
Chapter 9
Quadrature-Based Lattice Boltzmann
Models for Rarefied Gas Flow

Victor E. Ambrus, and Victor Sofonea

9.1 Introduction

At non-negligible values of the Knudsen number Kn (defined as the ratio between
the mean free path of the fluid particles in a gas and the characteristic length of
the domain), the Navier–Stokes equations lose applicability [1, 2]. Such rarefied
gas flows can be approached within the framework of the Boltzmann equation [3–
5]. This equation describes the six-dimensional phase-space evolution of the
distribution function f , where f (t, x,p)d3xd3p gives the number of particles at
time t which are contained in an infinitesimal volume d3x centred on x, having
momenta in an infinitesimal range d3p about p. Because of its complexity, the
Boltzmann equation can be solved analytically only in a very limited number
of cases. Alternatively, numerous well-established approaches to the numerical
solutions of the Boltzmann equation are now currently used for academic or
engineering purposes, of which we only mention the direct simulation Monte Carlo
(DSMC) technique [6], the discrete velocity models (DVMs) [7–9], the discrete
unified gas-kinetic scheme (DUGKS) [10–12] and the lattice Boltzmann (LB)
models [13–20].

The LB models are a particular type of DVMs and are derived from the
Boltzmann equation using a simplified version of the collision operator, as well
as an appropriate discretisation of the momentum space, which ensure the recovery
of the moments of the distribution function f up to a certain order N . Originally
derived nearly 30 years ago from the lattice gas automata [17, 19, 20], the LB
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models were primarily designed to recover the hydrodynamics of fluid systems at
the Navier–Stokes level. The LB models inherited the collision-streaming concept
from their ancestors, according to which the velocities of the fluid particles are
aligned along the lattice links such that after one time step δt , each particle arrives
at a neighbouring node [13, 14, 17, 19, 21, 22].

One disadvantage of the collision-streaming paradigm is the increasing difficulty
to approach fluid systems far from equilibrium (e.g., rarefied gases or micro/nano-
scale flowing fluids) using suitable LB models. In this case, the accurate recovery
of specific effects in channel flow at large values of Kn, such as the velocity
slip and the temperature jump at the channel walls [1, 2], requires that higher
order moments of the single particle distribution function f are ensured. Since the
moments of f are derived by integration in the momentum space, their numerical
computation involves the use of convenient quadrature methods. When using a
quadrature method, the moments of the single particle distribution f (up to a certain
order N ) are exactly recovered by sums over a finite set of momentum vectors
pk , 1 ≤ k ≤ K [13, 14, 17–19, 21–26]. As the fluid system is farther from
the equilibrium and the characteristic value of the Knudsen number increases, the
number K of the momentum vectors (i.e., the quadrature points) should also be
increased, as it will be shown later. This task becomes more and more elaborated if
one wants to keep the particles hopping from a lattice node to another one during a
single time step [27–30].

An alternative to the collision-streaming paradigm is provided by the off-lattice
LB models, where the distribution functions are evolved in the lattice nodes
using finite-difference, finite-volume or interpolation schemes [31–34]. A fourth-
order, off-lattice LB model for the simulation of thermal flows in the continuum
regime (small values of the Knudsen number), where the fluid density, velocity
and temperature fields are derived from a single set of distribution functions, was
proposed by Watari and Tsutahara [35] for 2D flows and subsequently extended to
the 3D case [36–38]. Off-lattice LB models of any order N can be easily constructed
using the Gauss quadrature method in the velocity space [18, 23, 25, 26, 39, 40].

Another challenge for microfluidics simulations is due to the implementa-
tion of boundary conditions. In general, the particle–wall interaction governs the
distribution of particles emerging from the wall back into the fluid. Since the
distribution of particles travelling from the fluid towards the wall is essentially
arbitrary, the distribution function becomes discontinuous near the wall [41, 42].
Examples of boundary conditions include the diffuse-spectral [9] and Cercignani–
Lampis [43] particle–wall interaction models; however, for simplicity, we restrict
the analysis to the simpler diffuse reflection model, which is a limiting case of
both models mentioned above. According to the diffuse reflection paradigm, the
reflected particles follow a Maxwell–Boltzmann distribution corresponding to the
wall temperature and velocity. In order to accurately compute the incident and
emergent fluxes required to impose diffuse reflection (kinetic) boundary conditions,
it is convenient to discretise the velocity set based on half-range Gauss quadrature
methods. Such techniques were also used in the frame of DVMs [44, 45] and more
recently, they were adapted for the LB method [24, 26, 46, 47].
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9.2 Generalities

The Boltzmann equation for a force-driven flow reads:

∂tf + p
m

· ∇f + F · ∇pf = − 1

τ
(f − f eq), (9.1)

where on the right-hand side we have used the Bhatnagar–Gross–Krook (BGK)
single-relaxation time approximation of the collision term [48]. The distribution
function f ≡ f (x, p, t) represents the density of particles at position x and time t ,
having momentum p, while

f eq = ngxgygz, (9.2)

gα = 1√
2πmkBT

exp

[
− (pα − muα)2

2mkBT

]
, α ∈ {x, y, z} (9.3)

is the Maxwell–Boltzmann equilibrium distribution function corresponding to local
thermal equilibrium. The force F ≡ F(x) in Eq. (9.1) encapsulates all external forces
acting on these particles.

The local quantities describing the gas flow at the macroscopic level, namely the
particle number density n, the velocity u, the stress tensor Tαβ (α, β = 1, 2, 3) and
the heat flux q, can be obtained as moments of f :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n

ρu

Tαβ

q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∫

d3p

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

p

ξαξβ/m

ξξ2

2m2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

f, (9.4)

where ξα = pα − muα is the peculiar momentum and ρ = mn is the mass density.
The pressure P is defined through:

P = 1

3

∑
α

Tαα, (9.5)

while the temperature is obtained via T = P/nkB , which represents the equation of
state for an ideal gas (kB is the Boltzmann constant). More generally, it is convenient
to introduce the following notation for the moments of f and f eq:
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⎛
⎜⎝Msx,sy ,sz

M
(eq)
sx ,sy ,sz

⎞
⎟⎠ =

∫
d3p

⎛
⎜⎝ f

f eq

⎞
⎟⎠ (px)

sx (py)
sy (pz)

sz . (9.6)

Since mass m, momentum p and energy p2/2m are collision invariant quantities, we
have:

n = M0,0,0 = M
(eq)

0,0,0 , (9.7)

⎛
⎜⎜⎜⎜⎜⎝

ρux

ρuy

ρuz

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

M1,0,0

M0,1,0

M0,0,1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

M
(eq)

1,0,0

M
(eq)

0,1,0

M
(eq)

0,0,1

⎞
⎟⎟⎟⎟⎟⎠ , (9.8)

3

2
nKBT + 1

2
ρu2 = 1

2m

(
M2,0,0 + M0,2,0 + M0,0,2

)
= 1

2m

(
M

(eq)

2,0,0 + M
(eq)

0,2,0 + M
(eq)

0,0,2

)
.

(9.9)

The basic steps for the construction of an off-lattice LB model are [49]:

1. discretising the momentum space;
2. replacing the equilibrium distribution function f eq in the collision term of

Eq. (9.1) by a truncated polynomial with respect to the particle velocity ;
3. replacing the momentum derivative of the distribution function f in Eq. (9.1)

using a suitable expression [see Eq. (9.23)];
4. choosing a numerical method for the time evolution and spatial advection;
5. implementation of the boundary conditions.

A common feature of all LB models is that the conservation equations for the
particle number density n, macroscopic momentum density ρu and temperature T

(for thermal models) are exactly recovered. Regardless of the chosen discretisation
of the momentum space, the Boltzmann–BGK equation (9.1) is replaced by a set of
K equations:

∂tfk + pk

m
· ∇fk + F · (∇pf )k = − 1

τ
(fk − f

eq
k ), (9.10)

where fk (k = 1, 2, . . . K) represents the distribution function corresponding to the
discrete momentum pk . The total number K of discrete momenta are chosen such
that the moments Eq. (9.6) are exactly recovered:



9 Quadrature-Based Lattice Boltzmann Models for Rarefied Gas Flow 275

⎛
⎜⎝Msx,sy ,sz

M
(eq)
sx ,sy ,sz

⎞
⎟⎠ =

K∑
k=1

⎛
⎜⎝ fk

f
eq
k

⎞
⎟⎠ (pk,x)

sx (pk,y)
sy (pk,z)

sz . (9.11)

The order N of a given LB model is related to the maximum value of the exponents
sx, sy, sz for which the above equality holds.

9.3 One-Dimensional Quadrature-Based LB Models

In this section, the procedure for implementing the full-range and half-range Gauss–
Hermite quadratures on a single axis of the momentum space will be discussed in
Sects. 9.3.1 and 9.3.2, respectively. For convenience, in this section we will refer to
the one-dimensional (1D) equivalent of the Boltzmann–BGK equation (9.1):

∂tf + p

m
∂xf + F∂pf = − 1

τ
(f − f eq). (9.12)

After discretisation, this equation is replaced by a set of K = Q equations, where Q
is the number of quadrature points on the entire axis:

∂tfk + pk

m
∂xfk + F(∂pf )k = − 1

τ
(fk − f

eq
k ). (9.13)

The general expression of the total number K of discrete momenta employed by a
D-dimensional LB model will be introduced in Sect. 9.4.

9.3.1 Full-Range Gauss–Hermite Quadrature

Let us consider integrals of f and f eq along the axis of the 1D momentum space:

⎛
⎜⎝ Ms

M
(eq)
s

⎞
⎟⎠ =

∫ ∞

−∞
dp

⎛
⎜⎝ f

f eq

⎞
⎟⎠ps. (9.14)

For the purpose of this section, we can consider f eq = ng, where g is expressed as
in Eq. (9.3), but without using the subscript α. The function g can be expanded with
respect to the full-range Hermite polynomials {H
(p), 
 = 0, 1, . . . } as follows
[25, 26]:
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g = ω(p)

p0

∞∑

=0

1


!G
H
(p), G
 =
�
/2	∑
s=0


!
2ss!(
 − 2s)!

(
mKBT

p2
0

− 1

)s(
mu

p0

)
−2s

,

(9.15)

where �·	 is the floor function, G
 is the 
-th expansion coefficient and p = p/p0
is the particle momentum expressed with respect to some arbitrary momentum
scale p0. The full-range Hermite polynomials [18, 26, 39, 40] satisfy the following
orthogonality relation with respect to the weight function ω(p):∫ ∞

−∞
dp ω(p)H
(p)H
′(p) = 
! δ
,
′ , ω(p) = 1√

2π
e−p2/2. (9.16)

The expansion coefficients G
 given in Eq. (9.15) were obtained according to:

G
 =
∫ ∞

−∞
dp g H
(p). (9.17)

Substituting Eq. (9.15) into Eq. (9.14) gives:

M
(eq)
s = ps

0

∞∑

=0

1


! G


∫ ∞

−∞
dp ω(p)H
(p) ps. (9.18)

At finite values of s and 
, the Gauss–Hermite quadrature can be applied to recover
the integral over p on the entire momentum axis, using the following prescription:

∫ ∞

−∞
dp ω(p)Ps(p) �

Q∑
k=1

wH
k Ps(pk), (9.19)

where Ps(p) is a polynomial of order s in p and the Q quadrature points pk (k =
1, 2, . . . ,Q) are the roots of the Hermite polynomial of order Q, i.e., HQ(pk) = 0.
Note that K = Q = Q holds only in a one-dimensional LB model based on full-
range Gauss–Hermite quadratures.

Since these roots correspond to the integration over the full momentum space
axis, in the case of the full-range Gauss–Hermite quadrature, the number of
quadrature points on the entire axis Q is equal to the quadrature order Q. The
quadrature weights wH

k are given by:

wH
k = Q!

[HQ+1(pk)]2 . (9.20)

The equality in Eq. (9.19) is exact if 2Q > s. In an LB simulation, Q is fixed at
runtime. Thus, in order to ensure the exact recovery of M

(eq)
s in Eq. (9.18), the sum

over 
 in Eq. (9.15) must be truncated at a finite value 
 = N . Setting Q > N

ensures the exact recovery of the first N + 1 moments (i.e., s = 0, 1, . . . N) of
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f eq, since the terms of higher order in the expansion of g are orthogonal to all
polynomials Ps(p) of orders 0 ≤ s ≤ N , by virtue of the orthogonality relation
given by Eq. (9.16). This allows M

(eq)
s to be obtained as:

M
(eq)
s =

Q∑
k=1

f
eq
k ps

k, f
eq
k = ngH

k , gH
k = wH

k p0

ω(pk)
gH,(N)(pk), (9.21)

where pk = p0pk are the discrete momenta and the notation gH,(N)(p) indicates
that the polynomial expansion in Eq. (9.15) of g(p) is truncated at order 
 = N

with respect to the full-range Hermite polynomials. For definiteness, we list below
the expression for gH

k [25, 26]:

g
H,(N)
k = wH

k

N∑

=0

H
(pk)

�
/2	∑
s=0

1

2ss!(
 − 2s)!

(
mT

p2
0

− 1

)s (
mKBT

p0

)
−2s

.

(9.22)
The momentum derivative ∂pf can be written as:

(∂pf )k =
Q∑

k′=1

Kk,k′fk′ , (9.23)

where the kernel Kk,k′ has the following components [49, 50]:

Kk,k′ = −wH
k

p0

Q−2∑

=0

1


!H
+1(pk)H
(pk′). (9.24)

9.3.2 Half-Range Gauss–Hermite Quadrature

The half-range paradigm is inspired from the discontinuous nature of the distribution
function due to the interaction with the channel walls. Such discontinuities naturally
induce a split of the momentum space integration domain in two hemispheres,
corresponding to particles travelling towards and away from the wall. In order
to encompass the discontinuous nature of the distribution function in a one-
dimensional LB model for confined fluid flow, it is convenient to introduce the
half-range moments M±

s and M
(eq),±
s (s = 0, 1, 2, . . . ) of f and f (eq) through:

⎛
⎜⎝ M+

s

M
(eq),+
s

⎞
⎟⎠ =

∫ ∞

0
dp

⎛
⎜⎝ f (p)

f eq(p)

⎞
⎟⎠ps,

⎛
⎜⎝ M−

s

M
(eq),−
s

⎞
⎟⎠ =

∫ 0

−∞
dp

⎛
⎜⎝ f (p)

f eq(p)

⎞
⎟⎠ps.

(9.25)
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The recovery of the half-range integrals in Eq. (9.25) can be achieved using the half-
range Gauss–Hermite quadrature, defined with respect to the weight function ω(p):

∫ ∞

0
dp ω(p)Ps(p) �

Q∑
k=1

wkPs(pk), ω(p) = 1√
2π

e−p2/2, (9.26)

where the equality is exact if the number of quadrature points Q satisfies 2Q > s.
The quadrature points pk (k = 1, 2, . . . Q) are the Q (positive) roots of the half-
range Hermite polynomial hQ(p), while the quadrature weights wk are given by [25,
26, 39, 40]:

w
h
k = pka

2
Q

h2
Q+1(pk)

[
pk + h2

Q,0/
√

2π
] , (9.27)

where aQ = hQ+1,Q+1/hQ,Q and h
,s represents the coefficient of ps in h
(p), i.e.,

h
(p) =

∑

s=0

h
,sp
s. (9.28)

In our convention, the half-range Hermite polynomials are normalised according to:

∫ ∞

0
dp ω(p)h
(p)h
′(p) = δ
,
′ . (9.29)

In order to apply the half-range Gauss–Hermite quadrature prescription,
Eq. (9.26), f and f eq must be expanded with respect to the half-range Hermite
polynomials. Since the half-range Hermite polynomials are defined only on half
of the momentum axis, f can be split with the help of the Heaviside step function
θ(p) as follows [49]:

f (p) = θ(p)f +(p) + θ(−p)f −(p), θ(p) =
⎧⎨
⎩1, p > 0,

0, p < 0.
(9.30)

The functions f +(p) and f −(p) are defined only on the positive and negative
momentum semiaxis, respectively, such that they can be expanded with respect to
the half-range Hermite polynomials as follows:

f + = ω(p)

p0

∞∑

=0

F +h
(p), f − = ω(−p)

p0

∞∑

=0

F −h
(−p), (9.31)
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where the coefficients F ± can be obtained using the orthogonality given in
Eq. (9.29) of the half-range Hermite polynomials:

F +

 =

∫ ∞

0
dp f (p)h
(p), F −


 =
∫ 0

−∞
dp f (p)h
(−p). (9.32)

The expansion in Eq. (9.31) with respect to the half-range Hermite polynomials
h
 can be substituted in Eq. (9.25), yielding:

⎛
⎜⎝M+

s

M−
s

⎞
⎟⎠ = ps

0

∞∑

=0

1


!

⎛
⎜⎝F +




F −



⎞
⎟⎠∫ ∞

0
dp ω(p) h
(p)(±p)s. (9.33)

Truncating the expansion in Eq. (9.31) at 
 = Q − 1 ensures that a quadrature
of order Q can recover the moments in Eq. (9.33) for 0 ≤ s ≤ Q. Since Q

quadrature points are required on each semiaxis of the momentum space, the
discrete momentum set of the 1D half-range Gauss–Hermite LB model has K =
Q = 2Q elements (twice as in the full-range model of the same order), which are
defined as:

pk = p0pk, pk+Q = −pk (1 ≤ k ≤ Q). (9.34)

Thus, the half-range moments in Eq. (9.25) are recovered as:

M+
s =

Q∑
k=1

fkp
s
k, M−

s =
2Q∑

k=Q+1

fkp
s
k, (9.35)

where

fk = w
h
k p0

ω(pk)
f (pk), fk+Q = w

h
k p0

ω(pk)
f (−pk) (1 ≤ k ≤ Q). (9.36)

Let us now consider the expansion of f eq with respect to the half-range Hermite
polynomials, by writing g(p) = θ(p)g+(p) + θ(−p)g−(p), where

g± = ω(
∣∣p∣∣)
p0

∞∑

=0

G±

 h
(

∣∣p∣∣). (9.37)

The expansion coefficients G±

 can be obtained in analogy to Eq. (9.32).

Following the convention of Eq. (9.34), the momentum space is discretised using
Q = 2Q elements with pk > 0 (for the positive semiaxis) and pk+Q = −pk (for the
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negative semiaxis), where 1 ≤ k ≤ Q. The corresponding equilibrium distributions
f

eq
k = ng

h,(N)
k are constructed using

g
h,(N)
k = w

h
k

N∑

=0

G+

 h
(pk), g

h,(N)
k+Q = w

h
k

N∑

=0

G−

 h
(pk), (9.38)

where the expansion order 0 ≤ N < Q is a free parameter of the model which
represents the order up to which the half-range moments of f eq can be exactly
recovered. The coefficients G±


 can be found using the orthogonality relation in
Eq. (9.29):

G+

 =

∫ ∞

0
dp g h
(p), G−


 =
∫ 0

−∞
dp g h
(−p). (9.39)

The integrals above can be performed analytically, such that g
h,(N)
k and g

h,(N)
k+Q

become [25, 26]:

g
h,(N)
k = w

h
k

2

N∑
s=0

(
mT

2p2
0

)s/2

N
s (pk)

[
(1 + erfζ )P +

s (ζ ) + 2√
π

e−ζ 2
P ∗

s (ζ )

]
,

g
h,(N)
k+Q = w

h
k

2

N∑
s=0

(
mT

2p2
0

)s/2

N
s (pk)

[
(erfc ζ )P +

s (−ζ ) + 2√
π

e−ζ 2
P ∗

s (−ζ )

]
,

(9.40)

where ζ = u
√

m/2KBT , erf ζ = 2√
π

∫ ζ

0 dz e−z2
is the error function, N

s (pk) is
defined as:

N
s (pk) =

N∑

=s

h
,sh
(pk), (9.41)

where h
,s is defined in Eq. (9.28), while P +
s (ζ ) and P ∗

s (ζ ) represent polynomials
of orders s and s − 1, respectively, defined through:

P ±
s (ζ ) = e∓ζ 2 ds

dζ s
e±ζ 2

, P ∗
s (ζ ) =

s−1∑
j=0

(
s

j

)
P +

j (ζ )P −
s−j−1(ζ ). (9.42)

The momentum derivative of f can be projected on the space of the half-range
Hermite polynomials as discussed in Sect. 9.3.1. Since this projection is not relevant
for the further development of this chapter, we refer the reader to Refs. [49, 50] for
further details.
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9.4 LB Models in the Three-Dimensional Momentum Space

In the three-dimensional (3D) momentum space, the discretisation procedure can
be conducted using a direct product rule. On each Cartesian axis α ∈ {x, y, z},
one can choose a specific Gauss–Hermite (full-range or half-range) quadrature of
order Qα , depending on the characteristics of the flow (e.g., the existence of a
noticeable wall-induced discontinuity of the distribution function along the α axis).
Let pα,kα , 1 ≤ kα ≤ Qα , be the quadrature points on the Cartesian axis α (note
that Qα ∈ {Qα, 2Qα} as mentioned in Sect. 9.3). These quadrature points are
the components of the 3D vectors pk , k = (kz − 1)QxQy + (ky − 1)Qx + kx ,
1 ≤ k ≤ K = QxQyQz. Following Refs. [25, 26], we generally refer to the
resulting models as mixed quadrature LB models. The numerical solution of the
discretised form Eq. (9.10) of the Boltzmann equation can be obtained following
the steps described in Sect. 9.3, which will be detailed further.

In this contribution we restrict ourselves to the LB simulation of Couette and
force-driven Poiseuille flows of rarefied gases between parallel plates. In these
cases, the flow is homogeneous along the z axis and the computational effort can
be significantly decreased by taking advantage of the reduced distribution functions
introduced in Sect. 9.4.1. Section 9.4.2 discusses the construction of the mixed
quadrature LB models for the investigation of rarefied Couette and force-driven
Poiseuille flows using the reduced distribution functions and the resulting evolution
equations are presented in Sect. 9.4.3. The section ends with a discussion of our
non-dimensionalisation convention, presented in Sect. 9.4.4.

9.4.1 Reduced Distributions

In this chapter, we only consider the planar Couette and the force-driven Poiseuille
flows between parallel plates. Considering that the walls are perpendicular to the x

axis, these flows can be considered homogeneous with respect to the y and z axes,
such that the Boltzmann equation (9.1) reduces to:

∂tf + px

m
∂xf + Fy∇py f = − 1

τ
(f − f eq). (9.43)

The force term is present only in the case of the Poiseuille flow. Assuming that the
fluid flows along the y direction, the only non-vanishing component of the force is
along the y axis (see Sect. 9.5.2 for more details).

Since the flows considered in this chapter are trivial with respect to the z axis,
the pz degree of freedom can be eliminated from Eq. (9.43) [44, 51]. This helps to
reduce the computational costs, especially when dealing with LB models involving
high order quadratures. Defining:
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φ =
∫ ∞

−∞
dpz f, χ =

∫ ∞

−∞
dpz f

p2
z

m
, (9.44)

the following two equations are obtained:

∂t

⎛
⎜⎝φ

χ

⎞
⎟⎠+ px

m
∂x

⎛
⎜⎝φ

χ

⎞
⎟⎠+ Fy

∂

∂py

⎛
⎜⎝φ

χ

⎞
⎟⎠ = − 1

τ

⎛
⎜⎝φ − φeq

χ − χeq

⎞
⎟⎠ , (9.45)

where χeq = kBT φeq and φeq can be factorised using the functions gα Eq. (9.3) as
follows:

φeq = ngxgy = n

2πmkBT
exp

[
− (px − mux)

2 + (py − muy)
2

2mkBT

]
. (9.46)

Note that the reduction procedure introduced above can be used also for the 3D

pressure-driven Poiseuille flow between parallel plates, provided that there are no
variations along the z axis.

9.4.2 Mixed Quadrature LB Models with Reduced Distribution
Functions

In the mixed quadrature LB models, the momentum space is constructed using
a direct product rule. This allows the quadrature on each axis to be constructed
independently by taking into account the characteristics of the flow. When the gas
flow is homogeneous along the z axis, the reduced distribution functions evolve in
a two-dimensional space and thus, the elements of the discrete set of momentum
vectors can be written as pij = (px,i , py,j ). The indices i and j run from 1 to
Qα (α ∈ {x, y}), where Qα = Qα or Qα = 2Qα when a full-range or a half-range
quadrature of order Qα is employed on the α axis. As shown in Refs. [25, 26], a full-
range Gauss–Hermite quadrature of order Qy = 4 is sufficient on the y axis in order
to capture exactly the evolution of the velocity, temperature and of heat flux fields.
For low Mach flows, the quadrature order Qx can be taken to be Qx = 4 in the
Navier–Stokes regime, where the full-range Gauss–Hermite quadrature is efficient.
As Kn is increased, Qx must also be increased in order to retain the accuracy of the
simulation results. In the case of the channel flows considered in this chapter, the
discontinuity in the distribution functions φ and χ induced by the diffuse-reflective
walls becomes significant for sufficiently large Kn. Hence, the full-range Gauss–
Hermite quadrature on the x axis becomes inefficient compared to the half-range
Gauss–Hermite quadrature, as demonstrated in Refs. [25, 26]. In this chapter, we
only consider the half-range Gauss–Hermite quadrature of order Qx on the x axis.
The resulting models are denoted HHLB(Qx) × HLB(4) following the convention
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in Ref. [26], employing 8Qx velocities and 16Qx distinct populations (φij and χij ),
as discussed below.

9.4.3 The Lattice Boltzmann Equation

The reduced distribution functions φij and χij corresponding to the momentum
vector pij = (px,i , py,j ) are linked to φ and χ through the direct extension of
Eq. (9.36):⎛

⎜⎝φij

χij

⎞
⎟⎠ =

(
wx

i p0,x

ω(px,i)

)⎛⎝ w
y
j p0,y

ω(py,j )

⎞
⎠
⎛
⎜⎝φQx,Qy (px,i , py,j )

χQx,Qy (px,i , py,j )

⎞
⎟⎠ . (9.47)

The weights wx
i and w

y
j are given by Eqs. (9.27) and (9.20), respectively. After the

discretisation of the momentum space, Eq. (9.45) becomes:

∂t

⎛
⎜⎝φij

χij

⎞
⎟⎠+ px,i

m
∂x

⎛
⎜⎝φij

χij

⎞
⎟⎠+ Fy

Qy∑
j ′=1

Kj,j ′

⎛
⎜⎝φi,j ′

χi,j ′

⎞
⎟⎠ = − 1

τ

⎛
⎜⎝φij − φ

eq
ij

χij − χ
eq
ij

⎞
⎟⎠ ,

(9.48)

where the kernel Kj,j ′ is given in Eq. (9.24). In particular, for the case Qy = 4
considered in this chapter, Kj,j ′ has the following elements:

Kj,j ′

= 1

p0,y

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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√
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6
√
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3
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3+√
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− 1

2

√
3 + √

6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(9.49)

Numerically, the above expression reduces to:

Kj,j ′ � 1

p0,y

⎛
⎜⎜⎜⎝

1.1672 0.1996 −0.1033 0.2142
−1.9757 0.3710 0.6739 −1.0227

1.0227 −0.6739 −0.3710 1.9757
−0.2142 0.1033 −0.1996 −1.1672

⎞
⎟⎟⎟⎠ . (9.50)
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The equilibrium distribution φ
eq
ij = ng

h,(Nx)
i g

H,(Ny)

j is obtained as the product

between the expansions g
h,(Nx)
i from Eq. (9.40) and g

H,(Ny)

j from Eq. (9.22),
performed with respect to the half-range and full-range Hermite polynomials,
respectively. For this particular case, the orders of the expansions are Nx = 3 and
Ny = 3. For definiteness, we list below the exact expression for g

H,(3)
j :

g
H,(3)
j = wH

j

[
1 + py,jUy + 1

2
(p2

y,j − 1)(U2
y + Ty)

+1

6

(
p3

y,j − 3py,j

)
Uy(U

2
y + 3Ty)

]
,

(9.51)

where Uy and Ty are defined as [26]:

Uy = muy

p0,y

, Ty = mKBT

p2
0,x

− 1. (9.52)

Similarly, g
h,(3)
i is given by Ambrus, and Sofonea [25]:

g
h,(3)
i = w

h
i

2

{
(1 + erfζx,i)

[
3

0(|px,i |) + 2ζx,iTx
3
1(|px,i |)

+ 2T 2
x (2ζ 2

x,i + 1)3
2(|px,i |) + 4ζx,iT 3

x (2ζ 2
x,i + 3)3

3(|px,i |)
]

+ 2e−ζ 2
α√

π
Tx

[
3

1(|px,i |) + 2ζx,iTx
3
2(|px,i |)

+4T 2
x (ζ 2

x,i + 1)3
3(|px,i |)

]}
,

(9.53)

where ζx,i = uxσx,i

√
m/2KBT , σx,i is the sign of px,i and Tx =

√
mKBT/2p2

0,x ,

while the functions 3
s (z) are given below:

3
0(z) = 2π(9π − 28) − z

√
2π(21π − 64) + 2πz2(10 − 3π) − z3

√
2π(16 − 5π)

32 − 29π + 6π2 ,

3
1(z) = 2πz(15π − 44) − √

2π(21π − 64) − z2
√

2π(16 − 3π) + 2πz3(10 − 3π)

32 − 29π + 6π2 ,

3
2(z) = 2π(10 − 3π) − z

√
2π(16 − 3π) + 2πz2(3π − 7) − z3

√
2π(3π − 8)

32 − 29π + 6π2
,
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3
3(z) = −√

2π(16 − 5π) + 2πz(10 − 3π) − z2
√

2π(3π − 8) + 2πz3(π − 3)

32 − 29π + 6π2
.

(9.54)

Finally, the macroscopic moments Eq. (9.4) can be written in terms of φij and
χij as follows:

n =
∑
i,j

φij =
∑
i,j

φ
eq
ij ,

(
ρux

ρuy

)
=
∑
i,j

φij

(
px,i

py,j

)
=
∑
i,j

φ
eq
ij

(
px,i

py,j

)
,

3

2
nKBT + 1

2
ρu2 =

∑
i,j

⎡
⎣φij

p2
x,i + p2

y,j

2m
+ 1

2
χij

⎤
⎦

=
∑
i,j

⎡
⎣φ

eq
ij

p2
x,i + p2

y,j

2m
+ 1

2
χ

eq
ij

⎤
⎦ .

(9.55)

It can be seen that χij appears only in the definition of the temperature field. It is
essential to track the evolution of φij and χij simultaneously in order to correctly
compute the temperature field appearing in the definition of φeq given in Eq. (9.46),
as well as in the definition of χeq.

9.4.4 Non-Dimensionalisation Procedure

In order to perform numerical simulations, we non-dimensionalise all quantities
with respect to the following parameters:

• The wall temperature, such that Tw = 1.
• The particle mass, such that m = 1.
• The reference speed cref = √

kBTw/m.
• The channel width, such that L = 1.
• The average particle number density, such that the total number of particles

obeys:

Ntot =
∫ 1/2

−1/2
dx n(x) = 1. (9.56)

The reference time is tref = L/cref and we set p0,x = p0,y = 1 for the rest of this
chapter. With the above conventions, the relaxation time τ is set to
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τ = Kn

nT
, (9.57)

which ensures that the viscosity μ = τnT = Kn is constant throughout the
simulation domain.

9.5 Simulation Results

The advantage of the quadrature-based approach to LB modelling quickly becomes
apparent when considering rarefied flows. An excellent arena for this type of tests
is represented by channel flows. In particular, we will restrict the discussion to
the Couette and the force-driven Poiseuille flows between parallel plates, which
have become canonical benchmark problems in the microfluidics community. In the
context of these flows, the distribution function becomes discontinuous due to the
diffuse reflection interaction with the boundary. Thus, at large values of Kn, half-
range quadratures are much more efficient than the more traditional full-range ones
[25, 26, 52, 53]. More complex flows, where the application of half-range Gauss–
Hermite quadrature is essential are investigated in Refs. [50, 54, 55].

9.5.1 Couette Flow Between Parallel Plates

In this section, we consider the Couette flow between parallel plates. The geometry
of this flow can be seen in Fig. 9.1. The system consists of two parallel plates at

Fig. 9.1 Left: Setup for the Couette flow problem, highlighting the slip velocity uslip = uw −
u(1/2). Right: Boundary conditions and grid characteristics. The fine dotted lines show a grid
comprised of S = 8 cells, stretched according to Eq. (9.58) with A = 0.95. Only one cell is used
along the y direction
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rest located at x = ±1/2.1 The gas between these plates is initially in thermal
equilibrium at the wall temperature Tw = 1. At t = 0, the left and right plates are set
into motion with velocities −uw = (0,−uw, 0) and uw = (0, uw, 0), respectively,
as shown in Fig. 9.1 (left). The evolution of the fluid is simulated using the LB
algorithm described in Sect. 9.4, until the stationary state is reached. The analysis
presented in this section is restricted to the stationary state.

In the stationary state of Couette flow, rarefied gases exhibit a non-linear velocity
profile in the proximity of the moving walls. This nonlinearity originates from
the wall-induced discontinuity of the particle distribution function and its spatial
extension (i.e., the width of the so-called Knudsen layer, where the discontinuity
induced through interparticle collisions) is of the order of the mean free path of the
fluid particles [1, 2]. Diffuse reflection boundary conditions are used to capture this
wall-induced discontinuity [24–26], as shown in Fig. 9.1 (right).

Mathematically, diffuse reflection boundary conditions entail that the distribution
functions for the particles emerging from the walls back into the fluid satisfy
f (x = ±L/2,p, t) = f eq(p;±uw), which is valid for ±px < 0, respectively.
Noting that f eq(−p;u) = f eq(p;−u), it can be seen that the solution of the
Boltzmann equation (9.12) possesses the symmetry f (−x,p, t) = f (x,−p, t).
This symmetry allows only the right half of the channel to be considered, provided
that bounce back boundary conditions are implemented at the channel centre-
line [i.e., f (0,−p, t) = f (0,p, t)]. This simplification effectively halves all
computation times. Moreover, since the system is homogeneous along the y axis,
no advection is performed in this direction and a discretisation using a single node
is sufficient. In fact, this corresponds to implementing periodic boundary conditions
along the y axis. The pz degree of freedom is integrated out, as explained in
Sect. 9.4.1, and no advection is performed along the z direction. The right panel
of Fig. 9.1 presents schematically the implementation of the Couette flow geometry.

In order to capture the Knudsen layer, it is convenient to use a grid which is more
refined in the vicinity of the wall. This can be achieved by employing a standard
grid-stretching procedure [56, 57]. In this chapter, we follow Refs. [50, 54, 55]
and perform an equidistant grid discretisation with respect to the non-dimensional
parameter η, defined through:

x(η) = 1

2A
tanh η, (9.58)

where 0 ≤ η ≤ arctanh(A) and 0 < A < 1 controls the stretching such that
when A → 0, the grid becomes equidistant with respect to x, while as A → 1, the
grid points accumulate towards the right boundary. For a discretisation employing
S points, we have:

1All quantities presented in this section are non-dimensionalised according to the conventions
presented in Sect. 9.4.4.
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ηs = 1

S

(
s − 1

2

)
arctanh(A), xs = 1

2A
tanh ηs, (9.59)

where the points with 1 ≤ s ≤ S lie within the flow domain. For the simulations
presented in this section, we found that S = 16 points with A = 0.98 are sufficient
to yield accurate results. The stretching procedure is illustrated in Fig. 9.1 (right) for
a grid with S = 8 cells, when A = 0.95.

In order to employ the finite-difference scheme described in the Appendix, three
ghost nodes are required on either side of the simulation domain. The bounce back
boundary conditions [17, 19, 20] employed on the left side of the domain can be
written as:

φ0;ij = φ1;̃ıj̃ , φ−1;ij = φ2;̃ıj̃ , φ−2;ij = φ3;̃ıj̃ , (9.60)

and similarly for χs;ij . The notation ı̃ (j̃ ) refers to the component px,̃ı (py,j̃ ) defined
through:

px,̃ı = −px,i , py,j̃ = −py,j . (9.61)

On the right boundary, the diffuse reflection concept [24–26] is imposed. This
requires that the flux of particles coming from the boundary cell at s = S + 1

2
towards the first fluid node at s = S is Maxwellian:⎛

⎜⎝
S+ 1

2 ;ij

X
S+ 1

2 ;ij

⎞
⎟⎠ = px,i

m

⎛
⎜⎝φ

eq
w;ij

χ
eq
w;ij

⎞
⎟⎠ , pi,x < 0, (9.62)

where φ
eq
w;ij is the reduced equilibrium distribution Eq. (9.46) corresponding to the

wall parameters nw, uw and Tw = 1 and χ
eq
w;ij = φ

eq
w;ij . In the above, the notations


S+ 1

2 ;ij and X
S+ 1

2 ;ij represent the fluxes corresponding to the reduced distributions
φij and χij , which can be computed using Eq. (9.76) by replacing px with px,i and
Fs with φij ;s and χij ;s , as required. Equation (9.62) can be achieved in the frame of
the WENO-5 scheme [50] described in the Appendix, when

φS+1;ij = φS+2;ij = φS+3;ij = φ
eq
w;ij , px,i < 0. (9.63)

Similar relations hold also for χs;ij . The distributions of the particles travelling from
the fluid towards the wall are obtained by quadratic extrapolation with respect to the
equidistant η coordinate from the fluid towards the wall:

φS+1;ij = 3φS;ij − 3φS−1;ij + φS−2;ij , φS+2;ij = 6φS;ij − 8φS−1;ij + 3φS−2;ij .
(9.64)

The same relations are valid for χs;ij . The wall density nw can be obtained by
imposing mass conservation:
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∑
i,j


S+ 1

2 ;ij = 0 ⇒ nw = −

∑
i,j,px,i>0


S+ 1

2 ;ij

∑
i,j,px,i<0

φ
eq
w;ij
nw

px,i

m

. (9.65)

It can be seen that the accurate computation of nw requires the recovery of half-
space quadrature sums, which is the reason why we choose the half-range Gauss–
Hermite quadrature on the x axis.

We illustrate the capabilities of our models by considering the velocity profile
for a low Mach number flow (uw = 0.1) and perform simulations at various
values of Kn. While the Navier–Stokes equations predict a straight-line velocity
profile uy = 2xuw/L [60, 61], the kinetic analysis shows that in the vicinity of
the boundary, there is always a Knudsen layer, having an extension of the order of
the particle mean free path, where the velocity profile curves along the wall [42].
Figure 9.2 (left) shows the excellent agreement between our LB results and the
benchmark linearised Boltzmann–BGK results reported in Ref. [58]. These results
are also presented in Ref. [53], but with less accuracy and for a smaller range of
values of Kn. The dependence of the slip velocity with respect to Kn is shown in
Fig. 9.2 (right), where our results are compared with the linearised Boltzmann–
BGK results reported in Refs. [58, 59]. Excellent agreement is found in both
cases. In order to compare our simulation results with those reported in Ref. [58],
we employed the relation Kn = k/

√
2 between the Knudsen number defined in

Eq. (9.57) and the parameter k employed in Ref. [58]. The quadrature orders used in
these simulations were Qx = 4 (k ≤ 0.1), 5 (k = 0.3), 10 (k = 1), 11 (k = 2), 20
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(k = 5) and 40 (k = 30). As k is increased, the fluid velocity at the wall approaches
0 (its free-streaming value). Since the slip velocity can be recovered accurately even
if the velocity profile presents visible deviations with respect to the benchmark data,
the results presented in the right panel of Fig. 9.2 were obtained using a quadrature
order Qx = 21 for all values of Kn.

9.5.2 Force-Driven Poiseuille Flow Between Parallel Plates

In this section, we consider the force-driven Poiseuille flow between parallel plates.
The geometry of this flow can be seen in Fig. 9.3 (left). The system consists of
two parallel plates at rest which are taken to be perpendicular to the x axis. The
gas between these plates is initially in thermal equilibrium at the wall temperature
Tw = 1. At t = 0, a constant force F = (0,ma, 0) is applied throughout the
fluid domain. According to the non-dimensionalisation discussed in Sect. 9.4.4, the
acceleration a is expressed in units of c2

ref/L and m = 1. The evolution of the fluid
is simulated using the LB algorithm presented in Sect. 9.4.

The flow geometry, the boundary conditions and the Boltzmann equation (9.12),
possess the symmetry property f (−x, px, py, t) = f (x,−px, py, t). As was the
case for the Couette flow, this symmetry allows only half of the channel to be
simulated (0 ≤ x ≤ 1

2 ), while the symmetry f (0, px, py, t) = f (0,−px, py, t) is
ensured using specular boundary conditions [17, 19, 20], as shown in Fig. 9.3 (right).
In order to implement specular boundary conditions, the distribution functions in the
nodes to the left of the flow domain, having indices s = 0,−1,−2, are populated
according to:

Fig. 9.3 Left: Setup for the force-driven Poiseuille flow problem, highlighting the slip velocity
uslip = u(1/2). The mass flow rate is shown in the shaded area. Right: Boundary conditions and
grid characteristics. The fine dotted lines show a grid comprised of S = 8 cells, stretched according
to Eq. (9.58) with A = 0.95. Only one cell is used along the y direction
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φ0;ij = φ1;̃ıj , φ−1;ij = φ2;̃ıj , φ−2;ij = φ3;̃ıj , (9.66)

where only the x component of the momentum is reversed in the right-hand side
of the above equations, as shown in Eq. (9.61). On the right boundary, the diffuse
reflection concept is imposed, as discussed in Sect. 9.5.1. Furthermore, the grid is
stretched using Eq. (9.58), with A = 0.98. In order to accurately capture the main
features of the flow, we employed S = 32 nodes along the x axis, distributed in the
right half of the channel.

In the case of the force-driven Poiseuille flow, we discuss two features which
manifest at non-negligible values of Kn. The first one refers to the Knudsen paradox,
according to which the flow rate through the channel decreases with Kn from its
value in the Navier–Stokes limit down to a minimum, after which it increases
towards infinity as the ballistic regime settles in. The non-dimensionalised mass
flow rate Qflow can be computed as follows:

Qflow =
√

8

a
√

π

∫ 1/2

−1/2
dx ρ(x)uy(x). (9.67)

For small values of Kn, Cercignani [62] derived the following approximation for
Qflow:

Qflow � 1

6K̃n
+ s + (s2 − 1)K̃n, (9.68)

where s = 1.01615 and K̃n is defined as:

K̃n = Kn

√
π

2
. (9.69)

While accurate at small values of Kn, Eq. (9.68) predicts a linear increase of Qflow
with K̃n, which is not confirmed by experiments or numerical simulations.

An empirical fitting formula was given by Sharipov in Eq. (11.136) of Ref. [9]:

G∗
P = − ln δ√

π
+ 0.376 − (1.77 ln δ + 0.584)δ + 2.12δ2. (9.70)

In this formula, which extends the asymptotic term − ln δ/
√

π derived by Cercig-
nani [62], the rarefaction parameter δ and G∗

P are related to Kn and Qflow through:

δ = 1

Kn
√

2
=

√
π

2K̃n
, Qflow = G∗

P

√
4

π
. (9.71)

Our numerical results for Qflow, together with the approximations Eq. (9.68) and
Eq. (9.71), as well as various other semi-analytical or numerical results are shown in
Fig. 9.4 (left). These results were obtained using the mixed LB model described in



292 V. E. Ambrus, and V. Sofonea

Sect. 9.4.2 with the order of the half-range Gauss–Hermite quadrature set to Qx =
21. Since the velocity profile, and hence the mass flow rate, do not scale linearly
with a at large values of a, we used a = 0.01 throughout the simulations in order to
ensure good agreement with the validation data.

The second remarkable microfluidics specific effect occurring in the force-
driven Poiseuille flow refers to the development of a dip (local minimum) in the
temperature profile T (x) at the centre x = 0 of the channel. The dip occurrence was
predicted by the kinetic theory at the super-Burnett level and observed by DSMC
simulations [1, 65–71].

Using a moments method approach, Mansour et al. [67, 68] derived analytically
the following dependence of the temperature profile on the distance x from the
centre of the channel:

T (x) = T0 + αx2 + βx4. (9.72)

Using a numerical fit, we found an excellent match between the above functional
form and our simulation results. For clarity, Fig. 9.4 (right) shows the half-channel
profile of [T (x) − 1]/(T0 − 1), where Tw = 1 is the wall temperature and T0
represents the temperature at the centre of the channel, as determined by fitting
Eq. (9.72) to the numerical data. The values of the parameters T0, α and β for the
values of Kn considered in Fig. 9.4 (right) are given in Table 9.1. In these simulations
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Fig. 9.4 Validation of the LB results in the context of the force-driven Poiseuille flow. Left:
Comparison between the LB results (continuous line) for the flow rate Qflow, defined in Eq. (9.67),
and the asymptotic formulae in Eqs. (9.67) and (9.68) due to Cercignani [62] and Sharipov [9]
(dashed lines), the results of Cercignani, Lampis and Lorenzani (CLL) [63] (dashed line with filled
squares), the DVM results from Ref. [64] (hollow circles), as well as the DSMC results reported by
Feuchter and Scheifenbaum in Ref. [52] (filled circles). The results are represented with respect to
K̃n, defined in Eq. (9.69). Right: Illustration of the dip in the temperature profile at various values of
Kn. The lines represent the best fits of the analytic expression, Eq. (9.72) to the LB results (points),
as described in Sect. 9.5.2 and in Table 9.1
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Table 9.1 Values of the
coefficients T0, a and b

obtained by fitting Eq. (9.72)
to the simulation results
shown in Fig. 9.4

Kn T0 a b

0.032 1.00778861 0.0020561 −0.0887483

0.05 1.00397973 0.00143734 −0.0393261

0.1 1.00171142 0.000749203 −0.0117178

0.2 1.000997806 0.000434946 −0.00385886

Only the points inside the domain 0 < x/L < 0.4 are
taken into account when performing the fit

we used a = 0.05 in order to enhance the development of the temperature dip. We
employed the mixed quadrature LB model described in Sect. 9.4.2 where we set
Qx = 4 for Kn ∈ {0.032, 0.05, 0.1}, while at Kn = 0.2, we used Qx = 7.

9.6 Conclusions

In this chapter, we presented a systematic procedure for the construction of high
order mixed quadrature LB models based on the full-range and half-range Gauss–
Hermite quadratures. A particular attention was given to the case when the flow is
homogeneous along the z axis, when reduced distribution functions can be used
in order to minimise the computational effort. The capabilities of these models
are demonstrated in the context of the Couette and force-driven Poiseuille flows
between parallel plates at various values of Kn. Excellent agreement is found
between our results and benchmark data available in the literature from the Navier–
Stokes level up to the transition regime.

The success of our models relies on the accurate recovery of half-range integrals
required for the implementation of diffuse reflection. Such integrals are exactly
recovered by employing the half-range Gauss–Hermite quadrature.

Our numerical method for solving the LB evolution equations employs finite-
difference techniques. In particular, we implemented the advection using the fifth-
order weighted essentially non-oscillatory (WENO-5) scheme and the time-stepping
was performed using the third-order Runge–Kutta (RK-3) method. This allowed us
to obtain accurate results using a small number of nodes (16 for the Couette flow
and 32 for the force-driven Poiseuille flow).

Taking advantage of the homogeneity of the flows studied in this chapter with
respect to the z axis, we eliminated the z axis degree of freedom by integrating
the Boltzmann–BGK equation with respect to pz. In order to correctly track
the evolution of the temperature and heat flux fields, we employed two reduced
distribution functions, φ and χ , obtained by integrating with respect to pz the
Boltzmann distribution f multiplied by 1 and p2

z/m, respectively. The extension of
the methodology presented in this chapter to more complex flow domains is straight-
forward since the mixed quadrature paradigm allows the type of quadrature and the
quadrature orders to be adjusted for each axis separately. The treatment of complex
boundaries can be performed by using the standard staircase approximation [72, 73]
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or the more recent vielbein approach [50]. Finally, more complex relaxation time
models, such as the Shakhov model [74, 75], can be implemented as described in,
e.g., Refs. [54, 55].

We conclude that the models described in this chapter can be used to obtain
numerical solutions of the Boltzmann–BGK equation for channel flows at arbitrary
values of the Knudsen number.

Appendix: Numerical Scheme

The simulation results presented in this chapter were obtained using an explicit
third-order total variation diminishing (TVD) Runge–Kutta (RK-3) time marching
procedure [76–79], together with the fifth-order weighted essentially non-oscillatory
(WENO-5) scheme [80, 81] for computing the advection.

In order to implement the time-stepping algorithm, it is convenient to cast the
Boltzmann–BGK equation (9.1) in the following form:

∂tf = L[f ], L[f ] = − p

m
· ∇f − F · ∇pf − 1

τ
(f − f eq). (9.73)

Following the discretisation of the time variable using equal time steps δt , the
distribution function at time step l is fl ≡ f (tl), when the time coordinate has
the value tl = lδt , taken with respect to the initial time t0 = 0. For simplicity,
the dependence of the distribution function on the spatial coordinates and on the
momentum degrees of freedom was omitted. The third-order Runge–Kutta TVD
integrator described using the Butcher tableau summarised in Table 9.2 gives the
following algorithm for computing the value fl+1 of the distribution function at
time tl+1:

f
(1)
l = fl + δt L[fl],

f
(2)
l = 3

4
fl + 1

4
f

(1)
l + 1

4
δt L[f (1)

l ],

fl+1 = 1

3
fl + 2

3
f

(2)
l + 2

3
δt L[f (2)

l ]. (9.74)

For more information regarding the Butcher tableaux representation, we refer the
reader to Ref. [82].

Table 9.2 Butcher tableau
for the third-order
Runge–Kutta time-stepping
procedure described in
Eq. (9.74)

0

1 1

1/2 1/4 1/4

1/6 1/6 2/3
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The advection term is computed, as follows:

p

m
· ∇f = px

m
∂xf + py

m
∂yf + pz

m
∂zf. (9.75)

Since the flows considered in this chapter are effectively one-dimensional (being
homogeneous with respect to the y and z axes), the discussion on the implementa-
tion of the WENO-5 scheme for the computation of the above derivatives will cover
only the derivative with respect to the x coordinate. Considering that the spatial
domain is discretised equidistantly with respect to the η coordinate Eq. (9.59), the
derivative with respect to x can be written as:

(
px

m
∂xf

)
s

= Fs+1/2 − Fs−1/2

xs+1/2 − xs−1/2
. (9.76)

The flux Fs+1/2 corresponding to the interface between the cells centred on xs ≡
x(ηs) and xs+1 is computed in an upwind-biased approach using the WENO-5
algorithm [50, 80, 83], which we summarise below for the case when the advection
velocity px/m > 0:

Fs+1/2 = ω1F 1
s+1/2 + ω2F 2

s+1/2 + ω3F 3
s+1/2. (9.77)

The interpolating functions F q

s+1/2 (q = 1, 2, 3) are given by:

F 1
s+1/2 = px

m

(
1

3
fs−2 − 7

6
fs−1 + 11

6
fs

)
,

F 2
s+1/2 = px

m

(
−1

6
fs−1 + 5

6
fs + 1

3
fs+1

)
,

F 3
s+1/2 = px

m

(
1

3
fs + 5

6
fs+1 − 1

6
fs+2

)
, (9.78)

while the weighting factors ωq are defined as:

ωq = ω̃q

ω̃1 + ω̃2 + ω̃3
, ω̃q = δq

σ 2
q

. (9.79)

The ideal weights δq are:

δ1 = 1/10, δ2 = 6/10, δ3 = 3/10, (9.80)

while the indicators of smoothness σq are given by:

σ1 = 13

12

(
fs−2 − 2fs−1 + fs

)2 + 1

4

(
fs−2 − 4fs−1 + 3fs

)2
,
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Table 9.3 The values of the
weighting factors ωq defined
in Eq. (9.79) when one, two
or all three of the σi

(i = 1, 2, 3) functions have
vanishing values

ω1 ω2 ω3

σ1 = σ2 = σ3 0.1 0.6 0.3

σ2 = σ3 = 0 0 2/3 1/3

σ3 = σ1 = 0 1/4 0 3/4

σ1 = σ2 = 0 1/7 6/7 0

σ1 = 0 1 0 0

σ2 = 0 0 1 0

σ3 = 0 0 0 1

σ2 = 13

12

(
fs−1 − 2fs + fs+1

)2 + 1

4

(
fs−1 − fs+1

)2
,

σ3 = 13

12

(
fs − 2fs+1 + fs+2

)2 + 1

4

(
3fs − 4fs+1 + fs+2

)2
. (9.81)

In the case when one, two or all three of the σq indicators vanish, the computation
of the functions ω̃q using Eq. (9.79) implies illegal division by zero operations. In
this case, the weighting factors ωq can be computed directly as shown in Table 9.3.
Alternatively, a small quantity ε � 10−6 can be added to the σq functions. A more
thorough discussion on the side effects of this approach can be found in Ref. [77].
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