB Random forest KNN SVM Our method

Precision 93% 66% 94% 94% 86% 96%
Recall 93% 55% 94% 94% 75% 96%
Accuracy 92.8% 55.4% 94.2% 94.2% 74.7% 96.2%

Table 7. Comparison between other DL methods

MLP LSTM Our method
Pre Rec F1 Pre Rec F1 Pre Rec F1

Normal 0.88 0.99 0.93 0.94 0.93 0.93 0.93 0.99 0.93
DDos 1.00 1.00 1.00 0.85 1.00 0.92 1.00 1.00 1.00
BOT 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00 0.99
Inf 0.93 0.19 0.31 0.74 0.23 0.35 0.93 0.17 0.93
BF 0.83 0.94 0.88 0.98 0.98 0.98 0.95 0.98 0.95
Dos 0.90 0.66 0.76 0.98 0.99 0.98 0.98 0.99 0.98
WebAttack 0.81 0.98 0.84 0.66 0.98 0.79 0.30 0.98 0.30
Average 0.91 0.90 0.89 0.93 0.93 0.93 0.96 0.96 0.93
Accuracy 0.904880 0.933332 0.961995

Dynamic Network Anomaly Detection System by Using Deep Learning Techniques 173

5 Related Work

We summarized the related work of network anomaly detection into four parts [3].

• Statistical: Kruegel et al. [16] introduced a statistical intrusion detection scheme
based on Bayesian network, which significantly reduces false alarm rate. Wang
et al. [17] presented a payload-based anomaly detector called PAYL for intrusion
detection. PAYL can model the normal application payload of network traffic in a
fully automated, unsupervised and very efficient manner.

• Rule-based: Snort [18] is an open source network anomaly detection system
(NIDS), which can analyze and record network data packets in real time. Users can
discover various network attacks by performing protocol analysis, content search
and matching. Scheirer et al. [19] reported a scheme that consider both syntax and
semantics based approaches for dynamic network intrusion detection.

• Machine Learning: Boosting Trees (BT) has evolved from the application of
boosting methods to Regression Trees, and has been successfully used in many IDS
[20, 21]. An intrusion detection system using support vector machine (SVM) and
feature selection method is proposed in [22].

• Deep Learing: Aksu et al. [5] compared the classification results of SVM and deep
learning, and the results show that the deep learning method performs better. Zhu
et al. used Convolutional Neural Network to study the network traffics classification
issue, but the accuracy obtained by the experiment is not high so it lacks
practicality.

6 Conclusion

This paper proposes a dynamic network anomaly detection system using deep learning
method. We use LSTM to build the neural network model and incorporate attention
mechanism to deal with time-correlated network traffic’s classification issues. In order
to solve the class-imbalance problem, we used the up to date dataset CSE-CIC-2018 to
conduct our experiments, and used the SMOTE algorithm as well as the improved loss
function to optimize the training process. The experimental results show that our
optimization plays a very significant role. The final trained model achieved a very good
result in traffic classification. The overall Accuracy of the system reached 96.2%, and
the Recall rate of 6 categories reached 98%. We also compared our method with
traditional machine learning methods and other deep learning approaches, and our
model achieved the best results.

In the future, we are planning to use the raw data of network traffics so that deep
neural networks can automatically learn their features instead of using the artificially
extracted features, which can stimulate the maximum potential of neural networks.

Acknowledgment. This work is supported by China National Basic Research Program (973
Program, No. 2015CB352400), National Natural Science Foundation of China (No. 61702492),
Equipment Pre-Research Foundation (No. 61400020403), Shenzhen Basic Research Program
(No. JCYJ20170818153016513, JCYJ20170307164747920), and Shenzhen Discipline Con-
struction Project for Urban Computing and Data Intelligence.

174 P. Lin et al.

References

1. Ngu, A.H., et al.: IoT middleware: a survey on issues and enabling technologies. IEEE
Internet of Things J. 4(1), 1–20 (2017)

2. Gill, P., Jain, N., Nagappan, N.: Understanding network failures in data centers:
measurement, analysis, and implications. ACM SIGCOMM Comput. Commun. Rev. 41
(4), 350–361 (2011)

3. Karatas, G., Demir, O., Sahingoz, O.K.: Deep learning in intrusion detection systems. In:
2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism
(IBIGDELFT), pp. 113–116 (2018)

4. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
5. Aksu, D., Aydin, M.A.: Detecting port scan attempts with comparative analysis of deep

learning and support vector machine algorithms. In: 2018 International Congress on Big
Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), pp. 77–80 (2018)

6. Zhu, M., Ye, K., Xu, C.-Z.: Network anomaly detection and identification based on deep
learning methods. In: Luo, M., Zhang, L.-J. (eds.) CLOUD 2018. LNCS, vol. 10967,
pp. 219–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94295-7_15

7. Javaid, A., et al.: A deep learning approach for network intrusion detection system. In:
Proceedings of the 9th EAI International Conference on Bio-inspired Information and
Communications Technologies, pp. 21–26 (2016)

8. Dong, B., Wang, X.: Comparison deep learning method to traditional methods using for
network intrusion detection. In: 2016 8th IEEE International Conference on Communication
Software and Networks (ICCSN), pp. 581–585 (2016)

9. KDD Cup 1999 (1999). http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
10. CSE-CIC-IDS2018. https://www.unb.ca/cic/datasets/ids-2018.html (2018)
11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780

(1997)
12. Chawla, N.V., et al.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell.

Res. 16, 321–357 (2002)
13. Chorowski, J.K., et al. Attention-based models for speech recognition. In: Advances in

Neural Information Processing Systems, pp. 577–585 (2015)
14. Zhu, M., Ye, K., Wang, Y., Xu, C.-Z.: A deep learning approach for network anomaly

detection based on AMF-LSTM. In: Zhang, F., Zhai, J., Snir, M., Jin, H., Kasahara, H.,
Valero, M. (eds.) NPC 2018. LNCS, vol. 11276, pp. 137–141. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05677-3_13

15. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265–283
(2016)

16. Kruegel, C., et al.: Bayesian event classification for intrusion detection. In: Proceedings of
the 19th Annual Computer Security Applications Conference. IEEE (2003)

17. Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection. In: Jonsson,
E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 203–222. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30143-1_11

18. Roesch, M.: Snort: lightweight intrusion detection for networks. Lisa 99(1), 229–238 (1999)
19. Scheirer, W., Chuah, M.C.: Syntax vs. semantics: competing approaches to dynamic

network intrusion detection. Int. J. Secur. Networks 3(1), 24–35 (2008)
20. Pfahringer, B.: Winning the kdd99 classification cup: bagged boosting. ACM SIGKDD

Explor. Newsl. 1(2), 65–66 (2000)

Dynamic Network Anomaly Detection System by Using Deep Learning Techniques 175

http://dx.doi.org/10.1007/978-3-319-94295-7_15
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/ids-2018.html
http://dx.doi.org/10.1007/978-3-030-05677-3_13
http://dx.doi.org/10.1007/978-3-540-30143-1_11

21. Levin, I.: Kdd-99 classifier learning contest: Llsoft’s results overview. SIGKDD Explor. 1
(2), 67–75 (2000)

22. Li, Y., Xia, J., Zhang, S., Yan, J., Ai, X., Dai, K.: An efficient intrusion detection system
based on support vector machines and gradually feature removal method. Expert Syst. Appl.
39(1), 424–430 (2012)

176 P. Lin et al.

	Dynamic Network Anomaly Detection System by Using Deep Learning Techniques
	Abstract
	1 Introduction
	2 The Method
	2.1 Long Short Term Memory (LSTM)
	2.2 Attention Mechanism
	2.3 Smote
	2.4 Loss Function

	3 Implementation
	3.1 Dataset
	3.2 Pre-processing
	3.3 Metrics
	3.4 Experimental Setup

	4 Experiment
	4.1 Performance
	4.2 Influence of Hyperparameters
	4.3 Comparison

	5 Related Work
	6 Conclusion
	Acknowledgment
	References

