
A Web-Service to Monitor a Wireless
Sensor Network

Rayanne M. C. Silveira1(B), Francisco P. R. S. Alves1, Allyx Fontaine2,
and Ewaldo E. C. Santana3

1 Departament of Electrical Engineering, Federal University of Maranhão,
Maranhão, Brazil

rayanne.silveira@aluno.ecp.ufma.br
2 Université de Guyane, UMR Espace-Dev, Cayenne, France

3 Departament of Mathematics, State University of Maranhão, Maranhão, Brazil

Abstract. In recent years, the interest in the Internet of Things has
been growing, and WSN is a promising technology that could be applied
in many situations. Regardless of the nature of the application, WSNs
are often used for data acquisition, to obtain information from an envi-
ronment of interest, so it is essential to consider how this data will be
made available to users. Over the last years, an increasing number of
web services have been used to deal with databases and final users, pro-
viding familiar interfaces and multi-platform access to those data. To
address this problem, our study proposes a web application based on
MVC architecture to monitor, organize and manage devices and data in
a wireless sensor network. Here, is presented a functional evaluation of
the proposed system and a discussion regarding the test results.

1 Introduction

Currently, the use of Wireless Sensor Networks (WSNs) has been a recurrent
topic in several studies describing the different types of problems in which this
technology can be applied. WSNs are communication networks composed of
devices that exchange information through a channel. Usually, there are three
types of devices: routers, end devices and a coordinator [1].

This scientific interest affects positively the popularization of this technology,
since, coupled with the advances in microelectronics, there has been a growth
in the development of commercial technologies that can be used for the con-
struction of WSNs [2]. With the emergence of these technologies, the use of
WSNs and, mobile sensing in general, has approached real problems, becoming
a viable alternative to solve several problems [3] such as distributed monitoring,
automation, and data acquisition, for example.

Regardless of their application, WSNs have their operation based on specific
sensors to carry out the readings expected by the designer and to transmit
them from wireless technology. These networks can capture a physical state from
different points and concentrate this information in a single point for analysis.

c© Springer Nature Switzerland AG 2019
J. Miller et al. (Eds.): ICWS 2019, LNCS 11512, pp. 126–146, 2019.
https://doi.org/10.1007/978-3-030-23499-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23499-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-23499-7_9


A Web-Service to Monitor a Wireless Sensor Network 127

After data concentration, a microcontroller is generally used to export the data
in a way that they can be processed and used to generate useful information.

Tools that simplify the access and reading of the data obtained are essential
in applications in which the sensors that make the acquisition are in hard-to-
access locations. In precision farming, for example, a field that has invested
in the use of technologies to obtain information that optimizes its production
process, it is often unfeasible to collect the information only in the place where
the reading was carried out, because of logistical reasons or even because of the
impossibility of interaction with the place. Several methods have been proposed
to help precision farming to gather data, and with the proper analytic tools, the
changes during the season can be monitored [4].

Among the various tools that can be used to export the data obtained by
WSN, web applications have shown to be promising tools. Furthermore, they
allow the tracking of data collection in real time. Composed of a database and a
graphical interface, this tool makes access to the desired data simple by providing
access via a computer or a smartphone via the internet.

To address the problem of accessing information obtained in WSNs, in this
paper, we propose a web-service based on MVC (Model-View-Controller) archi-
tecture to monitor, organize and manage devices and data in a wireless sensor
network. Here, a functional evaluation of the proposed system will be presented
and the test results will also be discussed. This paper has two main goals: (i)
develop a web application to monitor and manage the values generated by the
network and (ii) describe the interaction between the WSN developed for test-
ing and the proposed system. The main contribution is the MVC Web service
that was used to organize all data collected by a WSN, using a friendly and
intuitive interface, and make these data available for many researchers and, as a
result, increase the number of soil temperature and moisture databases. The next
section presents a few works that have a similar proposal. Section 3 describes the
proposed system architecture and functionalities. Section 4 shows the implemen-
tation of the system. Section 5 describes the experimentation and the results of
the validation process before we present our conclusions.

2 Related Work

It is well known that the acquisition of data is a fundamental step for the mon-
itoring of environments of interest. However, only performing the acquisition is
not enough; it is also essential to allow the user to have easy access to this infor-
mation. In the Internet, when it comes to the application of certain things, like
Wireless Sensor Networks, there are many challenges such as energy consump-
tion, routing protocols and, one of the biggest challenges: storing and interpre-
tation of the data generated in those applications [5].

Something relevant is to make sure that the application, a WSN or another
IOT application, has a low energy consumption. In [6] is presented an algorithm
that reduces the energy consumption in heterogeneous cloud computing with a
high success rate. When it comes to WSNs this type of proposal is prevalent, [7]
and [8], for example, deal with techniques to save energy in WSNs.



128 R. M. C. Silveira et al.

In [5] the author presents a proposal similar to our paper, aiming to develop a
web platform for data acquisition with tools for processing and analysis of data.
The main objective was to develop a web platform, called CLUeFARM, which
provides farmers with a way to monitor their farm from a distance through the
internet. To assess the application, the author performed tests with response
time for each service offered by the platform. Despite the satisfactory results,
it is worth mentioning that the sensors and equipment used are complex and
expensive. Our system uses a less expensive technology, the Xbee, that also has
an easier configuration.

[9] presents a service related to soil management, within a platform that sup-
plies integrated support for greenhouse activities, in addition to the CLUeFARM.
Monitoring, assessing, and managing farm operations can provide enormous ben-
efits in terms of productivity. To prioritize these items, the author proposes a
service related to soil management, within a platform that supplies integrated
support for greenhouse activities. In the work’s experiments, a possible conclu-
sion is that even though the proposed web-service is an extension of CLUeFARM,
it may operate independently.

Another important topic was discussed in [10], in which the author presents
a low-cost technology to build wireless sensor networks. The main gold was
achieved, and the proposal presents a low-cost technology in comparison with
technologies like the Libelium system. To deal with all the produced data, they
also propose a Web Application. However, compared to the application of our
paper, his application is quite simple, and just shows the values obtained with
the WSN.

In [11], the authors propose a web-service to manage information from a
green farm, like our project. The difference is that, in this case, the web applica-
tion is a service-oriented platform. The main objective is to provide support in
the management process and business development, and to increase the quality
of products grown in farms. It also offers services for data processing and an
algorithm to gather data. To validate their proposal, they made an experiment
and an analysis to see the time needed to send notifications to users in case of
an event.

In order to develop these services, a lot of frameworks and tools could be
used. Knowing that there are diverse ways to build web applications, study
[12] proposes a novel approach for Web service interface decomposition using a
Formal Concept Analysis (FCA) framework. The authors made the validation
of their method on 26 real-world Web services and obtained results that show
that their method performs significantly better than other discussed techniques
in terms of design quality improvement.

In [5,9,13], another type of framework is used: the MVC framework. Based in
three layers of development, the MVC consists of models, views, and controllers.
In each mentioned work, the authors used this kind of architecture because
it promotes clean code, good practices, and it improves user interaction and
interfaces. In the last few years, a lot of frameworks that use this architecture
were used, the Laravel is one of the most popular ones.



A Web-Service to Monitor a Wireless Sensor Network 129

Considering all presented platforms, our proposed system used a web-service
as a tool to monitor, organize and visualize data collected by a WSN. To build
this application, we have used the Laravel framework because it is a MVC frame-
work, compatible with many browsers and it provides features that help in the
fast development of scalable and modular applications [5]. Communications are
based on HTTP protocol with the WSN to store the produced data.

3 Web-Service

Like any application, a web software is based on an architecture that will define
how it will work. Our system is no different. In this section, we will describe
the main features of our system: the architecture, the functionalities (system
requirements and implementation) and the tools used to develop the application
back-end and front-end.

3.1 Architecture of the System

The proposed system is a web service based on queries made by clients and
answers sent by a server. The communication between client and server is per-
formed using the Hypertext Transfer Protocol (HTTP), verbs (GET, POST,
DELETE, and others), and it features a Representational State Transfer appli-
cation (RESTful). Using this type of architecture decreases the number of queries
because in this case all data will be sent using a single request into one JSON
object through an HTTP POST request [14].

Usually, when the amount of exchanged information between an application
and a web-service is big, data are converted into convenient structured formats
such as XML [15] or JavaScript Object Notation (JSON). According to [16], in
recent years developers have replaced XML with the JSON format to transfer
data. Indeed, JSON is a lightweight data interchange format that is easy for
humans to read and write, as well as easy for machines to parse and generate.

Looking for an efficient application with this behavior, our system was devel-
oped using a framework in PHP called Laravel. This framework is an open
source tool for PHP development. It is largely applied as it has an organized
code structure that makes it easier to read and modify the code. It also supplies
tools needed for large and robust applications [17]. The Laravel uses a MVC
architecture, therefore the development of the system followed this architecture.

The MVC is responsible for dividing the application in three layers of devel-
opment: models, views and controllers. This design pattern is frequently used to
develop web applications because it combines some technologies that are usually
divided into a set of layers [18]. The model layer is responsible for organizing the
data, communicating with the database and accessing all stored data. The view
layer is the one that will build the graphical user interface. The controller layer
is the most important and complex part: it is responsible for managing models
and views, and processing the information from models to show in views [19].



130 R. M. C. Silveira et al.

The system works as described in Fig. 1. It shows the functionality of each
layer and how these layers will interact with the final user. Our system will
have a database to store all the data collected by the WSN. This exchange of
information will be made by the coordinator device that acts like a client. It will
send the information gathered to a cloud database through a POST request.

Fig. 1. MVC architecture

Therefore, the application must contain a functionality that gives the system
the ability to organize in the database the data received by the microcontroller.
The database model follows the entity-relationship (ER) pattern and is outlined
in Fig. 2. There are three types of data: data, devices, and users, which are
represented in the ER Diagram as entities.

Fig. 2. Entity-Relationship diagram

The ER Diagram (Fig. 2) shows the relation between entities and their
attributes. The Device entity has an id field, a device identifier (name) and



A Web-Service to Monitor a Wireless Sensor Network 131

the MAC address of this device. Each device performs a series of readings, these
readings are stored in another table, symbolized by the Data entity. This table
contains fields for an id, for the values of the three temperatures, for the value
of the humidity, data about the time the sample was sent to the system and,
finally, an identifier of the equipment that has sent the value.

The User entity has fields that store information about users that can use
the system. They have an id, name, email, password and can also fill a field to
define which type of user they are. The last table in the database is the result
of a relation between the user and the device. This relation was added in order
to improve the functionality of a user and a device. The database is managed
by MySQL, a robust and relational open source tool that is widely used in Web
applications. This tool is already well-established in the literature, giving speed
and reliability to the system [2].

Another important aspect for a Web service is its security. Our system con-
tains a login system with password protocol security to restrict access to certain
functionalities. The Laravel also uses the CSRF (Cross Site Request Forgery)
tokens to prevent fake requests and has protection against XSS (Cross Site
Scripting) and SQL Injection.

The web application will be hosted in a server and will be available on the
internet. This requirement is important because this type of application was
chosen, specifically, to use the WSN to collect data for future studies, like an
international research project.

3.2 Functionalities

For the development of the system, we studied all the functional and non-
functional requirements that the system should have. Functional requirements
are requirements that express functions that a certain software must be able to
perform or provide, while non-functional ones address system constraints and
quality attributes [20].

Therefore, the functional requirements in Table 1 and the non-functional
requirements in Table 2 were determined.

In Table 1, the first requirement (FR01) is the CRUD (Create, Read, Update
and Delete) of users. This is not the most important feature of the system, but
it ensures that new users can register to use, FR02, performs the same role, but
for another entity, in this case it refers to the devices that make up the network.
The third CRUD, FR03, performs the same role to the Entity Data.

Next requirements, FR04 and FR05, deal with the main functionality of the
system: displaying the data obtained by WSN. The data display was imple-
mented in two ways: through tables and graphs. Both data are filtered based on
the address of the device that has sent the data. In addition to visualization,
making data suitable for computational analysis is also important. Therefore,
the requirement FR06 indicates the need for a function to export the data gen-
erated by the WSN in a format that simplifies their analysis. The format used
was CSV (Comma-Separated Values), since it can be used to import data into
several computational tools.



132 R. M. C. Silveira et al.

Table 1. Functional requirements

id Name Description

FR01 CRUD user Create, read, update and delete users

FR02 CRUD device Create, read, update and delete devices

FR03 CRUD data Create, read, update and delete devices

FR04 Show data Show in a table a data collection from a device in
a defined time

FR05 Show charts Generate charts with selected data

FR06 Export data Generate and download a CVS with interest data

FR07 Link user and device Allow the user to just see the data from a chosen
device

Table 2. Non-functional requirements

id Name Description

NFR01 Uniqueness of users

NFR02 Uniqueness of links Between a user and a device

NFR03 Uniqueness of
devices

NFR04 Types of user There are three types of users

NFR05 Admin privileges Just an admin could create, update or delete

NFR06 Guest restrictions The guest user can just read statistical
information

NFR07 Common user
restrictions

The common user can read statistical information
and create charts, CSV files and make link with
devices

NFR08 Create data The data could just be created by WSN

The last requirement is the only one that has medium priority because
although it is not an essential functionality of the system, it will contribute
positively to its usability. This requirement (FR07) allows users to create a link
with a certain device, so it can follow a device to which it is linked in a person-
alized page, facilitating the visualization of the data, since the network can have
more than 100 devices.

In Table 2, some of the non-functional requirements are listed. The first three
non-functional requirements are only system constraints, which should prevent
conflicts and duplication in the database. NFR04 defines three types of users:
admin, common and guest. The NF05 defines the privileges of an admin user.
NF06 defines the limitations of a guest user. And, the NF07, defines limitations
to the common users. The NFR08 is an important restriction, it defines that
only the WSN can send information to the system.



A Web-Service to Monitor a Wireless Sensor Network 133

After defining all the requirements, the functionalities were implemented,
and the restriction and privileges were defined according to the non-functional
requirements. To help the visualization and comprehension of the system, we
present in Fig. 3 the Use Case Diagram that illustrates all the functionalities
available for each type of user. In this diagram, it is possible to see the interaction
between the WSN and the system.

Fig. 3. Use case diagram

In this system, three main functionalities are highlighted and described
below: see data, generate charts and generate CSV. All other functionalities play
an administrative work that is very important. Besides the three mentioned, it is
interesting to point out the importance of the “link with device”. This function
allows the user to select devices and to visualize more easily the desired data.
Since our system will be used by researchers from different countries and the
monitoring area for each device could not be related to everyone, this function
is useful.

– See Data: the main objective of the proposed system is to monitor the data
collected by the WSN, so it is fundamental to implement a function to allow
the visualization of these data. This information is shown on a web page.



134 R. M. C. Silveira et al.

– Generate Charts: all data collected by the WSN will be used, processed
and analyzed by a group of researchers. So in addition to showing data, it
is interesting to show these data as temporal series, in charts, in order to
produce more efficient analyses. These charts are generated according to the
chosen device and could be personalized to show just information about one
defined time interval.

– Generate CSV: this personalized application has a functionality that gives
to the user the choice to generate a CSV file with all data collected by a
selected device in a personalized time interval.

All these functionalities were implemented using the Laravel framework. This
framework was used to develop the back-end and front-end of this application.
As stated above, the system is organized in tree layers of development: model,
view and control. In the next subsection we will describe the development and
how these layers interact with the user and the system in general.

4 System Implementation

The development of our system consists in two layers: back-end and front-end.
The back-end application is the place where logic is implemented. The front-end
is where an intuitive interface is shown to the user; through this interface, they
can access all the services listed in the back-end application [5]. To build these
two layers we used the framework Laravel as a tool. As it was mentioned before,
the architecture of the system is based on three layers of development: models,
views and controllers.

– Models: three models have been developed in PHP using Laravel, one for
each entity defined in the entity-relationship diagram (see Fig. 3): Data,
Device, and User. Each model stores all necessary information to build an
object for a given entity. A model will make the communication between the
application and the database, and make all operations to read, create, update
and delete information without using a query.

– Controllers: three controllers have been developed, one for each model. It
was defined a DataController, a DeviceController and a UserController. The
controller rules the application logic [13]. Each controller has functions that
deal with the related data. For example, functions to create or delete a user
are implemented in the UserController. A function is called according to the
URL that the user puts on their browser. The control of that function will be
called through a route made by a mechanism from Laravel, a route file that
defines the patch and the corresponding function to execute.

– Views: it is the front-end of this application: all the web pages that compose
the system. It is responsible for getting all information requests and showing
them in a HTML file. There are many views in the proposed system, but just
a few of them will be shown and discussed in this section.



A Web-Service to Monitor a Wireless Sensor Network 135

The system has three perspectives: one for common logged users, one for
guest users and one for logged administrator users (admin user). When a guest
user access the platform and they are not logged, they only have access to a pre-
sentation page with some information about the project SenCSoil-Guyamazon,
a Franco-Brazilian Program of cooperation in research, capacity building and
innovation in the Amazon. From this page, the user can only access the login
page (Fig. 4), where they can log in into the platform using an account or the
register page and where they can ask to create a new account.

Fig. 4. Login page

After authentication, there is two kinds of users: the common and the admin.
The main difference between those two is that only the admin will be able to
access functionalities such as: accept a new user (giving privileges), create a
device, create a user, delete devices or users, and update information in devices
or users. The main functionalities of the system are available for both users.
The first one, to see data, is accessed through the web page shown in Fig. 5a.
As mentioned in the requirements subsection, there are two options to see the
data, in a chart (see Fig. 5b) or in a table (see Fig. 5c). In the same screen, it
is possible to make a link with a device, putting it in your “My Devices” list.
The plot of the chart and table rows shows all data from the selected devices,
independently of the time when it was created.

All devices for which the user has pressed the “add to my devices” option
will be displayed on another page, illustrated in Figure 6. The large number of
devices that the network can have, due to the great scalability of the system,
make this mechanism essential to facilitate access to data and graphics of a
device of interest.

The second main functionality is the chart generation, and the third, the
generation of CSV files, they both have the same view pattern, illustrated in
Fig. 7. The user must fill two date and time fields, one for the start date of
interest and the second for the ending date. This time interval defines which data
will be selected, thus seeking only those that were generated in the requested



136 R. M. C. Silveira et al.

(a) List of Devices
View

(b) Charts View (c) Table View

Fig. 5. Types of data visualization

Fig. 6. My devices view

time interval. The other fields allow the user to select the device from which they
want to export data, as well as the data type, since the network stores different
types of data, such as temperature and humidity.

In the generate graph screen, after filling all the fields, the user is directed
to a page with a chart, similar to Fig. 5b. If the choice is to generate a CSV, the
file will be downloaded in the browser. In the administrator’s view, in addition
to the possibility to register users, the device display screen (see Fig. 5a) will
also contain the options to edit or delete the device. The visualization in table
format (Fig. 5c), to the admin user also has buttons to edit or delete the data
from the system.



A Web-Service to Monitor a Wireless Sensor Network 137

Fig. 7. Generate Chart/CSV view

5 Experiments and Results

This stage is divided into two parts. In the first one, we describe the development
of the WSN and the algorithm that describes the communication between it and
our system. In the second part, we make an evaluation of the usability of our
system.

5.1 Wireless Sensor Network

To make some experiments and check the communication between the proposed
system and the Wireless Sensor Network, we have used a simple network com-
posed by XBee modules based on the 802.15.4/Zigbee protocol that built a low-
power, low maintenance, and self-organizing WSN [21]. To build a WSN, after
defining the technology used as a device (in our case the XBee), it is necessary
to define the role of these devices in the network.

As mentioned previously, from a functional and operational point of view
the nodes of a WSN can be configured as Coordinator, Router or End Device.
According to [1], the coordinator is a device that manages all the functions
that define the network in order to ensure its integrity and keep it active. In
a ZigBee network, there is just one coordinator. The router is a device that
can join an existing network, send, receive, and forward information to other
network nodes. The end device is a device that can join existing networks, send
and receive information, but cannot act as a messenger among other devices.

It is also necessary to define the quantity of devices and how they will be
organized, more specifically the topology. The topology defines how the connec-
tions will be between all devices. There are three main kinds of topology: tree,
mesh and star. In this paper, we have used the star topology because sometimes,
mesh topology has a bigger number of lost packages than star topology [22] and
this is an important measurement of quality of the service provided by a WSN.
The star topology also has a lower delay rate compared to the mesh topology.



138 R. M. C. Silveira et al.

Fig. 8. Star topology

However, according to [8], in the case of precision agriculture, this is not a very
important property.

In the star topology, as shown in Fig. 8, the coordinator node is at the center
of the star and is connected to a circle of end devices. Any messages in the
system must pass through the coordinator node which forwards them as required
to devices in the network. The end devices do not communicate directly with
each other and only communicate with the coordinator. The advantage of this
topology is the simplicity of its implementation and the fact that the data packets
between source and destination follow at most two communication links. The
disadvantage of this topology is the lack of alternative paths, for the packets,
between source and destination, and that all communications must pass through
the coordinator.

Once the topology is defined, it is possible to implement the network. As men-
tioned before, to build the experimental WSN we have used the Xbee module,
knowing that it is a practical tool that permits an easy and quick configuration
of a network. The model used was XBee Pro S2C, powered by a 9V rechargeable
battery. Since the input voltage of the XBee is 5V, an auxiliary circuit with a
voltage regulator was used. The assembly made is shown in Fig. 9.

The first type of data to be collected by the proposed WSN will be of interest
to researchers working with soil properties analysis. Therefore, the first exper-
iments were carried out with the purpose of collecting different temperatures,
from different soil depths and the humidity on its surface. For the acquisition of
temperatures, the analog temperature sensor LM35, shown in Fig. 10a, was used
and for humidity reading, the capacitive sensor shown in Fig. 10b was used.

In the XBee network, all the end devices send the data placed to the coor-
dinator of the network, which is in a controlled location, with constant power.
In addition to the XBees, the NodeMCU development module Esp8266, shown
in Fig. 11, was used to perform the communication with the proposed system,



A Web-Service to Monitor a Wireless Sensor Network 139

Fig. 9. Module XBee Pro S2C

(a) LM35 Temperature sensor (b) Capacitive humidity sensor

Fig. 10. Sensors used

which through serial communication with the XBee coordinator receives all read-
ings from the network. In the NodeMCU, a routine has been implemented that
interprets the data received from the XBee and formats it to send them to the
database through an HTTP request. In this case, NodeMCU will play the role
of Client and send the message in JSON format.

5.2 Algorithm in WSN

The software embedded (see Algorithm 1) in the NodeMCU was developed using
the Arduino platform, in addition to the module’s own Wi-Fi communication
libraries, the JSON library, which performs the conversion of the message to be
sent to the desired format. As mentioned, the connection between the NodeMCU
and the Xbee Coordinator is made by serial communication. However, the data
sent to the NodeMCU has a specific format, according to the communication



140 R. M. C. Silveira et al.

Fig. 11. Module NodeMCU ESP8266 [23]

protocol used by the coordinator. The XBee uses a predetermined frame pat-
tern for each type of message one wants to send. Therefore, it was necessary to
perform an interpretation of the frame before sending the actual values to the
database. The frame has information such as device address, network address,
configuration of digital and analog ports enabled, and lastly, the values read by
each port.

Algorithm 1. Comunication Between WSN and Web-service
1 If there is something in Serial Port:
2 Save Hexadecimal message;
3 Convert To find real values of sample;
4 Take temperature and humidity values and convert to JSON;
5 Make connection with Host;
6 Make a POST Request with the JSON message;
7 Else:
8 Wait for a message;

The communication between WSN and the web application was successful.
Therefore, to validate the interface, an usability analysis was performed. As the
platform went through the evaluation stage, and it is not yet available online,
we chose to perform an evaluation using heuristic and the cognitive walkthrough
method.

5.3 Usability Evaluation

Heuristic evaluation is a method that identifies usability problems based on
usability principles or usability heuristics, making it possible to evaluate the
usability of the system [24]. According to [24], this kind of method is more
efficient if it is combined with another evaluation method, like cognitive walk-
through. This one is a usability evaluation method in which one or more evalu-
ators analyze a series of tasks, make questions from the user’s perspective and
check if the systems support the proposed goals.



A Web-Service to Monitor a Wireless Sensor Network 141

To evaluate the proposed system, the method proposed by [24] was applied.
Firstly, it is necessary to define all heuristics used in the process, showed in
Table 3. After this is important to point out the scale that was used: (0) heuris-
tic not applicable; (1) not fulfilled; (2) partially fulfilled; and, (3) fully fulfilled,
following what was made in [24,25]. To make this evaluation we have selected
three professionals with experience in software development and software engi-
neering.

Table 3. Nielsen 10 heuristic principles [24,25]

id Name Description

HP1 Visibility of system
status

The system should always keep users informed
about what is going on, through appropriate
feedback within a reasonable time

HP2 Match between
system and the real
word

The system should speak the users’ language,
with words, phrases and concepts familiar to the
users. Make the information appear in a natural
and logical order

HP3 User control freedom “Emergency exit” to leave the unwanted state
without having to go through an extended
dialogue. Support undo and redo

HP4 Consistency and
standards

Users should not have to wonder whether different
Words, situations, or actions mean the same thing

HP5 Error prevention Even better than good error messages is a careful
design which prevents a problem from occurring
in the first place

HP6 Recognition rather
than call

Instructions for use of the system should be
visible or easily retrievable whenever appropriate

HP7 Flexibility and
efficiency of use

Allow users to tailor and speed up frequent actions

HP8 Aesthetic and
minimalist design

Dialogues should not contain information which is
irrelevant or rarely needed

HP9 Help users recognize,
diagnose, and
recover from error

Error messages should be expressed in plain
language (no codes), precisely indicate the
problem, and constructively suggest a solution

HP10 Help and
documentation

Any such information should be easy to search,
focused on the user’s task, list concrete steps to
be carried out, and not be too large

For the cognitive walkthrougth the author [24] proposes a task analysis and
an interview with a questionnaire. For the interview, we use the four questions
questionnaire proposed, and we added three questions from the Post-Study Sys-
tem Usability Questionnaire (PSSUQ) [26], an IBM questionnaire to evaluate
usability of systems. All selected questions are listed in Table 4. The scale also



142 R. M. C. Silveira et al.

was applied to the heuristic: (0) not applicable; (1) not fulfilled; (2) partially
fulfilled and (3) fully fulfilled. This evaluation was made by three selected devel-
opers that work with web applications development.

Table 4. Cognitive walkthrough questionnaire

id Question

Q01 Is the control for the action visible?

Q02 Will the interface allow the user to produce the effect the action has?

Q03 Will users succeed in performing this action?

Q04 Will users notice that the correct action has been executed successfully?

Q05 Was it simple to use this system?

Q06 Was I able to efficiently complete the tasks and scenarios using this system?

Q07 Was the organization of information on the system screens clear?

5.4 Results

In the heuristic evaluation, it was possible to identify some problems in the
interface, however it is important to point out that they are all linked to the
absence of feedback in user operations, in which it was verified that it is not
possible to identify success or failure in operations of addition or exclusion in
the system. All the results are presented in Table 5, in which values from 0 to 3
determine how many valuers pointed to a given response.

Analyzing Table 5, it is possible to prove the previous assertion, since the
items HP1, HP5, and HP9 indicated as not fulfilled are related to the absence of
messages and the ability to retrieve the user error. The other problems encoun-
tered, HP6 and HP10 are related to the lack of help or system documentation
that can contribute to the execution of the tasks by the user. In HP10, only
one valuer considered this question incomplete, while one valuer considered it
partially filled by the existence of a list of features and a use case diagram.
Under the same criteria, the last valuer considered this information sufficient
and considered it fully fulfilled.

Among the problems found in the majority can be considered of low gravity.
However, it is worth mentioning that the absence of success or failure status
in operations is considered as an absence of high severity, and that, due to the
MVC architecture of the system, can be easily corrected. In a general analysis
the evaluation was positive, with 50% of the heuristics at least partially fulfilled.

In the cognitive walkthrough evaluation, in addition to the answers of the
questionnaire, comments were also made by the evaluators. First, two of the
three evaluators believed that the functionality of editing a data produced by
the network is unnecessary since the intention is to receive the values and that
in a first analysis there would be no reason to modify them. Another problem



A Web-Service to Monitor a Wireless Sensor Network 143

Table 5. Heuristic results

Heuristic Not applicable Not fulfilled Partially fulfilled Fully fulfilled

HP1 0 3 0 0

HP2 0 0 1 2

HP3 0 0 3 0

HP4 0 0 0 3

HP5 0 3 0 0

HP6 0 2 1 0

HP7 3 0 0 0

HP8 0 0 0 3

HP9 0 3 0 0

HP10 0 1 1 1

pointed out was a non-flexible database and web service, if the user wants to
select a new sensor they have to change a lot of fields and adapt the views to
deal with this new type of data.

In the analysis of the scenarios and the execution of the tasks, a few problems
were found, the most relevant being the absence of confirmation messages of
success or failure to create a device or user. In Table 6 are the answers of each
valuer for the applied questionnaire. The id corresponds to the question, and
‘Ev’ represents each valuer.

Table 6. Cognitive walkthrough questionnaire answers

id Ev 1 Ev 2 Ev 3

Q01 2 2 3

Q02 2 3 3

Q03 2 2 2

Q04 1 1 1

Q05 3 3 3

Q06 2 3 3

Q07 3 3 3

With the results presented in Table 6, it is possible to confirm that the sce-
nario of confirmation of success in the operation was the most irregular in the
view of the evaluators, just like in the heuristic evaluation. It is possible to
perceive that, in a general analysis, the results of the evaluation were positive.
The three questions from PSSUQ received a positive evaluation, even with the
adaptation that was made, since this questionnaire consists of affirmations.



144 R. M. C. Silveira et al.

6 Conclusion and Future Work

The proposed system was developed to provide access to information collected by
a Wireless Sensor Network, given that this is a tool that is becoming increasingly
popular for data acquisition. In order to make information available in different
countries and with an intuitive and user-friendly interface, a web-service has
been proposed.

When it come to its development, a MVC architecture was chosen due to the
organization and modularization of the code, facilitating possible changes, such
as those pointed out in the evaluation stage. To confirm the communication
between the WSN and the application, a network with XBee for the network
composition and the NodeMCU device Esp8266 for communication with the web-
service was used. The tests performed between the network and the application
only sought to prove that the software developed for the embedded system could
perform such a function.

The star topology used has limitations, once contact is lost with the coordi-
nator this node is lost. However, the coordinator is in a controlled environment
to prevent failures, and the distance between the nodes was not big enough to
build a mesh network. In the future, to prevent failures in the coordinator, we
can perform tests using a backup node that periodically checks to see if the
coordinator has any problems.

The main goal of this work was not high security, a future work will be
done in order to use new techniques to reinforce security. However, the analysis
of the usability of the system allowed us to conclude that despite the negative
aspects pointed out here, the application managed to reach the requirements
for which it has been developed. This makes it necessary to execute new steps,
firstly correcting the errors identified in the evaluation and, in sequence, putting
the application online to analyze factor such as performance and other usability
metrics with the final users.

References

1. Faludi, R.: Building Wireless Sensor Networks: with ZigBee, XBee, Arduino, and
Processing. O’Reilly Media Inc., Newton (2010)

2. Wheeler, A.: Commercial applications of wireless sensor networks using ZigBee.
IEEE Commun. Mag. 45(4), 70–77 (2007)

3. Gai, K., Qiu, M.: Reinforcement learning-based content-centric services in mobile
sensing. IEEE Netw. 32(4), 34–39 (2018)

4. Huuskonen, J., Oksanen, T.: Soil sampling with drones and augmented reality in
precision agriculture. Comput. Electron. Agric. 154, 25–35 (2018)

5. Colezea, M., Musat, G., Pop, F., Negru, C., Dumitrascu, A., Mocanu, M.: Clue-
farm: integrated web-service platform for smart farms. Comput. Electron. Agric.
154, 134–154 (2018)

6. Gai, K., Qiu, M., Zhao, H.: Energy-aware task assignment for mobile cyber-enabled
applications in heterogeneous cloud computing. J. Parallel Distrib. Comput. 111,
126–135 (2018)



A Web-Service to Monitor a Wireless Sensor Network 145

7. Xu, L., O’Hare, G.M., Collier, R.: A balanced energy-efficient multihop cluster-
ing scheme for wireless sensor networks. In: 2014 7th IFIP Wireless and Mobile
Networking Conference (WMNC), pp. 1–8. IEEE (2014)

8. Rault, T., Bouabdallah, A., Challal, Y.: Energy efficiency in wireless sensor net-
works: a top-down survey. Comput. Netw. 67, 104–122 (2014)

9. Serrouch, A., Mocanu, M., Pop, F.: Soil management services in CLUeFARM.
In: 2015 14th International Symposium on Parallel and Distributed Computing
(ISPDC), pp. 204–209. IEEE (2015)

10. Silva, M.S.d.: Rede de sensores sem fio de baixo custo para monitoramento ambi-
ental. Master’s thesis, Faculdade de Engenharia Elétrica e Computaçã - FEEC
(2013)

11. Musat, G.A., et al.: Advanced services for efficient management of smart farms. J.
Parallel Distrib. Comput. 116, 3–17 (2018)

12. Daagi, M., Ouniy, A., Kessentini, M., Gammoudi, M.M., Bouktif, S.: Web service
interface decomposition using formal concept analysis. In: 2017 IEEE International
Conference on Web Services (ICWS), pp. 172–179. IEEE (2017)

13. Gracia, J., Bayo, E.: An effective and user-friendly web application for the collab-
orative analysis of steel joints. Adv. Eng. Softw. 119, 60–67 (2018)

14. Reynolds, D., Ball, J., Bauer, A., Griffiths, S., Zhou, J.: CropMonitor: a scalable
open-source experiment management system for distributed plant phenotyping and
IoT-based crop management. bioRxiv (2018)

15. Serrano, D., Stroulia, E., Lau, D., Ng, T.: Linked rest APIs: a middleware for
semantic rest API integration. In: 2017 IEEE International Conference on Web
Services (ICWS), pp. 138–145. IEEE (2017)

16. Kao, K.C., Chieng, W.H., Jeng, S.L.: Design and development of an IoT-based web
application for an intelligent remote SCADA system. In: IOP Conference Series:
Materials Science and Engineering, vol. 323, pp. 012025. IOP Publishing (2018)

17. Wadkar, K., Koshti, P., Parab, D., Tamboli, S.: V-Buddy: a learning management
system. In: 2018 Second International Conference on Electronics, Communication
and Aerospace Technology (ICECA), pp. 539–541. IEEE (2018)

18. Badurowicz, M.: MVC architectural pattern in mobile web applications. Actual
Prob. Econ. 6, 305–309 (2011)

19. Latief, M., Kandowangko, N., Yusuf, R.: Designing web database application for
local medicinal plants of Gorontalo using MVC architecture. In: IOP Conference
Series: Materials Science and Engineering, vol. 288, p. 012098. IOP Publishing
(2018)

20. Sommerville, I., et al.: Software Engineering. Addison-wesley, Boston (2007)
21. Boonsawat, V., Ekchamanonta, J., Bumrungkhet, K., Kittipiyakul, S.: XBee wire-

less sensor networks for temperature monitoring. In: the Second Conference on
Application Research and Development, ECTI-CARD 2010, Chon Buri, Thailand.
Citeseer (2010)

22. Soijoyo, S., Ashari, A.: Analysis of Zigbee data transmission on wireless sensor
network topology. Analysis 8(9), 145–151 (2017)

23. Kodali, R.K., Soratkal, S.: MQTT based home automation system using ESP8266.
In: 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), pp.
1–5. IEEE (2016)

24. Pilco, H., et al.: Analysis and improvement of the usability of a tele-rehabilitation
platform for hip surgery patients. In: Nunes, I.L. (ed.) AHFE 2018. AISC, vol. 781,
pp. 197–209. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94334-
3 21

https://doi.org/10.1007/978-3-319-94334-3_21
https://doi.org/10.1007/978-3-319-94334-3_21


146 R. M. C. Silveira et al.

25. Nielsen, J., Molich, R.: Heuristic evaluation of user interfaces. In: Proceedings of
the SIGCHI conference on Human factors in computing systems, pp. 249–256.
ACM (1990)

26. Rosa, A.F., Martins, A.I., Costa, V., Queirós, A., Silva, A., Rocha, N.P.: European
Portuguese validation of the post-study system usability questionnaire (PSSUQ).
In: 2015 10th Iberian Conference on Information Systems and Technologies
(CISTI), pp. 1–5. IEEE (2015)


	A Web-Service to Monitor a Wireless Sensor Network
	1 Introduction
	2 Related Work
	3 Web-Service
	3.1 Architecture of the System
	3.2 Functionalities

	4 System Implementation
	5 Experiments and Results
	5.1 Wireless Sensor Network
	5.2 Algorithm in WSN
	5.3 Usability Evaluation
	5.4 Results

	6 Conclusion and Future Work
	References




