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Abstract. Server consolidation technique plays an important role in
energy management and load-balancing of cloud computing systems.
Dynamic virtual machine (VM) consolidation is a promising consol-
idation approach in this direction, which aims at using least active
physical machines (PMs) through appropriately migrating VMs to
reduce resource consumption. The resulting optimization problem is well-
acknowledged to be NP-hard optimization problems. In this paper, we
propose a novel merge-and-split-based coalitional game-theoretic app-
roach for VM consolidation in heterogeneous clouds. The proposed app-
roach first partitions PMs into different groups based on their load lev-
els, then employs a coalitional-game-based VM consolidation algorithm
(CGMS) in choosing members from such groups to form effective coali-
tions, performs VM migrations among the coalition members to max-
imize the payoff of every coalition, and close PMs with low energy-
efficiency. Experimental results based on multiple cases clearly demon-
strate that our proposed approach outperforms traditional ones in terms
of energy-saving and level of load fairness.

Keywords: Energy-aware · Dynamic VM consolidation ·
Load fairness · Merge-split method · Coalitional game ·
Heterogeneous clouds

1 Introduction

Nowadays, cloud computing is becoming an increasingly popular computational
paradigm featured by the ability to provide elastic services over the internet
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for a huge number of global users. With the rapid growth of cloud services,
cloud infrastructures and their supporting datacenters are becoming increasingly
complex, energy-requiring, and expensive with varying resource configurations
and heterogeneous architectural setups. According to [1], electricity demand for
world-wide datacenters is expected to increase by over 66% over the period of
2011–2035. Hence, resource and energy management become major concerns of
both cloud providers and users. However, today’s datacenters are still limited
in ways of effectiveness of energy efficiency and energy management strategies.
Among various energy management and energy saving technologies, dynamic
VM consolidation is one of the most effective ones. Consolidation refers to the
live migration operations of VMs between hosts with slight performance loss
[2]. The aim of dynamic VM consolidation is to reduce the energy consump-
tion of consolidation activities through live migration of VMs instead of static
or planned ones. It is capable of turning idle active PMs into sleeping mode
for energy saving. This technique considerably improves resource utilization and
energy efficiency. In this work, we propose a novel energy-aware and merge-
and-split-based coalitional game-theoretic approach for dynamic VM consolida-
tion for heterogeneous cloud with varying resource configurations. The proposed
approach involves multiple steps: (1) dividing PMs into three groups based on
their workloads, (2) performing a coalitional game to improve the utilization,
(3) letting PMs compete with each other and forming coalitions by using merge
and split operations. To validate our proposed approach, we conduct extensive
simulative studies based on multiple cases and show that our approach clearly
outperforms traditional ones in terms of energy-saving and load fairness.

2 Literature Review

2.1 VM Consolidation Algorithms for Energy Management

Recently, considerable research efforts have been paid to the VM consolida-
tion and related energy performance optimization problems. Related methods
fall into two major categories, namely the dynamic server provisioning meth-
ods and dynamic VM consolidation ones [9]. The latter refers to the technique
of reallocating VMs using live migration according to their real-time resource
demand and switching idle hosts to the sleep mode. Various consolidation meth-
ods are heuristic-based or meta-heuristic-based. E.g., Buyya et al. [3] proposed
a consolidation mechanism using two fixed threshold values calculated based on
processors’ utilization rates. He et al. [4] proposed an local-regression-based algo-
rithm featured by a combination of local regression algorithm with the minimum-
migration-time VM selection policy. Huang et al. [5] proposed a M-Convex VM
consolidation method based on the semi-quasi M-convex optimization frame-
work, which is capable of adaptively adapting its solutions according to the
optimization objectives. Murtazaev et al. [6] developed the Sercon framework
and considered an all-or-none migration strategy, where all the VMs in one active
PM are tentatively migrated to other active PMs. If the migration is successful,
a new placement scheme with a reduced number of active PMs is performed.
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The above operation is iterated until no improvement can be made. Farah-
nakian et al. [7] used an online optimization metaheuristic algorithm called Ant-
Colony-System to find near-optimal solutions for dynamic consolidations and
showed that their proposed approach achieved good energy savings while meet-
ing quality-of-service(QoS) constraints. They defined a multi-objective function
which considers both the number of dormant PMs and the number of migra-
tions. Wu et al. [8] proposed an improved-group-genetic-algorithm-based VM
consolidation method to optimize trade-off between migration costs and energy
consumption in heterogeneous clouds. Zhang et al. [9] presented a heterogeneity-
aware resource monitoring and management system that is capable of perform-
ing dynamic capacity provision in heterogeneous datacenters. Duan et al. [10]
proposed an improved ant-colony algorithm for energy-efficiency optimization
by leveraging a prediction model based on fractal mathematics and a scheduler
based on an improved ant colony algorithm.

2.2 Game-Theoretic Scheduling in Cloud

Recently, it is shown that game theory models and related methodologies can
be effective in dealing with multi-constraint-multi-task scheduling and planning
problems. Game-theoretic algorithms are featured by low time-complexity in
comparison with heuristics, and thus can be highly suitable for scheduling and
managing time-critical cloud systems. Extensive efforts were paid in this direc-
tion. E.g., Guo et al. [12] used a cooperative game model to guide VM consoli-
dation with load and energy constraints, which is tested in a homogeneous cloud
environment. Paul [13] proposed an uncooperative game-theoretic algorithm for
dynamic VM consolidation problem in cloud computing. Xue et al. [14] used a
coalitional game model to schedule the tasks in cloud. They proposed the merge-
and-split-based mechanism to reduce the cost of tasks execution and increase the
profit of cloud resource providers. Guazzone et al. [15] devise an algorithm, based
on cooperative game theory that allows a set of cloud providers to cooperatively
set up their federations in such a way that their individual profit is increased
with respect to the case in which they work in isolation. A careful investiga-
tion into above contributions suggests that they are still limited in several ways:
(1) most existing works considered energy-reduction and migration-cost-saving
as objectives. However, the tradeoff between load fairness and energy-saving
in heterogeneous clouds was less studied [20]; (2) various works aimed at clos-
ing as many PMs as possible in optimizing energy efficiency. However, it can
be misleading and problematic to do so due to the fact that PMs in heteroge-
neous clouds are with varying energy-consumption characteristics and turning
off fewer energy-requiring PMs may be more attractable than turing off more
energy-saving ones. and (3) various existing works address cloud heterogeneity
by considering heterogeneous PMs and VMs while ignoring the heterogeneity of
workloads. However, it should be noted that in reality workloads can be hetero-
geneous as well [16,17]. Our proposed method therefore aims at appropriately
addressing the above issues and overcoming related limitations.
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3 System Model

As widely acknowledged [3,4], the power consumption of a PM, P (u), is mainly
decided by its resource utilization u according to (1). In (1), Pmax denotes the
energy-consumed by a fully-loaded PM, and α denotes the proportion of idle
time of a PM.

P (u) = αPmax + u(1 − α)Pmax (1)
According to [3], α is usually around 0.7. Note that the utilization of a CPU

can be time-varying, we thus use u(t) instead of u in (2). The total energy
consumed, denoted by ξ, can be estimated through an integration form as (2),
where t0 denotes the starting time, and T the period during which a PM is
running.

ξ =

∫ t0+T

t0

P (u(t)) dt (2)

It is assumed a datacenter has m types of heterogeneous machines, ts is the time
that the VM consolidation starts, and te is the time that VM consolidation ends.
fk is the energy consumed by a PM of type k per unit time. Let bk denotes the
energy consumed by all the machines of type k per unit time before consolidation.
We have:

bk = nk ∗
∫ ts

ts−T

fk (3)

where nk denotes the number of machines of the kth type. Let ak denotes the
energy consumed by all the machines of type k per unit time after consolidation
and it can be similarly calculated as:

ak = nk ∗
∫ te+T

te

fk (4)

Next, we should consider the energy consumed by VM migrations in a consol-
idation process. h represents the energy consumed by migration. In this paper,
we adopt the function of migration-cost proposed by [12]. It is caculated by (5).

h =

∫ te

ts

ΔPs(t) dt +

∫ te

ts

ΔPd(t) dt + q (5)

where
∫ te
ts

ΔPs(t) and
∫ te
ts

ΔPd(t) are the increased energy consumption of the
source and destination PM respectively. q is the increased energy consumption as
a result of turning on a PM, which is a constant value. If we do not need to turn
on a new PM as the destination PM, when a VM is migrated, then q = 0. Based
on the above assumptions and configurations, the problem we are interested in
can thus be formulated in (6).

Max S =

∫ te

ts

∑m
k=1(bk − ak) − h

s.t.
m∑

j=1

dij = 1, j = 1, 2, 3 . . . , uj > 0 (6)
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where dij is a boolean variable to indicate whether the ith VM is placed on the
jth PM. If the ith VM is placed on the jth PM, then let dij = 1; otherwise, dij =
0. uj is the utlization of PMj , and PMj shouldn’t be an empty PM. S denotes
the energy saved by the VM consolidation approach. The above formulation aims
at maximizing the energy saved by the VM consolidation approach, i.e., energy
saved by consolidation with the constraints that every VM can only be placed
on one PM and there is no idle PMs.

4 The Coalitional Game-Theoretic Approach

According to [21,22], a coalitional game Γ consists of two essential elements as
shown in (7): (1) a set of players N = {1, 2 . . .}, in this paper, PMs are modelled
as players; (2) a characteristic value v that specifies the value created by different
subsets of the players. i.e., the payoff of a coalition C. Here maximizing the payoff
v(C) means maximizing the energy-efficiency of a coalition.

Γ = (N , v) (7)
Players of the game choose to join or not to join a coalition by deciding whether
more energy-saving could be achieved. To facilitate the handling of the coalitional
game over coalitions of PMs, we first partition PMs into three groups, i.e., E,
H, and L, which contains PMs with extrahigh load, high load and low load
respectively, according to two load thresholds, i.e., t1 and t2:

t1 = Q1, t2 = Q3 (8)

where t1 equals Q1, which denotes the first quartile of the workloads placed on
all PMs. t2 equals Q3, which denotes the third quartile of the workloads placed
on all PMs. In our proposed algorithm, the merge-and-split-based coalitional
games are performed to maximize v of any coalition, i.e., payoff, as shown in (9).
We define the utilization of a coalition as v which equals the average utilization
of PMs in the coalition C except the PMs with extrahigh load.

Max v

v =
1
n

n∑

j=1

uj

s.t. 0 < uj ≤ xj , PMj /∈ E, PMj ∈ C

(9)

where uj denotes the real-time utilization of PMj . xj is the maximum utilization
permitted of PMj . n is the number of PMs in the coalition except the PMs with
extrahigh load. In a coalitional game, the merge operation refers to grouping
multiple PMs into a single coalition. The split operation works in the opposite
direction, where workload from an extra-highly-loaded PM is distributed through
multiple PMs. Only on condition that the payoff v, i.e. the energy-efficiency
of a coalition is higher than the average one of all coalition members when
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they are running individually, the PMs are merged to form a coalition. (10)-
(a)/(b)/(c)/(d) denote the precondition for the merge of an extra-highly-loaded
PM and a lowly-loaded PM, the split of an extra-highly-loaded PM, the merge
of lowly-load PMs, and the merge of PMs with high load, respectively.

(a) ∀PMj ∈ E,PMi ∈ L,C = {PMi, PMj}
v(C) > mean(uj , ui)
(b) ∀PMj ∈ E, uj < v(C),
C = {PMi, PMk}, PMi, PMk ∈ L/H

(c) ∀PMj , PMi ∈ L,C = {PMi, PMj}
v(C) > mean(uj , ui)
(d) ∀PMj , PMi ∈ H,C = {PMi, PMj}
v(C) > mean(uj , ui)

(10)

where ui denotes the utilization of PMi. Note that the operations enabled by
the (a)(b)(c)(d) preconditions happen with the alphabetic order of these pre-
conditions to ensure that PMs with extrahigh/low load are handled before those
with high load. The steps of the above operations are implemented through
Algorithm 1. Figure 1(a) illustrates a typical example of three kinds of merge
operations. As can be seen, V M1−5 are on an extra-highly-loaded PM while
V M25 is on a PM with low load, according to the algorithm, the two PMs are
thus merged in a coalition and then form two highly-loaded PMs. V M29−30 are

H H

H

Highly-loaded PM Extra-h -loaded 

Fig. 1. Merge-and-split-based method of coalition formation



Coalitional Game-theoretic Approach for VM consolidation 101

Algorithm 1. CGMS(E, H, L) algorithm
Input: E,H,L
Output: Updated E,H,L

1 Step 1:
2 for each PMj in E do
3 for each PMi in L do
4 if PMi, PMj can be merged according to (10)-a then
5 migrate the source V M from PMj to PMi ;
6 end

7 end

8 end
9 Step 2:

10 for each PMj in E do
11 if PMj can be split according to (10)-b then
12 migrate the source V M from PMj to a new PM;
13 end

14 end
15 Step 3:
16 for each PMj, PMi in L do
17 if PMi, PMj can be merged according to (10)-c then
18 migrate the source V M from PMj to PMi;
19 if PMj is empty then
20 close PMj

21 end

22 end

23 end
24 Step 4:
25 for each PMj, PMi in H do
26 if PMj, PMi can be merged according to (10)-d then
27 migrate the source V M from PMj to PMi;
28 if PMj is empty then
29 close PMj

30 end

31 end

32 end

on a lowly-loaded PM while V M31 is on another PM with low load, the two lowly-
loaded PMs are thus merged in a coalition and then form a PM with high load.
V M32−33 are on a PM with high load while V M34−35 are on another PM with
high load, the two highly-loaded PMs are thus merged in a coalition and then
form a PM with high load. In Fig. 1(b), only extra-highly-loaded PMs undergo
split operations. As can be seen, V M1−6 are on an extra-highly-loaded PM.
This PM is thus splitted to two PMs with high load, which contain V M3,4,5

and V M1,2 respectively. After the game, numbers of extra-highly-loaded and
lowly-loaded PMs are reduced while that of the PMs with high load is increased,
thereby consolidating tasks into a reasonable number of PMs while avoiding both
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waste of resources caused by idle PMs and potential performance degradations
of extra-highly-loaded PMs. The aim of the coalitional game is thus to finally
form a PM group G that contains PMs which are working in a high-efficiency
state for saving energy.

G = {PMj | PMj ∈ H ∧ uj <= xj} (11)

The coalition can be gradually formed by using Algorithm1. Note that in lines 5,
12, 18, 27 in the pseudo codes stipulate that the resulting load of the destination
PM is still subject to the load constraint, i.e., a PM should not be extra-highly-
loaded. We consider d as the measure of load fairness.

d = (nE + nL)/nH (12)

where nE , nL, nH are the number of PMs in E, L, and H, respectively. According
to (12), a lower d indicates better load fairness. In this work, we consider load
fairness [16,17,20] as an important metric and the optimization algorithm aims
at fairly distributing workloads among PMs to aviod hotspots.

5 An Illustrative Example of CGMS

Example Analysis. We consider the example shown in Fig. 3 as an illustrative
example of the effect of the merge-and-split process: a datacenter contains mul-
tiple PMs, whose indexes are shown in the X-label. The workload of each PM is
based on CoMon workload traces [18] collected from 10 days during march and
April 2011, which is collected from roughly 400–450 active PlanetLab nodes every
5 min within 10 days. Every PM contains 4 VMs with varying workloads as shown
in Fig. 2. According to the workload data and (8), t1 and t2 are set as 20 and
60, respectively. As shown in Fig. 3, L/H/E groups are marked blue/green/red.
During the process, lowly-loaded and extra-highly-loaded PMs are turned into
PMs with high load. The new PMs in H are marked by purple in Fig. 3(c)(d).
The new PMs in L are marked by black in Fig. 3(c). As can be seen in Fig. 4(a), H
is enlarged while E and L shrink. Thus, the overall energy efficiency is optimized

Fig. 2. VM workload used in example
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Fig. 3. An example of CGMS (Color figure online)

while the workload constraint for PMs is kept. Finally, number of migrations of
every step is shown in Fig. 4(b). It is obvious that if a datacenter contains a lot
of lowly-loaded PMs, a great number of VM migrations is required.

Time Complexity Analysis. The overall computational complexity of our
approach can be analyzed by examing the group, merge, and split operations.
In our algorithm, assuming that the number of PMs is g, the group operation’s
time complexity is O(g). In step 1 assume the number of extra-highly-loaded
PMs is y, number of lowly-loaded PMs is z, thus in step 1 the time complexity
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Fig. 4. Example analysis

is O(yz). In step 2, assume the number of involved extra-highly-loaded PMs
is w, as only extra-highly-loaded PMs are involved in this step, thus the time
complexity is O(w). Assume number of lowly-loaded PMs involved in step 3 is
r, number of PMs with high load involved in step 4 is s. Thus, we can figure out
that the time complexity of step 3 and 4 is O(s+r). Finally, the time complexity
is O(g + yz + w + s + r) totally.

6 Simulation and Evaluation

To validate our work, we implement a python-based VM consolidation system
simulator, apply the algorithm in managing multiple heterogeneous PMs as given
in Table 1. The energy consumption of each PM type is based on the Energy-
Star-List [19]. Table 2 shows the VM types. The workload of each VM is based
on CoMon workload traces. We consider VM load level of three scenarios: S1, S2,
S3, plotted in Fig. 5. Each case is tested for 100 trials. Our proposed algorithm
CGMS is compared with baseline approaches: Sercon(server consolidation) [6],

Fig. 5. Workload used in experiments
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IGGA (improved group genetic algorithm) [8], and CGHO [12] (cooperative game
in homogeneous cloud). Sercon is kind of improved greedy method to decrease the
energy-cost and migration-cost, which inherits some properties of First-Fit and
Best-Fit. Sercon used a migration threshold to control the migration efficiency.
IGGA is kind of metaheuristic method using an improved genetic algorithm
for VM consolidation. CGHO is another cooperative-game-theoretic algorithm
tested in a homogeneous environment.

Table 1. VM configurition

VM instance Memory CPU

Micro 613 M 500 MIPS

Small 1.7 GB 1000 MIPS

Large 3.75 GB 2500 MIPS

Extra large 4 GB 2500 MIPS

Table 2. PM configurition

PM instance DELL R515 HP DL380G8 HP DL585G7

Memory 16 GB 32 GB 64 GB

Idle power 213 W 109 W 258 W

Peak power 420 W 276 W 396 W

Energy-Saving and Load Fairness. We first evaluate the energy-saving, i.e.,
S modelled in (6), and load fairness, i.e., d in (12), between CGMS and baseline
algorithms. As shown in Fig. 6(a) (c) (e), when the number of PMs ranges from
60 to 500, our method achieves higher energy-saving (32.30% higher than Sercon
in three scenarios on average; 20.03% higher than CGHO on average; and 14.28%
higher than IGGA on average). The energy-saving increases with the number of
PMs and outperforms baseline ones as well. As shown in Fig. 6(b)(d)(f), CGMS
achieves better load fairness (85.71% lower than Sercon in three scenarios on
average; 42.02% lower than CGHO on average; and 70.32% lower than IGGA on
average) in all scenarios with varying PM numbers.

Computational Cost. Fig. 7 depicts the required runtime of each approach.
With increase of N , the runtime of CGMS and CGHO increase slowly. Sercon is
the fastest one, due to the characteristic of greedy heuristic algorithm. IGGA is
a meta-heuristic algorithm. Its runtime rises smoothly with the number of PMs
going up. As a result, CGMS keeps a relatively low cost, which is acceptable for
most datacenters in different scales.



106 X. Xiao et al.

Fig. 6. Algorithm comparison in S1, S2, S3

The Number of Migrations. As shown in Table 3, we clearly see that Sercon
achieves the least number of migrations in most cases, because it employs a
greedy strategy in deciding when and which to migrate. However, it achieves the
worst energy-saving. In contrast, CGMS achieves the second-least migrations
(13.90% lower than CGHO on average; and 8.82% lower than IGGA on average)
while clearly outperforms Sercon in term of energy-saving.
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Fig. 7. Computation time of each approach

Table 3. Migrations in S1, S2, S3

Scenarios Number of PMs CGMS IGGA Sercon CGHO

S1 60 34.6 37.5 30.1 40.2

100 167.2 193.5 100.1 192.4

250 322.2 405.2 226.3 365.0

500 630.0 721.0 461.4 621.5

S2 60 16.8 15.3 15.6 24.9

100 45.4 52.1 39.1 57.4

250 169.0 185.6 137.8 190.4

500 154.9 194.0 190.2 255.1

S3 60 18.3 16.1 12.0 30.4

100 37.0 36.1 29.8 50.2

250 151.8 170.5 155.3 181.8

500 246.0 275.3 262.2 256.8

7 Conclusion and Future Work

In this work, we present a coalitional game approach for optimizing the energy
efficiency of VM consolidation in heterogeneous cloud datacenters. The exper-
iments results demonstrate that our approach clearly outperforms traditional
approaches in terms of energy-saving and load-balancing. The following issues
should be addressed as future work: (1) reducing migrations, number of migra-
tions is expected to be optimized for a better level. (2) fault tolerance, it is
promising to develop the fault tolerant mechanism based on our approach.
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