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Abstract. This paper addresses the pricing problem of a digital services
marketplace under asymmetric information. An example is an online
learning platform such as Coursera that provides courses from service
providers (in this case, universities) to learners. We focus on the match-
ing of digital services to the consumers of these services using partially-
observable consumer and service attributes. We develop the optimal pric-
ing policies of the marketplace and show that when the distributions of
unobservable valuations are exponential, the marketplace sets a single
matching fee (avoiding price-discrimination across providers) which is
levied on the less price-sensitive side of the marketplace.
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1 Introduction

An increasing share of the economy is managed through platforms that leverage
technology to match consumers looking for digital services with service providers.
For example, an online learning marketplace such as Coursera matches learn-
ers with courses that have been developed by service providers. Such online
marketplaces are enabled by the Internet, which facilitates the aggregation of
information and the efficient matching of consumers and service providers.

In this paper we focus on the pricing of the matching function of a mar-
ketplace for digital services. As matching generates value to the participants,
how should the marketplace be compensated for creating this value? This ques-
tion is particularly timely as digital services platforms are transitioning from a
customer acquisition phase, where they are free or semi-free, to a monetization
phase, where they need to make money. Online learning marketplaces such as
Coursera, for example, used to be entirely free. Coursera, however, is funded by
venture capitalists with a profit motive, and is transitioning to a pricing regime—
first for courses with certificates, then for specializations, and it will probably
implement a more robust pricing scheme in the future (tellingly, Coursera’s free
options are increasingly hidden during the registration process). Assuming that
Coursera wants to maximize profits just like any other business, how should it
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price its services? Further, to what extent should a digital matching platform
engage in price discrimination to maximize its profit?

Digital matching platforms such as Coursera maintain rich data which it can
exploit when it prices its services. For example, if a student is looking for a
job in the data science field, she may be willing to pay more for an advanced
data science course than for a philosophy course. Should Coursera charge that
student more for matching her to a data science course? When thinking about
this issue, it is important to realize that some information (e.g., a customer’s
profile and past transaction information) is available to the digital matching
platform, whereas other information remains private and is not shared by the
platform (e.g., the student may be more interested in a given service provider or
subject area for sentimental reasons). More formally, the value of a prospective
match is driven by attributes of both consumers and service providers. Some of
these attributes are private and cannot be exploited by the marketplace. Other
attributes are observable and may be exploited by marketplace pricing to extract
more of the value created by a match. How should the marketplace price each
potential match given the observable attributes of both counterparties and the
probability distributions of their unobservable attributes? And, how should it
allocate its fees between consumers and service providers? These are some key
research questions addressed in this paper.

We focus on digital services marketplaces with virtually unlimited supply.
Our model fits such marketplaces particularly well as it addresses services that
can be replicated at virtually zero cost. Our model incorporates agents’ hetero-
geneity and asymmetric information and derive the platform’s optimal pricing
policies.

Pricing problems of this type are complex and are often intractable. Never-
theless, we are able to derive the optimal prices for general random (unobserv-
able) valuations. We then specialize our results to the case where the random
valuations are exponential. We find that in this case, it is optimal to charge the
same fee for matches with different observable provider attributes, and this fee
should be levied in its entirety on the less elastic (more price-sensitive) side of
the marketplace, up to a threshold point.

In what follows, we present our model in Sect. 2, solve it in Sect. 3, and offer
our concluding remarks in Sect. 4. We illustrate the application of our approach
and consider structural results for a few special cases in Subsects. 3.1 and 3.2.

2 Model

A consumer a arrives at the digital services marketplace, seeking a service
provider (for example, a learner may seek an appropriate course on Coursera).
The consumer submits to the marketplace a request identifying the service he
or she is looking for and provides other relevant information. In particular, the
marketplace may manage a profile with relevant consumer information. The
consumer’s request remains live in the system for an exponentially-distributed
period of time with mean 1/τA and then expires.
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In our model, responding service providers, whose observable characteristics
can be summarized by an index b, arrive following a Poisson stream with rate
1/τB . Each arriving provider examines the consumer’s known attributes (from
the service request and the consumer’s profile) and decides whether to respond to
the request. Once the provider responds, both parties reveal their unobservable
attributes to determine the actual value of a potential match. A match occurs
if sufficient value is generated for both the provider and the consumer, after
subtracting the marketplace fees. If this is not the case, the provider moves on
and the process is repeated with subsequent suppliers until either a mutually-
acceptable match is found or the consumer’s request expires. We model the
problem for a consumer at a time since digital services can be replicated without
a supply limit. In the special case of Coursera, the provider’s attributes are fully
known to the marketplace and judgment is exercised only by the consumer based
on her private information.

We denote a match between consumer a and a provider of type b (here-
after, “provider b”) by i = (a, b). Upon a successful match i, the marketplace
charges consumer a a matching fee fa

i and provider b a matching fee f b
i . Each

consumer valuation, ua
i , is the sum of an observed valuation va

i and a random,
unobservable valuation εa

i . Similarly, each provider valuation ub
i is the sum of

an observed valuation vb
i and the random unobserved valuation εb

i . Consumers
(providers, respectively) have an outside option value (opportunity cost) of vA

0

(vB
0 ). It follows that the match will be successful if for both the consumer and

the provider, the value of the match net of marketplace matching fees exceeds
the value of the outside option: ua

i − fa
i > vA

0 and ub
i − f b

i > vB
0 . The objective

of the marketplace is to find the pricing policy fi =
(
fa

i , f b
i

)
that maximizes its

expected profit.
The valuations ua

i and ub
i have both observable (v) and unobservable (ε) com-

ponents: ua
i = va

i + εa
i , ub

i = vb
i + εb

i . We assume that the unobserved components
(εa

i ,εb
i ) may be correlated with distributions and arrival rates that may differ

across pair types i. In what follows, we’ll consider both the more general formu-
lation and the special case of exponential random valuations. We also assume
va

i ≤ vA
0 , vb

i ≤ vB
0 so that probabilities are well-defined for fa

i , f b
i ≥ 0.

2.1 Related Literature

Research in the area of marketplace platforms is extremely broad and space
limitations prevent us from reviewing this entire literature. In the economics
literature, several papers study the pricing of two-sided platforms that are sub-
ject to network effects. This literature aims to find static equilibrium structures,
typically assuming a linear relationship between value and number of agents (cf.
[1–4]). Within that literature, some researchers study price discrimination (e.g.,
[5]) but they do not base prices on agents’ observable attributes; rather, they
offer price schedules that induce agents to reveal their private information by
self-selecting into designated tiers. [6] study the effects of market thickness on
the efficiency of matching in a holiday rental platform, finding that contrary to
the dictum of most network effects models, increased thickness was associated
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with a significant decline in the matching probability due to a deadline effect.
Our model does not assume the existence of network effects, and it does con-
sider the effects of time constraints on the consumer’s search. It starts from the
micro level to find the optimal personalized prices based on agents’ observable
attributes.

Our model is also related to the task-assignment problem in the online mecha-
nism design literature [7–10]. This literature proposes algorithms for dynamically
posting prices for suppliers who bid for specific tasks. However, these papers do
not derive closed-form pricing solutions because of their different objectives. In
addition to their different model structures, the algorithms analyzed in these
papers do not allow for price-discrimination based on observable attributes. Our
approach is closer to the classic dynamic stochastic settings of [11–13]. [14] study
a more complex problem where demand types are dynamically matched to sup-
ply types to maximize total reward. Like the other papers in this stream, they
do not consider the informational and pricing issues studied here. Overall, our
model combines timing dynamics, information asymmetry and participants’ het-
erogeneity to find tractable results and their implications.

3 Solving the Pricing Problem

Importantly, for any pair i, the fee vector fi affects the matching probabilities
of all pairs. In particular, the higher the fees for one particular match, the more
likely are other matches to be successful. This interaction among matching prob-
abilities and fees creates a 2 × N -dimensional problem, where N is the number
of different match types and 2 is the number of sides to be priced. However, we
show below how to reduce the problem to N two-dimensional problems, which
allows us to compute the solution in closed-form.

The marketplace objective function is given by

N∑

i=1

E

[

vi

∣
∣
∣
∣
∣
pair i matched

]

Pr (pair i matched) ≡
N∑

i=1

viφi,

where vi = fa
i +f b

i is the marketplace profit from a successfully matched pair i. If
arrivals follow a Poisson process, then the probability φi that the pair i = (a, b)
is successfully matched is given by the following.

Proposition 1. Let ua
i be the value that the consumer a derives from being

matched with provider b, and i simultaneously indexes provider b and the pair
i = (a, b). Similarly, ub

i is the value that provider b derives upon being matched
with the consumer a, and λi is the arrival rate of type-b providers (corresponding
to i = (a, b)). Finally, let λN+1 be the arrival rate of the outside option: if the
outside option “arrives” before the consumer request is matched, the consumer
gives up the search and exits the marketplace, leaving no revenue to the mar-
ketplace. Then the probability that the match will be successful and of type b is
given by
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φi

(
fa

i , f b
i

)
=

⎧
⎨

⎩

λiPr(ua
i ≥fa

i ,ub
i≥fb

i )
λN+1+

∑
λjPr(ua

j ≥fa
j ,ub

j≥fb
j )

, if i = 1, . . . , N

λN+1

λN+1+
∑

λjPr(ua
j ≥fa

j ,ub
j≥fb

j )
, if i = N + 1.

(1)

For simplicity of exposition, we assume that prices are non-negative, although
this assumption is not needed in the derivation of the optimal prices. The results
below provide a way to identify optimal prices in closed form in a general mar-
ketplace setting.

Theorem 1. Consider the optimization problem

max
f1,...,fN

N∑

i=1

vi(fi)φi(f1, . . . , fN ), (2)

s.t. fi ∈ Fi.

where vi ≡ fa
i + f b

i , φi(f1, . . . , fN ) are given by (1), and Pi ≡
Pr

(
ua

i ≥ fa
i , ub

i ≥ f b
i

)
are twice continuously-differentiable for i = 1, 2, . . . , N .

Also let T a
i (fa

i ) =
∂((fa

i +fb
i )Pi)/∂fa

i

∂Pi/∂fa
i

and T b
i (f b

i ) =
∂((fa

i +fb
i )Pi)/∂fb

i

∂Pi/∂fb
i

. Then, if
problem (2) has an optimal solution, its value is given by the largest root of the
scalar equation

V =
∑N

i=1(f
a
i (V ) + f b

i (V ))λiPi(fa
i (V ), f b

i (V ))

λN+1 +
∑N

i=1 λiPi(fa
i (V ), f b

i (V ))

among all potential roots V obtained by plugging in all possible combinations
(fa

1 (V ), f b
1(V ), . . . , fa

N (V ), f b
N (V ), where fa

i (V ) is either on the boundary of Fa
i

or it solves T a
i (fa

i , f b
i ) = V and f b

i (V ) is either on the boundary of Fb
i or it

solves T b
i (fa

i , f b
i ) = V . The vector (fa

1 (V ∗), f b
1(V ∗), . . . , fa

N (V ∗), f b
N (V ∗)) that

yields the highest V ∗, is the optimal fee vector.

Proposition 2. Assume that the problem (2) has an optimal solution with value
V ∗. Then for i = 1, 2, . . . , N , each component f∗

i = (fa
i , f b

i )∗ of the solution
(f∗

1 , . . . , f∗
N ) to problem (2) can be represented as a solution to the i-th subprob-

lem

maxfi
Pi

(
fa

i , f b
i

) (
fa

i + f b
i − V ∗)

s.t. fi ∈ Fi. (3)

That is, the optimal fee vector in each state maximizes the weighted deviation
from the global optimal profit V ∗.

3.1 Pricing with Exponentially-Distributed Private Valuations

We now solve for the case where the random valuations are exponentially
distributed i.i.d. random variables and where the arrival rates λi are the
same across provider types. We assume that the unobserved components, εa

i
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and εb
i , come from i.i.d. exponential distributions: εa

i ∼ Exp
(
1/vA

)
, εb

i ∼
Exp

(
1/vB

)
. As a result, from the marketplace perspective, the matching com-

patibility indicators I (a accepts b) and I (b accepts a) become random variables.
In particular, the probability of b being acceptable to a is Pr (a accepts b) =
Pr

(
ua

i ≥ fa
i + vA

0

)
= Pr

(
va

i + εa
i > fa

i + vA
0

)
= exp

(
va

i −fa
i −vA

0
vA

)
. Similarly, the

probability of b willing to serve a is Pr (b accepts a) = Pr
(
ub

i ≥ f b
i + vB

0

)
=

Pr
(
vb

i + εb
i ≥ f b

i + vB
0

)
= exp

(
vb

i −fb
i −vB

0
vB

)
.

To solve the pricing problem, we first derive the matching probabilities.
Applying Proposition 1 to the exponential case, we get

Corollary 1. Given the information available to all participants (and, in par-
ticular, the marketplace), the probability that the request results in a match
i = (a, b), is given by

φi = Pr (b serves a) = φ
βie

−αfi

∑
j βje−αfj

=
βie

−αfi

∑
j βje−αfj + 1

k

, (4)

where α ≡ (
αA, αB

)
, fi ≡ (

fa
i , f b

i

)
, αfi ≡ αAfa

i + αBf b
i .

We interpret αA ≡ 1
vA as the price sensitivity of demand and αB ≡ 1

vB as
the price sensitivity of supply.

In the exponential case, the profit that the marketplace generates from each
request is given by

N∑

i=1

(
f b

i + fa
i

)
φi =

N∑

i=1

(
f b

i + fa
i

) βie
−αAfa

i −αBfb
i

∑
j βje

−αAfa
j −αBfb

j + 1
k

.

Thus, the reward in state i is given by

vi

(
fa

i , f b
i

)
=

{(
f b

i + fa
i

)
if i = 1, . . . , N

0 if i = N + 1
,

and the matching demand function is given by

{
Pi

(
fa

i , f b
i

)
= βie

−αAfa
i −αBfb

i if i = 1, . . . , N

PN+1 = 1
k if i = N + 1

The profit maximization problem of the marketplace is thus

max
(fa

i ,fb
i )

N∑

i=1

⎛

⎝viPi/
N+1∑

j=1

Pj

⎞

⎠

s.t.
(
fa

i , f b
i

) ≥ (
va

i − vA
0 , vb

i − vB
0

)
.

The solution is given by the following Proposition.
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Proposition 3. The pricing policy maximizing marketplace profit is as follows:

(a) If αA > αB, then

{
f b∗

i = vB
[
1 + W0

(
e−αAvA

0 −αBvB
0 −1 τA

τB

∑
j eαAva

j +αBvb
j−(αA−αB)fa∗

j

)]
−fa∗

i

fa∗
i = va

i −vA
0

(b) If αB > αA, the result is symmetric to (a), i.e.,

{
fa∗

i = vA
[
1 + W0

(
e−αAvA

0 −αBvB
0 −1 τA

τB

∑
j eαAva

j +αBvb
j−(αB−αA)fb∗

j

)]
−f b∗

i

f b∗
i = vb

i − vB
0

(c) If αA = αB,

⎧
⎪⎪⎨

⎪⎪⎩

f b∗
i + fa∗

i = vA
(
1 + W0

(
e−αAvA

0 −αBvB
0 −1 τA

τB

∑
j eαAva

j +αBvb
j

))

f b∗
i ≥ vb

i − vB
0 , fa∗

i ≥ va
i − vA

0

(d) the optimal total price fa∗
i + f b∗

i is the same for each matched pair.
W0 (·) is the Lambert function [15] which is the solution to the equation

z = W (zez) , z ≥ −1.

Part (d) of Proposition 3 is surprising: even though the marketplace is able to
price-discriminate among providers (and matched pairs) based on the particular
information it observes about them, it charges the same price to all. This does not
mean, of course, that it does not take advantage of that information at all. In fact,
an increase in valuations within a particular pair will increase the fees charged
to all pairs. Further, the optimal price depends on the observable consumer
attributes. What the marketplace does not do is differentiate among providers
(and corresponding pairs) based on the differences in observed valuations. This
result follows from the memoryless property of the exponential distribution:

the expected ex-ante value of a match is given by E

[

V + ε

∣
∣
∣
∣
∣
V + ε > v0 + f

]

=

Eε + v0 + f , which is independent of the observable component V .
Intuitively, the optimal price structure is driven by the probability distri-

bution of the random valuation components. The observable component of the
valuations affects the matching probabilities: the higher the valuation, the higher
the probability of a match. Our finding means that the marketplace is better off
engaging in quantity (or probability) differentiation (higher expected probability
of a match for higher valuations) than in price discrimination.

Another important result is that the fee split between the provider and
the consumer depends only on their respective price sensitivities and is always
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obtained at an extreme point: the side with the greater price sensitivity is charged
the lowest price needed to attract any participants to the marketplace. In par-
ticular, when prices are non-negative, the less price-sensitive side of the market
pays the entire marketplace fee while the other side pays nothing.

3.2 Generalizations

To what extent do our structural results for the exponential case generalize to
other distributions? The following Corollary shows that prices remain the same
across provider matches as long as the matching demand functions Pi

(
fa

i , f b
i

)

are proportional across the different providers.

Corollary 2. If the matching demand functions Pi

(
fa

i , f b
i

)
are proportional to

each other for a subset of types I, i.e.,

Pi

(
fa

i , f b
i

)
= CiP

(
fa

i , f b
i

)
, i ∈ I,

then the optimal fees charged by the marketplace to different pairs within the set
I are the same.

This result directly follows from Proposition 2, as the optimization subprob-
lems solved for each match i ∈ I are the same (if there are multiple optima, one
of them will have the same fees).

Next consider the allocation of the total marketplace fee between the con-
sumer and the provider. Using our aggregate matching demand formulation,
the price sensitivity of the consumer (provider, respectively) to its marketplace
fee is ∂Pi

∂fa
i

(∂Pi

∂fb
i

, respectively). Transforming our variables to
(
fa

i , fΣ
i

)
, where

fΣ
i ≡ fa

i + f b
i , in each subproblem i, the partial derivative of the objective

function with respect to fa
i is

(
fΣ

i − V ∗)
(

∂Pi

∂fa
i

− ∂Pi

∂fb
i

)
, and at the optimum,

V ∗ <
(
fΣ

i

)∗. Thus, the fee split is determined by the sign of
(

∂Pi

∂fa
i

− ∂Pi

∂fb
i

)
. In

particular, if
(
− ∂Pi

∂fa
i

> −∂Pi

∂fb
i

)
for all

(
fa

i , f b
i

) ∈ Fi, then the entire fee should be

paid by the supplier and the consumer pays nothing, and if
(
− ∂Pi

∂fa
i

< −∂Pi

∂fb
i

)
for

all
(
fa

i , f b
i

) ∈ Fi, then the entire fee is paid by the consumer and the provider
pays nothing. This directly generalizes the results we obtained in the exponential
case. A similar analysis may be performed using the underlying preferences of
marketplace participants. Here,

Pi

(
fa

i , f b
i

) ≡ Pr
(
va

i + εa
i ≥ vA

0 + fa
i , vb

i + εb
i ≥ vB

0 + f b
i

)

For subproblem i, in transformed coordinates
(
fa

i , fΣ
i

)
, the partial deriva-

tive of the objective function with respect to fa
i is

(
fΣ

i − V ∗)
(

∂Pi
∂fa

i
− ∂Pi

∂fb
i

)
.

Thus, similar to the above analysis, the fee split is determined by the sign of
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(
∂Pi

∂fa
i

− ∂Pi

∂fb
i

)
: if

(
− ∂Pi

∂fa
i

> −∂Pi

∂fb
i

)
for all

(
fa

i , f b
i

) ∈ Fi, then the entire market-

place fee is paid by the supplier, and if
(
− ∂Pi

∂fa
i

< −∂Pi

∂fb
i

)
for all

(
fa

i , f b
i

) ∈ Fi,

the entire marketplace fee is paid by the consumer1.
Since we allowed for different matching demand functions for different

matches, it is of course possible that unlike the more restrictive exponential
case, one provider will be uniformly more price sensitive than the consumer
whereas another will be uniformly less price sensitive than the consumer. In this
case, the former provider will pay zero whereas the latter will pay the entire
marketplace fee.

Our formulation also allows for more general fee splits. For example,
if the matching demand functions are log-linear of the form Pi

(
fa

i , f b
i

)
=

Ci (A − fa
i )α (

B − f b
i

)β for fa
i ∈ [0, A] , f b

i ∈ [0, B], then ∂Pi

∂fa
i

=

−αCi (A − fa
i )α−1 (

B − f b
i

)β and ∂Pi

∂fb
i

= −βCi (A − fa
i )α (

B − f b
i

)β−1, implying

that A−(fa
i )∗

B−(fb
i )

∗ = α
β . Thus, the optimal fees are the same for all i (Proposition 2),

and their ratio is inversely related to their elasticity coefficients, consistent with
our intuition.

4 Concluding Remarks

The Internet has spawned new forms of economic activity and gave rise to the
development and growth of online services marketplaces which in turn created
new research challenges for both academics and practitioners. This paper derives
optimal pricing policies for a matching marketplace platform for digital services.
We show that with exponentially-distributed random participants’ valuations, it
is optimal to charge a constant total fee across provider matches, and this fee
should be levied on the less elastic side of the market up to a threshold. For
a marketplace such as Coursera, this means that the profit-maximizing match-
ing fee would be constant across providers. Further, if learners are more price-
sensitive than providers, Coursera would charge its entire matching fee to its
content providers.

Our results shed light on how marketplaces for digital services may be com-
pensated for their matching function, and it will be useful to consider them
in conjunction with more elaborate specifications of particular vertical market-
places.

1 If the fees can be negative, the more price-sensitive side of the market will pay the
lowest possible fee, and the less price-sensitive side will pay the highest possible fee.
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5 Proofs

Proof of Proposition 1
The successful requests of type i = (a, b) arrive as a marked Poisson process
with the arrival rate λiPr(ua

i ≥ fa
i , ub

i ≥ f b
i ), where ua

i ≥ fa
i , ub

i ≥ f b
i is the

condition that “marks” the match between the consumer and supplier successful.
The outside option and the successful requests of other types arrive with the
Poisson rates of λN+1 and

∑
−i λjPr(ua

j ≥ fa
j , ub

j ≥ f b
j ). As long as the first

arrival occurs from the first stream, i.e., the one with the rate of λiPr(ua
i ≥

fa
i , ub

i ≥ f b
i ), the request will be served by the provider of type i.

The probability of such an event is given by Pr(ti ≤ min(t−i, tN+1)), where
ti is the arrival time of the successful match of type i, t−i – the arrival time
of the successful match of any type other than i and tN+1 is the arrival time
of the outside option. Since all the arrival streams are Poisson, and, hence, the
respective arrival times are exponentially distributed, including min(t−i, tN+1),
therefore

φi

(
fa

i , f b
i

)
=

⎧
⎨

⎩

λiPr(ua
i ≥fa

i ,ub
i≥fb

i )
λN+1+

∑
λjPr(ua

i ≥fa
i ,ub

i≥fb
i )

, if i = 1, . . . , N

λN+1

λN+1+
∑

λjPr(ua
i ≥fa

i ,ub
i≥fb

i )
, if i = N + 1

Proof of Theorem 1:
The first-order condition w.r.t. fa

i is given by

∂
∂fa

i

(
(fa

i +f b
i )λiPi

) (
λN+1+

∑N
i=1 λiPi

)
− ∂

∂fa
i

(λiPi)
∑N

i=1

(
(fa

i +f b
i )λiPi

)

(
λN+1 +

∑N
i=1 λiPi

)2 = 0,

which implies

∂

∂fa
i

(
(fa

i + f b
i )λiPi

)
=

∑N
i=1(λiPi)(fa

i + f b
i )

(
λN+1 +

∑N
i=1 λiPi

)
∂

∂fa
i

(λiPi) = V ∗ ∂

∂fa
i

(λiPi) ,

where V ∗ = V (f1, . . . , fN ) is the optimal profit.
Repeating the above with respect to f b

i yields
{

∂
∂fa

i

(
(fa

i + f b
i )Pi

)
= V ∗ ∂

∂fa
i
Pi,

∂
∂fb

i

(
(fa

i + f b
i )Pi

)
= V ∗ ∂

∂fb
i

Pi,
(5)

Let f∗ = (f∗
1 , . . . , f∗

N ) denote the optimal fee vector, then (fa
i (V ∗))∗,(

f b
i (V ∗)

)∗ either solves the respective equation in (5) or is on the bound-
ary of Fi. As a result, there is a set of candidates

{
f j (V )

}
for an optimal

fee vector f∗. For each j we plug f j (V ) in the expression for the objective

V =
∑N

i=1(fa
i (V )+fb

i (V ))λiPi(fj
i (V ))

λN+1+
∑N

i=1 λiPi(fj
i (V )) and solve for V . Then we arrive at the set of
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values
{
V j

}
corresponding to optimal action candidates

{
f j (V )

}
. Obviously,

the largest value V ∗ ≡ V j∗
= maxj V j is the optimal profit value, and, hence,

the corresponding vector f j∗ (
V j∗)

is the optimal fee vector.

Proof of Proposition 2:
If f∗

i is the solution to (3), then for all fi

(v∗
i − V ∗) h∗

i ≥ (vi − V ∗) hi, (6)

where for i = 1 . . . N , v∗
i =

(
fa

i + f b
i

)∗
, h∗

i = λiPi (f∗
i ) , vi = fa

i + f b
i , hi =

λiPi (fi) and vN+1 = 0, hN+1 = λN+1.
Plugging in

V ∗ =
v∗

i h∗
i + (V H)∗

−i

h∗
i + H∗

−i

,

where (V H)−i =
∑

−i vjhj , H−i =
∑

−i hj , into (6) we get
(

v∗
i − v∗

i h∗
i + (V H)∗

−i

h∗
i + H∗

−i

)

h∗
i ≥

(

vi − v∗
i h∗

i + (V H)∗
−i

h∗
i + H∗

−i

)

hi

Rearranging this expression yields
(

v∗
i h∗

i + (V H)∗
−i h∗

i

h∗
i + H∗

−i

)

≥ vih
∗
i hi + viH

∗
−ihi − v∗

i h∗
i hi + (V H)∗

−i hi

h∗
i + H∗

−i

(v∗
i − vi) h∗

i hi +
(
v∗

i H∗
−i − (V H)∗

−i

)
h∗

i − (
viH

∗
−i − (V H)∗

−i

)
hi ≥ 0

(
v∗

i h∗
i + (V H)∗

−i

) (
hi + H∗

−i

) ≥ (
vihi + (V H)∗

−i

) (
h∗

i + H∗
−i

)

(
v∗

i h∗
i + (V H)∗

−i

)

h∗
i + H∗

−i

≥
(
vihi + (V H)∗

−i

)

hi + H∗
−i

.

Thus, f∗
i is the optimal solution for (2) as well.

Proof of Proposition 3
We solve the problem in four steps.

Step 1: show that the optimal value V ∗ exists and is finite. The existence
and finiteness of V ∗ follow from three facts: (a) the value function is linear in the
marketplace fees, whereas (b) the matching probabilities decline exponentially
with the marketplace fees, and (c) the marketplace can achieve zero revenue by
rejecting all suppliers. It follows that there is an optimal solution with a finite,
positive V ∗.
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The optimal prices are in a bounded set for the following reason. since V ∗ is
finite, the gradient of the objective function with respect to at the optimal fee
vector f∗ is given by

∂
∂fa

i
hi

∑
j hj

[
T

([
fa

i

f b
i

])
− V ∗

]
=

∂
∂fa

i
hi

∑
j hj

[
fa

i + f b
i −

[
1/αA

1/αB

]
− V ∗

]
,

where hi = λiPi for i = 1, . . . , N .

Since
∂

∂fa
i

hi
∑

j hj
< 0 uniformly, ∂V

∂fa
i

< 0 for large enough fa
i . Similarly, ∂V

∂fb
i

< 0

for large enough f b
i . Thus, the optimal prices are contained in a bounded set.

Step 2: decompose the global objective. By Proposition 2, we can decom-
pose the problem into N optimization problems, one for each match i, i =
1, 2, . . . , N :

maxfi
Pi (fi) (vi (fi) − V ∗)

s.t.
(
fa

i , f b
i

) ≥ (
va

i − vA
0 , vb

i − vB
0

)
,

which yields the following first-order conditions:

fa
i + f b

i −
[

1/αA

1/αB

]
=

[
V ∗

V ∗

]
.

Step 3: filter the set of solution candidates. There are two candidate
points for the consumer-side fee fa

i – one interior solution V ∗ + 1/αA − f b
i

and one corner solution
(
va

i − vA
0

)
. Similarly, there are 2 corresponding can-

didates for the supply-side fee f b
i : V ∗ + 1/αB − fa

i and
(
vb

i − vB
0

)
. Thus,

the optimal candidate fees
(
fa

i , f b
i

)
for state i constitute all four pairwise

combinations of these individual candidates. Then, we have the following
candidate pair types:

(
va

i − vA
0 , vb

i − vB
0

)
,

(
V ∗ + 1/αA − f b

i , V ∗ + 1/αB − fa
i

)
,(

va
i − vA

0 , V ∗ + 1/αB − (
va

i − vA
0

))
, and

(
V ∗ + 1/αA − (

vb
i − vB

0

)
, vb

i − vB
0

)
.

Rather than enumerate the results, we can eliminate some of the candidates
upfront. For instance, both partial derivatives at

(
va

i − vA
0 , vb

i − vB
0

)
are positive,

hence this candidate be eliminated. The second candidate
[

fa
i

f b
i

]
=

[
V ∗ + 1/αA − f b

i

V ∗ + 1/αB − fa
i

]

can be eliminated if αA �= αB . In fact, we can rewrite the expression as
[

fa
i + f b

i

fa
i + f b

i

]
=

[
V ∗ + 1/αA

V ∗ + 1/αB

]
,

which becomes inconsistent if αA �= αB . Thus, if the price sensitivities are dif-
ferent, then we necessarily have a corner solution. Further, a variation in the
fees

(
Δfa

i ,Δf b
i

)
= (ε, −ε), where ε > 0, is profitable if αB > αA, that is, such
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variation increases the objective function value. Hence, if αB > αA, then the
corner solution

(
va

i − vA
0 , V ∗ + 1/αB − (

va
i − vA

0

))
cannot be optimal since it

permits the above variation. As a result, when αA �= αB we are left with only
one solution candidate, namely,

(
fa

i , f b
i

)
=

{(
va

i − vA
0 , V ∗ + 1/αB − (

va
i − vA

0

))
αA > αB

(
V ∗ + 1/αA − (

vb
i − vB

0

)
, vb

i − vB
0

)
αA < αB

. (7)

Finally, if αA = αB , the total price must be equal to V ∗ + 1/αA, and it may
be allocated arbitrarily between the consumer and the service provider.

Step 4: plug the solution candidates into the equation for V ∗. Plugging
(
fa

i , f b
i

)
into the equation V ∗ =

∑N+1
i=1 vi

(
fa

i , f b
i

) Pi(fa
i ,fb

i )
1
k+

∑
j Pi(fa

i ,fb
i )

, then solving

for V ∗ and plugging it back into the expression (7) completes the solution. The
exact formula is given in the statement of the proposition.

Frequently, the elimination of certain candidate solutions may come from
additional constraints imposed by the nature or operating rules of the market-
place. For instance, for some platforms, charging the consumer (e.g., Yelp) or
consumer and supplier (e.g., Stackoverflow) may be inappropriate, while the
feasible price region for another side (e.g., advertisers) is unconstrained. In that
case, constraints of the form of fa

i = 0 or f b
i = 0 may automatically eliminate a

number of solution candidates.
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