
Automated Hot Text and Huge Pages:
An Easy-to-Adopt Solution Towards High

Performing Services

Zhenyun Zhuang(B), Mark Santaniello, Shumin Zhao, Bikash Sharma,
and Rajit Kambo

Facebook, Inc., 1 Hacker Way, Menlo Park, CA 94025, USA
{zhenyun,marksan,szhao,bsharma,rkambo}@fb.com

Abstract. Performance optimizations of large scale services can lead
to significant wins on service efficiency and performance. CPU resource
is one of the most common performance bottlenecks, hence improving
CPU performance has been the focus of many performance optimization
efforts. In particular, reducing iTLB (instruction TLB) miss rates can
greatly improve CPU performance and speed up service running.

At Facebook, we have achieved CPU reduction by applying a solution
that firstly identifies hot-text of the (software) binary and then places
the binary on huge pages (i.e., 2 MB+ memory pages). The solution
is wrapped into an automated framework, enabling service owners to
effortlessly adopt it. Our framework has been applied to many services
at Facebook, and this paper shares our experiences and findings.

Keywords: Huge pages · Hot-text · Performance · iTLB miss

1 Introduction

Large Internet companies like Facebook feature large amount of back-end servers
which serve billions of users that have various types activities (e.g., messaging,
video streaming). These servers run many types of services [1]. Given the large
scale of the Facebook computation/storage infrastructure, it is important to
ensure our services are running efficiently.

Many types of performance improvement works have been done at various
layers (e.g., OS, compiler, application/code level, storage level) targeting dif-
ferent services. At Facebook, we have been treating performance improvement
works seriously (e.g., [2,3]) by various types of optimizations. Over the years, we
have achieved significant amount of efficiencies and better service performance
across the fleet. To gain concrete understanding of the cost-saving scale, con-
sider a service that runs on 100 K servers. Assuming the service is bottlenecked
by CPU usage, and a performance improvement effort that saves 1% on server
CPU usage will result in about 1 K servers being saved.

Performance improvement of services requires software profiling to identify
the top performance bottlenecks, root-causing the fundamental issues, proposing
c© Springer Nature Switzerland AG 2019
J. Miller et al. (Eds.): ICWS 2019, LNCS 11512, pp. 147–162, 2019.
https://doi.org/10.1007/978-3-030-23499-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23499-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-23499-7_10


148 Z. Zhuang et al.

solutions to address the issues, implementing the solutions, and testing to verify
the effectiveness of the solutions. We have been continuously profiling thousands
of services across our fleet for various types of performance inefficiencies. We
found that CPU resource is one of the most common performance bottlenecks,
hence improving CPU performance has been the focus in many performance
efforts.

One type of service inefficiency is high iTLB (instruction Translation Look-
aside Buffer) miss rate, which causes CPU to run ineffectively1. The penalty of
iTLB misses is significant as the access latency difference between hit and miss
can be 10–100 times of difference. A hit only takes 1 clock cycle, while a miss
takes 10–100 clock cycles. To understand more about such latency penalty, let’s
assume hit and miss take 1 and 60 cycles, respectively. Thus a 1% miss rate will
result in average access latency being 159 cycles, or 59% higher than not having
any misses (i.e., 1 cycle).

For a service that experiencing high iTLB miss rate, reducing iTLB miss rates
can greatly improve CPU performance and speed up service running time. Vari-
ous optimization approaches that impprove the software binaries can be applied
to reduce iTLB misses. Overall there are three types of optimizations based on
the different stages of compiling the source code (i.e., compile/link/post-link
time). Examples include optimizing compiler options to reorder functions so
that hot functions are located together, or using FDO (Feedback-Driven Opti-
mization) [4] to reduce the size of code regions. In addition to such compiler
optimizations that help reduce iTLB miss rate, we also place the binary code on
huge pages to further speed up the running services.

In this work, we combine both types of optimizations (i.e., identifying hot-text
to co-locate frequently accessed functions and deploying the optimized binary
on huge pages) to reduce iTLB miss rates. More importantly, we design and
implement an automated work flow to make the optimizations transparent and
maintenance-free for service owners. As a result, various services can benefit
from this solution with minimum efforts, practically rendering this easy-to-adopt
solution as a “free lunch optimization” for service owners.

Note that though the hot-text optimization mostly applies to services written
in statically compiled languages (e.g., C/CPP), huge page optimization can apply
to all services. Given the fact that many of largest scale backend infrastructures
in the world (e.g., Facebook, Google, Microsoft) are written in C/CPP, thanks
to C/C++’s high efficiency, our proposed solution can be applied to many ser-
vices running on these infrastructures. Furthermore, for dynamically compiled
languages (e.g., Java), the insights gained in this work can also help improve
their compiling performance (e.g., in JVM).

This work shares our design, efficiency gains and some issues found. In par-
ticular, we focus on the key questions that could be asked by potential adopters
including:

– What is the performance issue this solution addresses? For instance, why is
high iTLB miss rate bad?

1 Please refer to Sect. 2 for detailed explanations of iTLB misses.



Automated Hot Text and Huge Pages: An Easy-to-Adopt Solution 149

– What is the design of the solution (i.e., how does it work internally)?
– How much code change is needed?
– How much maintenance overhead is involved?
– What is the downside of this solution?
– How to verify the optimization is applied to my service?

The following writing is organized as follows. Section 2 provides relevant
background knowledge. Section 3 walks through the high level design, followed
by detailed work flow of the solution in Sect. 4. Section 5 presents performance
results of applying this solution. Some related issues are discussed in Sect. 6, and
related works are presented in Sect. 7. Finally Sect. 8 concludes the paper.

2 Background

2.1 ITLB (Instruction TLB) Misses

In x86 computing architectures, memory mappings between virtual and physi-
cal memory are facilitated by a memory-based page table. For fast virtual-to-
physical translations, recently-used portions of the page table are cached in TLB
(translation look-aside buffers). There are two types of TLBs: data and instruc-
tions, both are of limited sizes.

Since memory access latency is much higher than TLB access latency, address
translations that hit TLBs are much faster than missing TLBs. Invariably, the
more translation requests that miss the TLBs and have to fall back to page
tables (aka, ‘page walks’), the slower the instruction executions. iTLB miss rate
is a metric to estimate the performance penalty of page walks induced on iTLB
(instruction TLB) misses. When the iTLB miss rate is high, a significant pro-
portion of cycles are spent handling the misses, which results in slower execution
of the instructions, hence sub-optimal services.

2.2 Huge Pages

Today’s computing architecture typically support larger page sizes (2 MB and
1 GB on x86 64, both referred to as huge pages) in addition to the traditional
4 KB pages size. Huge pages reduce number of TLB entries needed to cover the
working set of the binary, leading to smaller page tables and reducing the cost
of page table walks.

There are two ways of obtaining huge pages on Linux: (1) using THP (trans-
parent huge pages) [5] and (2) reserving huge pages and mounting them as
hugetlbfs in the application. THP requires minimum changes to the application,
however the availability of huge pages is not guaranteed. To reserve huge pages,
applying configurations such as hugepagesz= 2MB hugepages= 64 (i.e., reserv-
ing 64 huge pages of 2 MB each) when booting kernel works.



150 Z. Zhuang et al.

3 Design

3.1 Overview

When running a service on servers, the corresponding binary needs to be loaded
into memory. The binary consists of a set of functions, and they collectively
reside in the text segment of the binary and are typically loaded during execution
using 4 K pages. Each page attempts to occupy an iTLB entry for the virtual-to-
physical page translation. Since commodity servers typically have limited number
of iTLB entries (e.g., 128 entries for 4 KB pages in Intel HasWell architecture
[6]), iTLB misses will occur if the text segment is larger than the iTLB entries
can cover (e.g., 128 * 4 KB = 512 KB). iTLB misses are counted towards CPU
time and are effectively wasted CPU time.

iTLB misses can be reduced by identifying and aggregating frequently
accessed instructions into hot-text in order to increase spatial locality. By pack-
ing hot functions into hot text, instruction fetching and prefetching can be more
effective and faster, hence a high-performing server and service. Based on our
studies with many services, at Facebook more than 90% of the code is cold and
the remaining is hot. By separating hot from cold instructions, expensive micro-
architectural resources (iTLB and caches) can more efficiently deal with the hot
segment of a binary, resulting in performance improvement.

This benefit can be further enhanced by putting hot-text on huge pages for
sufficiently large binary (i.e., larger than the regular page size of 4 KB * iTLB
entries). By using a single TLB entry, a single 2 MB huge page covers 512 times
as much code as a standard 4 K page. More importantly, CPU architectures
typically feature some number of TLB entries for huge pages, and they will sit
there idle if no huge pages are used. By employing huge pages, those TLB entries
can be fully utilized.

3.2 Design Elements and Rationales

The solution consists of three key elements: (a) hot-text optimization, (b) huge
page placement, and (3) automated and decoupled pipeline.

The hot-text optimization consists of the following steps. First, identifying
hot instructions by profiling the running binary. Linux perf tool is used for this
purpose. We initially used stack traces, but later switched to LBRs [7] for better
data quality and less data footprint. Second, sorting the profiled functions based
on access frequencies. We use a tool called HFSort [8,9] to create an optimized
order for the hot functions. Finally, a linker script will optimize the function
layout in the binary based on the access orders. The result is an optimized
binary.

Once the optimized binary with hot-text is obtained, the hot-text region can
be further placed on huge pages. We designed an almost-transparent approach
which needs little code change for service owners. Specifically, we pre-define a
function that remaps the hot-text to huge pages, and all a service owner has to
do is calling a pre-defined function early in the main() function



Automated Hot Text and Huge Pages: An Easy-to-Adopt Solution 151

Note that isolating hot-text and placing on huge pages are complementary
optimizations, and they can work independently; but combining them achieves
best optimization results.

The traditional approach of applying hot-text optimization and huge page
placement requires multiple steps, mixes source code and profiled data during
linking phase, and involves manual profiling and refreshing, which prevents the
solution from being widely deployed. We built a pipeline to automate the entire
process, practically making this solution an easy-to-adopt and maintenance-free
solution for all applicable services.

The pipeline also decouples the service’s profile data from source code, hence
allowing smooth and frequent profiling update to accommodate code/usage
changes. Specifically, the profiled data are stored in separate storage that is dif-
ferent from source code repository. The advantages of the decoupling is each pro-
filing update becomes part of the linearized code commit history, just like any other
source code change. The profiling updates can be treated as source code, enabling
easy check-in, review and reverting. Moreover, the profiled data files are stored and
retrieved using file handles, hence we don’t actually pay the cost of storing these
huge almost-not-human-readable files in the source code repository.

In addition to helping reducing iTLB misses, the solution can also help reduc-
ing iCache misses. Computing instructions are fetched from memory and exe-
cuted by CPUs. To expedite the instruction accesses, smaller and faster caches
(iCache) are used to hold the instructions. iCache misses can occur when the
binary working set is bigger than the iCache size. Caches have multiple levels,
and the lowest level iCache is often times much smaller than the binary working
set. iCache misses delay the CPU execution due to longer memory access time.

4 Detailed Work Flow

We now present the detailed steps and components of this solution. Note that
neither isolating hot-text nor using huge pages is an invention, and both of them
have been tried in several scenarios. However the naive adoption of the solution
used to involve multiple manual and tedious steps (e.g., profiling, linking, regu-
larly refreshing the profiles), hence few services have benefited from the solution.
To address this issue, we designed an automated framework and data pipelines to
remove the manual involvement by wrapping, aggregating and automating each
steps. As a result, the solution suite becomes maintenance free and requires little
code change.

4.1 Diagram and Components

The steps and components of this framework are shown in Fig. 1. Largely it
consists of three components of profiling, linking and loading.

– Profiling. The profiling component is shown on the top of the diagram. A
data-gathering job runs weekly to profile the running service2. The job is

2 We observed that most services are relatively stable with regard to hot functions,
hence weekly profiling suffices.



152 Z. Zhuang et al.

using our Dataswarm framework [10], a data storage and processing solution
developed and used by Facebook. The job profiles running information of the
service (e.g., hot functions), and the profiling is carefully controlled to have
very light overhead. Profiled data is then sent to a permanent storage called
Everstore [11], a disk based storage service.

– Linking. When building the service package, the linker script retrieves the
profiled hot functions from Everstore and reorders functions in the binary
based on the profiles.

– Loading. When loading the service binary, OS makes best efforts to put hot-
text on huge pages. If no huge pages available, then put on regular pages.

4.2 Code Changes

For a new service that would like to apply this optimization, only three places
of small changes (boilerplate code) are needed: (a) Dataswarm pipeline creation;
(b) Source code (cpp files) change; and (c) Build configuration change.

Storage Pipeline Creation. On top of our data storage framework of
Dataswarm, a data processing job regularly refreshes the profiled hot functions

Fig. 1. Diagram of hot-text and huge pages



Automated Hot Text and Huge Pages: An Easy-to-Adopt Solution 153

profiles to reflect updates on the service: code changes and usage pattern changes.
The data pipeline kicks off a Dataswarm job weekly for each service. When the
job kicks off, it profiles the specified service and generates a file containing the
hot functions. The hot function file is stored to Everstore. The file is uniquely
identified by a file handle and content checksum.

The Dataswarm job also automatically creates a code diff (i.e., code checkin)
which updates a meta file containing the newly generated hot-function file handle
and checksum, it then automatically lands the diff (i.e., updating the meta file)
to the services’ source code directory.

Source Code Change. The framework only requires two lines of code change
to source code’s main cpp file. Specifically, the first line of code change is to
include a header file that defines the function that is responsible for putting the

(a) Hot-text region: starting at 0x600000

(b) Hot-text region: ending at 0xd1a113 (total size: 7.4 MB)

Fig. 2. Verifying the existence of hot-text

Hot-text placed on huge pages (AnonHugePages: 8192KB, or 4 huge pages)

Fig. 3. Verifying the hot-text is deployed on huge pages (host name anonymized)



154 Z. Zhuang et al.

hot functions to huge pages if possible, and it achieves this by copying the text
segment of the binary and using mmap() to map the text segment to huge pages.

The second line of code change is to call hugify self() in main() function.
This function needs to be called in the beginning of the main() function for the
best result.

Build Configuration Change. The build configuration change allows the
profiled data to be retrieved and used during linking. Specifically, it adds a few
lines to build TARGETS file. It retrieves the meta file that contains the hot
functions information of the particular service from Everstore. The retrieval is
via HTTP, which is supported by Everstore and Buck [12] using remote file
call. To ensure correctness, the meta file is checked by SHA1 hash.

4.3 Verifying the Optimization Is in Place

To make sure the optimization is in place, two things need to be verified: hot-
text is in the binary, and hot-text is placed on huge pages. In the following, we
demonstrate the verification steps under Linux.

Hot-text verification. If a binary has the hot-text extracted, the binary should
have symbols that indicate the starting/ending address of the hot-text. Specif-
ically, the hot-text region starts with hot start and ends with hot end. nm
utility [13] can list the symbols from the binary, and by examining the output
of the symbols (nm -S –numeric-sort /proc/pid/exe, where pid is the process id
of the running binary), we can verify the existence of hot-text.

Let’s examine an example. As it shows in Fig. 2 the hot-text region starts
from 0x600000 and ends at 0xd1a113. The total size is 7446803 bytes, or about
7 MB.

Huge pages verification. To verify the hot-text is stored on huge pages, we
can examine the running process by checking the smaps file, e.g. grep -A 20
“600000-” /proc/pid/smaps. As shown in Fig. 3, the AnonHugePages allocated
is 8192 KB, or about 4 huge pages (2 MB each), indicating the hot-text is loaded
to huge pages. In scenarios where hot-text is not put on huge pages, it will show
AnonHugePages: 0KB.

5 Performance Results

5.1 Experiences with Many Services

We applied the hot text and huge page solution to many services and gained
deep understanding of the improvement degrees on various types of performance
metrics. Based on our experiences, typically the most immediate performance
improvement is reduced iTLB miss rate, it can also help on other metrics.

– iTLB miss rate. This is the most obvious benefit, we consistently see up to
50% iTLB cache miss drop for almost all the services that adopted this solu-
tion.



Automated Hot Text and Huge Pages: An Easy-to-Adopt Solution 155

– CPU usage. CPU usage typically drops by 5% to 10% across the services we
worked on.

– Application throughput. Applications typically enjoys higher throughput,
thanks to the reduced cpu usage.

– Application query latency. The query latency mostly will drop due to reduced
iTLB cache miss and faster execution.

Note that depending on services and workload characteristics, not all of these
metrics will improve. In addition, different services see improvement on different
set of performance metrics, and the degrees of improvement vary.

5.2 An Example Service

To understand more about the performance metrics and the extent of improve-
ment, we choose a service to elaborate on the detailed results. The particular
service is an online one which directly serves the users, hence both application
throughput and latencies are important. Moreover, the service fleet’s footprint
is significant with many servers, and it is desired to reduce CPU usage such that
a single host can serve more users and the service fleet can be shrinked.

We will examine both application level and server system level metrics. For
application level metrics, we consider both query/call latencies and application
throughput (i.e., queries per second). We also consider multiple percentiles of
latencies. Overall we observe 15% throughput improvement and 20% of latency
reduction.

For system level metrics, we consider host cpu usage (total, user and kernel
usages) and iTLB miss rates. The iTLB miss rate is almost halved, and cpu usage
is 5% lower. Across the 50+ services we have worked on, applying this solution
typically reduces cpu usage by 5% to 10%. We also estimated that about half
of such cpu reduction gain comes from hot-text, while the other half comes from
huge page.

Server System Performance. The iTLB miss rate is shown in Fig. 4(a).
Before applying the solution, the iTLB miss rate is up to 800 iTLB misses per
million instructions during peaks, which is very severe. After the optimization
is in place, iTLB miss rate almost drops by half. Specifically, during peaks, the
highest iTLB miss rate is about 425 misses per million instructions, or a 49%
drop.

As a result of the dropped iTLB miss rate, the CPU usage drops by 5%
(i.e., from 32% to 30.5% at their peaks), as shown in Fig. 4(b). The user level
cpu drops by 15%, while kernel level cpu increases by about 7%, as shown in
Figs. 5(a) and (b), respectively.

Application Level Performance. Application level metrics are shown in
Figs. 5(c) and 6. The blue curve is before optimization (i.e., data sets of DS1/
DS3/F1), and the yellow curve is after optimization (i.e., data sets of



156 Z. Zhuang et al.

(a) iTLB miss rate (per million instructions)

(b) host cpu usage (%)

Fig. 4. System level performance (iTLB miss rates and host cpu usage)

DS2/DS4/F2). P50 of application query latencies drops by up to 25%, P90 drops
by up to 10%, and P99 drops by up to 60%.

The application throughput (qps)increases by up to 15% (i.e., peak through-
put increases from 3.6 M qps to 4.1 M qps). It is very delightful to see both
throughput and latency improvements at application level.



Automated Hot Text and Huge Pages: An Easy-to-Adopt Solution 157

(a) User cpu usage

(b) Kernel cpu usage

(c) Throughput: Qps (Queries per second)

Fig. 5. System (User/kernel CPU) and application level performance (Throughput)
(Color figure online)



158 Z. Zhuang et al.

(a) P50 query latency improvement (ms)

(b) P90 query latency improvement (ms)

(c) P99 query latency improvement (ms)

Fig. 6. Application level performance (query latency) (Color figure online)



Automated Hot Text and Huge Pages: An Easy-to-Adopt Solution 159

6 Discussions

6.1 Hot-Texts Not Being Placed on Huge Pages

During our performance optimizations with some services, we happened to notice
that for some services that already incorporated the solution we propose in this
paper, some hosts do not place hot-text on huge pages. We digged into that issue
and found it is due to the way the huge pages are handled.

Currently the huge pages are not pre-allocated during OS starts, instead, it is
a best-effort. When the binary loads, OS will try to find continuous memory big
enough for a huge page to place hot-text. If the memory is sufficiently fragmented
and no huge pages can be found, then it will fall back to use regular pages.

To what degree does this issue occur depends on many factors that affect
memory fragmentation, including system up-time and memory pressure level.
For instance, we have found Haswell hosts are more likely to have such issue
than Broadwell hosts, thanks to the former’s higher load and memory pressure.

In addition to reserving huge pages, another solution is to defrag mem-
ory before loading the service binary (e.g., /roc/sys/vm/drop caches and
/proc/sys/vm/compact memory). Memory defragmentation can compact frag-
mented pages, hence resulting in higher chances of being able to find huge pages
when loading the binary.

6.2 Hot Function File Retrieval Failure

Building the binary package with this optimization needs to retrieve the hot
function file from Everstore. Everstore is very reliable based on our experience,
and only 1 failure is encountered when loading hot functions in a year. But in
the worst scenario where if it fails to retrieve the hot function file, the binary
build will fail.

6.3 Downside of This Approach

There is very little downside (e.g., very little performance overhead) about using
this approach, thanks to the automatic profiling and diff landing. The major
downside is longer binary-building time.

Another concern about using huge pages is the memory waste (i.e., up to
1 page), depending on the way they are used. Reserved huge pages are always
paged into memory, and the recommendation is to reserve just-enough pages.
THP, on the other hand, is free from this concern. The possible memory waste
is when a huge page is not entirely used. When the number of huge pages used is
small compared to the total available memory, this concern might be negligible.
Based on our experiences, most services only use a few 2 MB huge pages, which
is trivial compared to the total available memory (e.g., hundreds of GBs).



160 Z. Zhuang et al.

7 Related Work

Many works optimize the performance of the binary using various types of
techniques during different phases of compiling, linking and post-linking of the
binaries.

During compiling time, instrumentation-based schemes have been employed
by GCC and Microsoft C/C++. In GCC world, such optimization is called FDO
(Feedback-Driven Optimization) [4], while Microsoft refers to it as PGO (Profile-
Guided Optimization) [4]. These schemes also effectively re-compile hot code for
speed and cold code for size. As a result, the overall code size is typically reduced
by FDO/PGO. GCC’s AutoFDO (Automatic Feedback Directed Optimizer, [14])
is another feature that uses run-time feedback mechanism to help compiler,
enabling wider range of optimizations. Specifically, LLVM supports AutoFDO
framework that easily converts linux perf output into LLVM consumable profile
file.

During linking time, techniques such as the hot-text optimization described
in this paper [9] use a linker script and operates on a function-by-function basis.
Work [9] elaborates on some of the internal mechanisms to make this optimiza-
tion happen, and we further build a framework to automate the entire process
with an end-to-end pipeline. Safe ICF (Identical Code Folding) [15] takes another
approach of detecting functions that contain redundancies and folding/merging
functions into a single copy.

There are also post-link optimizers. BOLT (Binary Optimization and Layout
Tool) [16,17] is a post-link optimizer developed to improve running performance
of non-trivial binaries. It operates on a finer basic block granularity and achieves
the goal by optimizing application’s code layout based on execution profile gath-
ered by sampling profilers (e.g., Linux perf ). Specifically for Intel, Ispike [18] is
another post-link optimizer.

At system level (i.e., Operating system and hardware), countless works have
demonstrated the potentials and shared the experiences of speeding up software
running on various types of OS and hardware. Work in [19] evaluates the accu-
racy of multiple event-based sampling techniques and quantifies the impact of
the improvements claimed by many other techniques.

Moving up to application level, even more places can be optimized for bet-
ter performance, thanks to the heterogeneity of different types of applications
and services. At Facebook, we have designed and improved many services and
products [11,20]. As an example, RocksDB [21] a persistent key-value store devel-
oped by Facebook, has been continuously optimized for many different scenarios
[2,22].

8 Conclusion

Facebook, having one of the world’s biggest computing infrastructures, treats
performance optimizations seriously. During the course of various types of per-
formance improvement efforts, we have accumulated techniques, tools and expe-



Automated Hot Text and Huge Pages: An Easy-to-Adopt Solution 161

riences to speed up our services. One of these approaches is an automated frame-
work to incorporate both hot-text and huge pages and enable service owners to
adopt this optimization with minimum effort. The solution identifies hot-text of
the binary and places the binary on huge pages. The solution is further wrapped
into an automated framework, enabling service owners to effortlessly adopt it.
The framework has been applied to dozens of our services, proved effective and
has significantly improved our service efficiencies.

Acknowledgements. The solution presented in this paper involves many peoples’
efforts, which include new services or feature enhancements of existing services. In
particular, we thank Guilherme Ottoni and Bert Maher for working on HFSort, Mark
Williams for implementing hugify self(), Denis Sheahan and Pallab Bhattacharya for
substantiating a generic library, and Mirek Klimos for the support that allows auto-
mated refreshing of profiling data.

References

1. Chen, G.J., et al.: Realtime data processing at Facebook. In: Proceedings of the
2016 International Conference on Management of Data, SIGMOD 2016, New York,
NY, USA (2016)

2. Dong, S., Callaghan, M., Galanis, L., Borthakur, D., Savor, T., Strum, M.: Opti-
mizing space amplification in RocksDB. In: Proceedings of the 8th Biennial Con-
ference on Innovative Data Systems Research (CIDR 2017). Chaminade, California
(2017)

3. Annamalai, M., et al.: Sharding the shards: managing datastore locality at scale
with Akkio. In: Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI 2018, Berkeley, CA, USA (2018)

4. Wicht, B., Vitillo, R.A., Chen, D., Levinthal, D.: Hardware counted profile-guided
optimization. CoRR, vol. abs/1411.6361 (2014). http://arxiv.org/abs/1411.6361

5. Transparent Hugepage Support. https://www.kernel.org/doc/Documentation/
vm/transhuge.txt

6. Intel HasWell Architecture. https://ark.intel.com/content/www/us/en/ark/
products/codename/42174/haswell.html

7. Advanced usage of last branch records. https://lwn.net/Articles/680996/
8. HFSort. https://github.com/facebook/hhvm/tree/master/hphp/tools/hfsort
9. Ottoni, G., Maher, B.: Optimizing function placement for large-scale data-center

applications. In: Proceedings of the 2017 International Symposium on Code Gen-
eration and Optimization, CGO 2017, Piscataway, NJ, USA (2017)

10. Data pipelines at Facebook. https://www.meetup.com/DataCouncil-AI-
NewYorkCity-Data-Engineering-Science/events/189614862/

11. Barrigas, H., Barrigas, D., Barata, M., Furtado, P., Bernardino, J.: Overview of
Facebook scalable architecture. In: Proceedings of the International Conference on
Information Systems and Design of Communication, ISDOC 2014 (2014)

12. Buck: A high-performance build tool. https://buckbuild.com/
13. NM utility. https://sourceware.org/binutils/docs/binutils/nm.html
14. Chen, D., Li, D.X., Moseley, T.: AutoFDO: automatic feedback-directed optimiza-

tion for warehouse-scale applications. In: Proceedings of the 2016 International
Symposium on Code Generation and Optimization, CGO 2016, New York, NY,
USA (2016)

http://arxiv.org/abs/1411.6361
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://ark.intel.com/content/www/us/en/ark/products/codename/42174/haswell.html
https://ark.intel.com/content/www/us/en/ark/products/codename/42174/haswell.html
https://lwn.net/Articles/680996/
https://github.com/facebook/hhvm/tree/master/hphp/tools/hfsort
https://www.meetup.com/DataCouncil-AI-NewYorkCity-Data-Engineering-Science/events/189614862/
https://www.meetup.com/DataCouncil-AI-NewYorkCity-Data-Engineering-Science/events/189614862/
https://buckbuild.com/
https://sourceware.org/binutils/docs/binutils/nm.html


162 Z. Zhuang et al.

15. Tallam, S., Coutant, C., Taylor, I.L., Li, X.D., Demetriou, C.: Safe ICF: pointer safe
and unwinding aware identical code folding in gold. In: GCC Developers Summit
(2010)

16. Panchenko, M., Auler, R., Nell, B., Ottoni, G.: Bolt: a practical binary optimizer for
data centers and beyond. In: Proceedings of the 2019 IEEE/ACM International
Symposium on Code Generation and Optimization, CGO 2019, pp. 2–14. IEEE
Press, Piscataway (2019)

17. Binary Optimization and Layout Tool. https://github.com/facebookincubator/
BOLT

18. Luk, C.-K., Muth, R., Patil, H., Cohn, R., Lowney, G.: Ispike: a post-link optimizer
for the Intel Itanium architecture. In: Proceedings of the International Symposium
on Code Generation and Optimization: Feedback-directed and Runtime Optimiza-
tion, CGO 2004, Washington, DC, USA (2004)

19. Nowak, A., Yasin, A., Mendelson, A., Zwaenepoel, W.: Establishing a base of trust
with performance counters for enterprise workloads. In: Proceedings of the 2015
USENIX Conference on USENIX Annual Technical Conference, USENIX ATC
2015, Berkeley, CA, USA, pp. 541–548 (2015)

20. Scaling server software at Facebook. In Applicative 2016, Applicative 2016,
speaker-Watson, Dave (2016)

21. RocksDB: A persistent key-value store. https://rocksdb.org/
22. Ouaknine, K., Agra, O., Guz, Z.: Optimization of RocksDB for Redis on flash.

In: Proceedings of the International Conference on Compute and Data Analysis,
ICCDA 2017, New York, NY, USA (2017)

https://github.com/facebookincubator/BOLT
https://github.com/facebookincubator/BOLT
https://rocksdb.org/

	Automated Hot_Text and Huge_Pages: An Easy-to-Adopt Solution Towards High Performing Services
	1 Introduction
	2 Background
	2.1 ITLB (Instruction TLB) Misses
	2.2 Huge Pages

	3 Design
	3.1 Overview
	3.2 Design Elements and Rationales

	4 Detailed Work Flow
	4.1 Diagram and Components
	4.2 Code Changes
	4.3 Verifying the Optimization Is in Place

	5 Performance Results
	5.1 Experiences with Many Services
	5.2 An Example Service

	6 Discussions
	6.1 Hot-Texts Not Being Placed on Huge Pages
	6.2 Hot Function File Retrieval Failure
	6.3 Downside of This Approach

	7 Related Work
	8 Conclusion
	References




