
ClientNet Cluster an Alternative
of Transferring Big Data Files

by Use of Mobile Code

Waseem Akhtar Mufti(&)

Alborg University, Aalborg, Denmark
wmufti@gmail.com

Abstract. Big Data has become a nontrivial problem in the field of business as
well as in scientific applications. It becomes more complex with the growth of
data and scaling of data entry points. These points refer to the remote and local
sources where huge data is generated within tiny slots of time. This may also
refer to the end user devices including computers, sensors and wireless gadgets.
As far as scientific applications are concerned, for example, Geo Physics
applications or real time weather forecast requires heavy data and complex
mathematical computations. Such applications generate large chunks of data that
needs to transfer it through conventional computer networks. Problem with Big
Data applications emerges when heavy amount of data is transferred or down-
loaded (files or objects) from remote locations. The results drawn in real-time
from large data files/sets become obsolete due to the fact data keeps on adding
new data into the files and the downloading by remote machines remains slower
as compared to file growth. This paper addresses this problem and provides
possible solution through ClientNet Cluster of remote computers, Specialized
Cluster of Computers, as one of the alternative to deal with real-time data
analytics under the hard constraints of network. The idea is moving code, for
analytic processing, to the remotely available big size files and returning the
results to distributed remote locations. The Big Data file does not need to move
around network for uploading or downloading whenever the processing is
required from distributed locations.

Keywords: Big data � Mobile code � File transfers � Distributed clients

1 Introduction

1.1 Big Data Sources

Computer is efficient at processing highly complex algorithms. CPU gives a correct and
fastest output to the problems if these problems are programmed. The best algorithms
available for sorting and searching are still used by many day to day applications
involving considerably large amounts of data and higher level of problem complexity.
The limitations of computing devices are realized especially when a very large data are
processed by a simple program. Problem becomes worse when there are multiple keys
given for simultaneous searching of trillions of data items scattered around different

© Springer Nature Switzerland AG 2019
Y. Xia and L.-J. Zhang (Eds.): SERVICES 2019, LNCS 11517, pp. 106–118, 2019.
https://doi.org/10.1007/978-3-030-23381-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23381-5_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23381-5_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23381-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-23381-5_8

data structures or memory locations. Sorting them and then searching infinitely many
data items in the scenario when multiple organizations are connected for some common
goals of business. The problem of handling Big Data [1–3] is even impossible if the
output is required in real-time. The decision making has to be automatic because it is
not possible for a human to analyze and assess higher volumes of data in real-time and
making business decisions within limited time duration. Geo physical applications
involve computations of a number of physical properties of earth layers, wind densities
on different altitudes and the computations of tides under water to be the main reason
for tsunamis, earth quacks and sea storms.

Initially Big data emerged due to Web logs and machine logs recording for user
behavior analysis on internet and offline [8]. The size of web logs evolved with increase
in number of computer and internet users, what went to be considered as big volume of
data and for the analytics of user behaviors. The volume of big data further exploded as
number of internet based applications introduced e.g. social networks, cellular gadgets,
E-commerce, cloud computing and all those devices and human sources involved
putting inputs to the systems and generate outputs on communication network.

This paper introduces the first version of distributed ClientNet cluster developed in
Java. It provides the solution as an alternate of transferring very large files to the points
of processing. Files are stored on fixed locations whereas processing code, it may be for
data analytic purpose, is transferred to the file locations. The code transfer algorithm
used in ClientNet is inspired by the visitor design pattern [4] one of the classic software
design technique for object oriented software.

1.2 Proposed System

In this paper map computing is implemented in ClientNet cluster system for a given
large text files as an example of Big Data. The system consists of 3 clients, 1 coor-
dinator, 1 data server and 1 executor server; all are connected as remote machines. Very
large text files to compute the maps are physically stored on the data server. Since the
files are large sized therefore do not need to be transported to remote networks for data
analytics. Instead, the client codes that can compute the map are transported in parallel
to process files on destination node and the results are sent back to the remote clients.
This saves network bandwidth, time for real-time data analytics coping with real-time
growth of remote data files. The map compute for big files is an example of a scenario
to demonstrate mobile code method to deal with Big data. ClientNet distributed cluster
is completely developed in Java with built-in RMI and Map compute classes.

The system is in early stage and does not support distributed file system of its own
or of any other cluster. It also does not support advanced techniques for in-memory
processing of very big data sets which is the focus of my next paper. However, the
system provides an efficient coordination among local hosts simulating real scenario of
remote map compute job. The system is flexible enough that clients can add as many
jobs as they want by adding Java classes for each job. All client jobs execute in parallel
using multithreaded Java model of concurrency. It has used the power of Java classes

ClientNet Cluster an Alternative of Transferring Big Data Files 107

and objects that provides an early version for in-memory processing avoiding the
frequent read/write accesses on physical storage. The system is less complex and is
tailored directly to serve the processing of remote jobs as compared to Apache Hadoop
[5] and Apache Spark [6]. ClientNet is platform independent and fully demonstrates
independent functioning of all components of clustered computers distributed over
remote locations. This paper is composed of Big Data concepts, its architectures and
challenges; introduces the first version of ClientNet cluster system as programming
solution for Big Data transfers and data analytics by map computing as an example, its
design model and concurrency model.

2 Big Data Concepts and Architectures

2.1 Foundations

According to O’Relly Media [7], who first coined the word Big Data in 2005, they
define it as “Big data is data that exceeds the processing capacity of conventional
database systems. The data is two big, moves too fast, or doesn’t fit the structures of
your database architectures. To gain value from this data you must chose an alternative
way to process it”. Almost everywhere in the literature the size of big data is not termed
as fixed to designate it to be Big Data. I would consider a big data when it is not possible
to handle it with traditional relational database tools and techniques. This includes the
size of data must be large enough that cannot be accommodated in database tables, or
unstructured enough to extract its meaning, or a continuously growing data that is not
possible to be placed in a database container offixed size. Big data can be considered if it
is large enough that available searching and sorting algorithms cannot be applied as they
are used for conventional systems. This intrinsically poses the possibility of creation of
new techniques and algorithms to target for the typical nature of data. For example, if
data is large enough that cannot be passed to remote computers (one of the main focus of
this paper) or the processing is possible only through data mining techniques that lead to
data clusters and mapping techniques.

More specifically Big data is characterized based on its specific properties known as
V’s of Big data [1, 2]. Since this paper is not dedicated to the survey and detailed
definitions of big data and its available clusters, therefore I have limited its text to focus
on the contribution of paper in addition to the brief descriptions.

Volume: It refers to the size that would be equal or beyond the maximum of its size
present at the time of writing this article. The volume may possibly go beyond of
multiples of petabytes. While considering the distributed big data scenario then it is
possible the volume would cross thousands of petabytes. This would lead it to infinitely
big enough to measure the size of continuously growing files and the only way to
consider it would be by using partitioning algorithms. One can imagine the difficulties
of searching and sorting that would need specialized and context bound techniques to
achieve goals for every special scenario.

108 W. A. Mufti

Variety: As given above one of the distinct factors of big data is the variety of data
due to which it requires advanced techniques for processing. Types of data may be
unstructured data generated through social media in form of random tweets and file
attachments produced in multiple contexts of conversation. Unstructured or unfor-
matted data normally cannot be used if data filtering is not applied. However the other
formats of data e.g. media files: videos, images, different texts: doc, xml, pdf, txt, etc.
are not difficult to maintain in available databases. In this case if the data is continu-
ously being generated to build enormously big size then new techniques would require
for real-time data analytics.

Velocity: Rate of growth of data is velocity which is the most crucial factor to deal.
This is the biggest challenge that has pushed computing professionals to device new
algorithms and high capacity storage devices and high speed computer networks.

Veracity: It is the incomplete or noisy data that makes analytics more difficult. Data is
periodically monitored preventing it garbage data. For this purpose data filtering is
applied or manually the developers filter it before analytic process begins.

Validity: This refers data must be valid and consistently available in a distributed
system of computers. The replicated data must be taken care of its validity before
extracting its meaning at different locations in real-time. If data is not valid at all points
of processing then the extracted meaning would not be valid as well and results would
be inconsistent. This is also the basic property of conventional databases.

Volatility: This is one of the difficult tasks in big data that continuously keeps evolving
into different volumes and variety. It refers to the data that is no longer relevant must be
discarded or not to store it in valid data containers. To save the space from unnecessary
data the volatility processes must be monitored continuously as garbage collection is
performed in different systems and languages.

2.2 Big Data Architectures and Technologies

After that the paper moves on the actual goal defined in the title. Big data architecture
framework [9] defines several of its models, formats, management methods, analytics
methods, infrastructure (storage, methods of accessing, processing and routing of data)
and security. Big data technology includes programming tools that provide the solution
to the big data architecture framework. This involves technological framework e.g.
Hadoop and Spark clusters which are also called big data architectures. These tools are
the collection of several components that provide data processing, analytics, storage
and distribution solution along with powerful compute engine. The overall data life-
cycle and the architecture is called big data ecosystem [9–11]. These large scale
clusters can process big data in parallel through unified framework of components for
each service. For example, Hadoop contains Hadoop Distributed File System (HDFS)
for managing very large data files into partitions spanned over thousands of remote
nodes, MapReduce, Mahout, HBase, OoZie, Pig, Flume, Zookeeper, Hive, Sqoop,
Whirr, etc. As shown into the well known diagram these tools are integrated in Hadoop
tool framework (Fig. 1).

ClientNet Cluster an Alternative of Transferring Big Data Files 109

One of the famously known tools is MapReduce which is collection of programs
written in Java and Scala. This system is used to transform raw text data into counted
words from collection of text files so that the output can be queried or analyzed
automatically; reduces the text into words and their occurrence as given in the fol-
lowing diagram. Originally MapReduce was developed by Google since then it has
been used by others as well. This is one of the big data analytic tools provided by
collection of Java classes used in this paper as an example to demonstrate ClientNet
cluster. So far it is the solution used only for text processing on large scale distributed
systems. For instance it counts words or users and their behavior on Web. Further
details are given after the section of Spark.

Mahout is developed by Apache used for distributed collaborative filtering, clus-
tering and classification of data. It is written in Java and Scala therefore supports both
languages. The latest version of Mahout is a distributed linear algebra framework
designed to let mathematicians, statisticians and data scientists quickly implement their
own algorithms (Fig. 2).

Fig. 1. Hadoop tool suite [12]

Fig. 2. MapReduce [13]

110 W. A. Mufti

Microsoft’s Azur HDInsight [14] was initially known as Windows Azure uses
popular open source frameworks including Apache Hadoop, Spark and Kafka. Azur is
cost-effective and provides enterprise-grade service for open analytics. It integrates
seamlessly with components of open source echo system of above mentioned clusters
with global scale. “It is a cloud computing platform, designed by Microsoft to suc-
cessfully build, deploy and manage applications and services through a global network
of datacenters” [15].

For the purpose of simplicity and focus I have deferred more details on other
clusters such as Spark, one of highly significant big data clusters. It is more famously
known for its in-memory computing and scheduling of availability of large memory
objects. The most significant work of Spark is it supports both object oriented pro-
gramming and functional.

3 ClientNet Cluster

3.1 Introduction

ClientNet is set of Java programs running on a cluster of computers connected by
communication network. The first version of it contains 3 clients, 1 coordinator, 1 data
server and 1 executor engine. It is scalable to a number of similar clusters providing
solution to remote clients by cascading the design to multiple physical locations. Since
it is non-commercial and in the early stage of its development therefore currently the
ClientNet is simple and limited to minimum number of computers communicating via
passing messages through Java Remote Method Invocation protocol as shown in the
following diagram. The messages are passed by invoking remote functions and passing
objects as parameters.

To keep it simple and working I have implemented the map compute using built-in
Java [16] for a large size text files that takes long time if transmitted to
remote computers. Taking the advantage of message passing, the computing code that
is responsible of map analytics is passed from parallel clients to the remote data server
where big size text file is physically available. Since the map compute code is light
weight therefore it is easier to pass around remote network and execute at the remote
server side. After completion, the analysis results (map entries) are sent back to the
remote clients as Java objects which are lighter enough for smooth data communica-
tion. The process involves coordination of all computers running Java clients and
server programs. Since the Java objects are memory residents therefore map compute
does not executes frequent reads and writes on hard drive.

3.2 ClientNet Architecture and Programming Model

The cluster system consists of a group of computers coordinating via programming
model based on Java RMI [17] as given in the following (Fig. 3).

ClientNet Cluster an Alternative of Transferring Big Data Files 111

3.2.1 Connectivity and Message Passing
All machines are running Microsoft Windows operating system. The next release of
ClientNet would adopt heterogynous platform. Each computer participating in cluster
needs to get connected on communication network before it runs any program. For this
purpose each computer registers to RMI registry with computer name recognizable on
the network and its port number where it receives and sends messages to other com-
puters as given in the following Java code:

The RMI registry comes with Java distribution and it must execute on each
machine with JVM before the start of any Java Client-Server program. The computer
name, e.g. , is name string that would be globally known to all of computers in
the cluster. Since the big text file does not transfers to other computers therefore Data
computer does not send messages to other computers rather it only receives requests
from Coordinator for file read access. Once the machine is available on the network it
publishes its I.P address, port number and name string to show its global availability.
When the Client1 machine, for instance, sends messages to other computer in the
cluster group it executes the following lines of Java code before actual message
passing.

Fig. 3. ClientNet cluster connections diagram.

112 W. A. Mufti

This means Client1 looks for other computer’s I.P address and its port number by
accessing RMI registry function ; Here it finds Coordinator machine of
port number 6000 and localhost identified by I.P: 127.0.0.1. After creating link the

Client1 creates reference named to the Coordinator’s remote
object on Client1 local disk. Since it has Coordinator’s reference therefore it can send
and receive messages to remotely available Coordinator by invoking interface func-
tions on as given below:

The is remote interface function of remote Coordinator. The
class diagram of ClientNet cluster is given in the following Fig. 6. This function returns
the remote reference, to the Coordinator, of type of the big data text file that
resides on remote server. For security purpose the Coordinator represents Data
server for all clients. Everywhere in the cluster the communication takes place among
all computers as discussed above example. Remote references are first obtained after
creating RMI connections.

3.2.2 Data Transmission and Filtering
Each client is a Java class contains inner class which contains a thread
that runs anywhere where it is invoked at destination. The inner class instantiates map
object of type . It is built-in Java utility for map computing jobs, records a
count for each word entry e.g. . Here the function
invokes on map object and receives two parameters i.e. text token and its
occurrence 1. The class does not provide filtering functionality by default
therefore I have added extra function that filters out each
scanned word from 5 MB text file and truncates the special characters attached to the
word. For instance if the given text is:

“Among the highest living standard cities of the world are Switzerland, Oslo and
Copenhagen etc. Switzerland is the most beautiful as compared to Oslo or Copenhagen.”

The returned map of ClientNet program after applying filter function is:
{Switzerland = 2, Copenhagen = 2, Oslo = 2, …}, where as the original Java map
would return it like this: {Switzerland = 1, Copenhagen = 1, Switzerland, = 1,
Oslo = 2, Copenhagen. = 1,…}. The original Java map computes it as: “Switzerland,”
and “Switzerland” two different words and “Copenhagen” and “Copenhagen.” as two
different words. It is because Java map includes last punctuation marks (, and .) attached
to the word as the part of that word. The function truncates
the punctuations marks attached and considers it the same word if the word has
appeared before.

Therefore filter function prevents and it does not count the new word occurrence.
Each time a word is added after filtering unless the complete text is processed. The
text filtering function is lengthy enough to present in this paper therefore for clarity
purpose one of its checking conditions is provided in the following diagram. This
condition filters for surrounded words, e.g.: Or Or

ClientNet Cluster an Alternative of Transferring Big Data Files 113

and generates only two tokens and as
two distinct clean words.

The following peace of code given in Fig. 4 is one of the several conditions that
filters out some of the special characters and returns a clean word that becomes part of
the map entries. The condition checks if the special characters occur at first and last
position of a word, that kind of word is a surrounded word e.g. “(Apple)” that is
surrounded by two round braces. This condition may further be extended by adding
more checks of all special characters. After the condition is evaluated, program copies
characters other than braces into another array and finally con-
verts into String object . The program segment is part of a loop which
continues for all scanned words.

The ClientNet does not support shuffling of intermediate map results because at this
stage it does not support distributed file system which has been left for next version.
The system assumes final piece of file and begins map compute when it receives the
file. All three clients contain the similar functionality which can be changed at anytime
with new data analytics functions. It should be noted that data analytics is not the main
focus of this paper.

After that the Coordinator packs all the clients’ source codes as binary code in form
of objects into the Java array list data structure which is called Code Base. The code
base contains all threads ready to execute wherever the array list is to be accessed. The
code base (array lists) is then transferred from Coordinator to Executor server through

if(chars.length > 1){

if((chars[0] == '*' && chars[chars.length-1] ==

'*')||(chars[0] == '(' && chars[chars.length-1] ==

')')||(chars[0] == '[' && chars[chars.length-1] ==

']')||(chars[0] == '{' && chars[chars.length-1] ==

'}')||(chars[0] == '\'' && chars[chars.length-1] ==

'\'')||(chars[0] == '-' && chars[chars.length-1] == '-

')||(chars[0] == '<' && chars[chars.length-1] == '>')||(chars[0]

== '(' && chars[chars.length-1] == ',')||(chars[0] == '[' &&

chars[chars.length-1] == ',')||(chars[0] == '{' &&

chars[chars.length-1] == ',')){

char[] surrounded = new char[chars.length-2];

for(int x=1; x < chars.length-1; x++){

surrounded[x-1] = chars[x];

cleanWord = new String(surrounded);

}

return cleanWord;

 }

}

Fig. 4. One of the filtering condition taken from the function .

114 W. A. Mufti

RMI protocol. As the number of client requests will increase the size of code base will
also increase. The following peace of code as given in the Fig. 5 shows how the
Executor runs each client and finally traverses the list and executes each client thread
by the function .

The Executor program segment traverses the list, accesses each of its remote
objects and type casts each object to by creating local
reference to the related remote Client object. Once the object reference is
created it is then used to invoke remote function on it. The invoked function executes
the embedded thread of inner class object of the remote client; this is just to remind that
data analytic jobs are embedded into the inner class of each Client.

It is assumed that Coordinator and Executor Server are physically near the location
of Data server. Therefore for clients the data access becomes easier as compared if
the big files would have been accessed by remote clients independently. The final
computed map is small size text file that contains map entries. This file can easily be
sent to anywhere for knowledge extraction or can be transformed into transactional data
by inserting into conventional database tables for query processing.

3.2.3 ClientNet Java Classes
The class diagram of full system is given in the following Fig. 6. All clients have
similar connections as shown in the diagram which shows only one client. All classes
are connected through their related RMI interfaces which are shown on top of the class
diagram. Since the text file is accessed only for reading purposes therefore there is no
concurrency issues are raised. However all clients are parallel and disjoint because of
each one is remotely available and physically independent. The plus connector of
Client1 shows its relation with its inner class WordCount. The Client1 class is shown
empty because analytic jobs are nothing but the inner classes of their related client

private void runClients() throws InterruptedException, Re-

moteException{

int x = 0;

// process remote clients

while(x < coordinator.getCollection().size()){

client = (ClientCommonInterface) coordina-

tor.getCollection().get(x++);

client.startClientThread();

gc();

}

}

Fig. 5. Processing of clients threads at executor server

ClientNet Cluster an Alternative of Transferring Big Data Files 115

classes. In this paper only one job is given which is embedded into single inner class.
All classes and interfaces boxes contain functions written in their body. The diamond
connector means the reference to remote object and the normal arrow means inheri-
tance among classes or implementation of interfaces. Class diagram may become more
complex if more jobs are added. The sequence in which the system must execute is as
follows: First of all run the start (connectivity) programs of the Data server, then all
Clients, then the Coordinator. Finally Executor server runs its application client that
executes its processing engine.

At this stage ClientNet is light weight and allows limited functionality of map
compute. The uniqueness of this cluster is that the data analytic code, for instance map
compute, does not need to be available on the node; rather the node would be passed
the source code when analytics is required. This allows light weight and less complex
nodes. Therefore every time the data analytics would be performed as a client request.
This will allow parallel processing of analytics on loosely coupled resources. The
mobile code would enhance mobility of soft resources within the cluster as it is nat-
urally provided by the cloud architecture. It does not support or use any available
distributed file system and also does not scales over multiple servers to provided

Fig. 6. ClientNet UML classes

116 W. A. Mufti

availability of remote resources. I believe if the system can successfully show the
basic functioning it can easily be scaled on a number of machines with advanced
analytics functionality. The most difficult tasks that would arise are possibly memory
management of large objects, scheduling of remotely available storage and processing
resources.

4 Conclusion

The cluster successfully implements mobile code technique in Java. ClientNet cluster is
scalable to number of clients distributed across remote locations. More work is required
to add data analytics of different domains, memory management for large number of
objects of big size. Distributed file system and the availability of remote processing
nodes is yet to be developed in its next versions. Since the data analytics is not covered.
ClientNet can also successfully perform concurrent business transactions with accurate
number computation from remote clients in an online scenario. This functioning of the
cluster is not present in this paper because banking data transactions is not the subject
of this paper. The transactions component of ClientNet cluster implements mutual
exclusion to obtain correct calculations by using many of built-in concurrent data
structures and functions of Java.

References

1. Watson, H.J.: Tutorial: big data analytics: concepts, technologies and applications. Commun.
Assoc. Inf. Syst. 34, Article no. 65 (2014)

2. Mary, A.J., Arockiam, L.: A study on basic concepts of big data. Int. J. Emerg. Trends
Comput. Commun. Technol. 1, Article no. 3 (2015)

3. Wang, Y., Kung, L.A., Byrd, T.A.: Technol. Forecast. Soc. Change 126, 3–13 (2018)
4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software, 1st edn. Addison-Wesley Professional, Boston (1995)
5. Polato, I., Goldman, A., Re, R., Kon, F.: A comprehensive view of Hadoop research – a

systematic literature review. J. Netw. Comput. Appl. 46, 1–25 (2014)
6. Apache Software Foundation. Apache Spark Survey 2016 Report, DATABRICKS (2016)
7. Dontha, R.: Big Data. www.digitltransformationpro.com
8. Mohanty, H.: Big data: an introduction. In: Mohanty, H., Bhuyan, P., Chenthati, D. (eds.)

Big Data. SBD, vol. 11, pp. 1–28. Springer, New Delhi (2015). https://doi.org/10.1007/978-
81-322-2494-5_1

9. Demchenko, Y., Membrey, P.: Defining architecture components of the Big Data
Ecosystem. In: International Conference on Collaboration Technologies and Systems
(CTS) 2014. IEEE, Minneapolis, MN, USA (2014)

10. Oussous, A., Benjelloun, F.-Z., Lahcen, A.A., Belfkih, S.: Big data technologies: a survey.
J. King Saud Univ. Comput. Inf. Sci. 30, 431–448 (2018)

11. Joseph, C.P., Thulasi, B.S., Susmitha, V.: Big data – concepts, analytics, architectures –

overview. Int. J. Eng. Technol. (IRJET) 5(2), 125–129 (2018)
12. Khan, N., et al.: Big data: surveys, technologies, opportunities, and challenges. Sci.

World J. 2014, 18 (2014)

ClientNet Cluster an Alternative of Transferring Big Data Files 117

http://www.digitltransformationpro.com
http://dx.doi.org/10.1007/978-81-322-2494-5_1
http://dx.doi.org/10.1007/978-81-322-2494-5_1

13. Zerhari, B., Mouline, S., Lahcen, AA.: Big data clustering: algorithms and challenges. In:
International Conference on Big Data, Cloud and Applications BDCA 2015, Morocco (2015)

14. https://azure.microsoft.com/en-us/services/hdinsight/
15. Microsoft Azure Tutorial. www.tutorialspoint.com
16. https://www.javatpoint.com/java-hashmap
17. https://www.javatpoint.com/RMI

118 W. A. Mufti

https://azure.microsoft.com/en-us/services/hdinsight/
http://www.tutorialspoint.com
https://www.javatpoint.com/java-hashmap
https://www.javatpoint.com/RMI

	ClientNet Cluster an Alternative of Transferring Big Data Files by Use of Mobile Code
	Abstract
	1 Introduction
	1.1 Big Data Sources
	1.2 Proposed System

	2 Big Data Concepts and Architectures
	2.1 Foundations
	2.2 Big Data Architectures and Technologies

	3 ClientNet Cluster
	3.1 Introduction
	3.2 ClientNet Architecture and Programming Model
	3.2.1 Connectivity and Message Passing
	3.2.2 Data Transmission and Filtering
	3.2.3 ClientNet Java Classes

	4 Conclusion
	References

