
A Flexible Categorial Formalisation
of Term Graphs as Directed Hypergraphs

Wolfram Kahl(B) and Yuhang Zhao

McMaster University, Hamilton, ON, Canada
{kahl,zhaoy36}@mcmaster.ca

Abstract. Term graphs are the concept at the core of important imple-
mentation techniques for functional programming languages, and are also
used as internal data structures in many other symbolic computation set-
ting, including in code generation back-ends for example in compilers. To
our knowledge, there are no formally verified term graph manipulation
systems so far; we present an approach to formalising term graphs, as
a relatively complex example of graph structures, in the dependently-
typed programming language and proof system Agda in a way that both
the mathematical theory and useful executable implementations can be
obtained as instances of the same abstract definition.

1 Introduction

Terms (or expressions) are the conceptual data structure at the heart of almost
all symbol manipulation for mathematical reasoning and programming language
implementation. Terms as a data structure are a kind of trees, and in many
applications, intermediate or result terms arise that contain multiple copies of
equal subterms. To save space in software implementations of such applications,
all these copies are frequently represented by references to a single copy: Con-
ceptually, the tree is replaced by a (directed, and for the purposes of the current
paper always acyclic) graph, a term graph. Nowadays, term graphs are typically
considered as jungles, a kind of directed hypergraphs introduced for this purpose
by Hoffmann and Plump (1991) and Corradini and Rossi (1993).

For the purpose of creating a toolset for term graph manipulation supported
by machine-checked correctness proofs, we develop a flexible formalisation of
term graphs in a categorial setting, with the following goals:
– We want to use the formalisation to develop mathematical theories of term

graph transformation and how it can be used in particular for correct-by-
construction compiler optimisation passes.

– We want to use that same formalisation as basis for executable implementa-
tions of these compiler optimisation passes.

As our formalisation setting, we use the dependently-typed programming lan-
guage and proof assistant Agda (Norell 2007). Agda permits us to write defi-
nitions essentially in the way they are written for mathematical purposes, and

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. L. Fiadeiro and I. Ţuţu (Eds.): WADT 2018, LNCS 11563, pp. 103–118, 2019.
https://doi.org/10.1007/978-3-030-23220-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23220-7_6&domain=pdf
http://orcid.org/0000-0002-6355-214X
https://doi.org/10.1007/978-3-030-23220-7_6

104 W. Kahl and Y. Zhao

prove properties about them, but all function definitions are also executable,
making this a good environment for correct-by-construction tool development.

The body of this paper will start from a sequence of mathematical definitions
(expressed in Agda) of datatypes for somewhat simplified term graphs, then
consider also an implementation-oriented definition, and proceed to abstract
both to a common generalisation. The full complexity of term graphs is the
recovered in a few more refinements.

The result is a simple language for defining not only term graphs, but any
of a large class of different kind of graph datastructures, when recognising these
as coalgebras possibly including dependently-typed operations, as far as depen-
dencies are used with a certain discipline.

2 Jungle Representation of Term Graphs

We think of term graphs as a kind of data-flow graphs, and we draw the flow
from inputs (labelled by their positions in triangles) at the top to output posi-
tions at the bottom. We use the jungle approach of Hoffmann and Plump (1991);
Corradini and Rossi (1993): We define term graphs as hypergraphs, where each
(hyper-)edge is labelled with an operation name, and connected via “input ten-
tacles” (drawn as arrows to the box representing the hyperedge) to the edge’s
input nodes, and via a single “output tentacle” (pointing away from the edge)
to its output node. Term graph inputs correspond to variables in terms; so if we
map each input position i to the variable xi , then the term graph in the following
drawing to the left represents the term (x1 + x2) ∗ x2:

+

*

1

21

+

*

1 2

21

The term graph drawn above to the right has two output positions, and therefore
should be interpreted as a pair of terms; in this case the two output positions are
“fed” from the same node, so this is just the pair 〈(x1+x2)∗x2, (x1+x2)∗x2〉. (We
could easily switch to considering multi-output edges, but for the purposes of the
current paper this would only result in some duplication, without introducing
any additional interesting aspects, so we stick with single-output edges.)

The pure “directed hypergraph” aspect of term graph structure, without con-
sidering inputs and outputs, and without restricting the edge output assignment
to be bijective onto non-input nodes, can be captured via the following signature:

A Flexible Categorial Formalisation of Term Graphs 105

sigDHG := 〈 sorts: N,E
ops: src : E → List N

trg : E → N
eLab : E → L 〉

This is a coalgebraic signature in the sense used in (Kahl 2014, 2015): the argu-
ment type of each operation symbol is a single sort, and the result type is a term
in a language of functor symbols (here including the constant symbol L and the
unary List functor symbol) over the sorts (as variables).

3 Directed Hypergraphs—Simplified

To proceed towards capturing the full term graph structure and reduce ad-
hoc notations, we now switch to using Agda Norell (2007) as our mathematical
notation. The following Agda record type definition defines the type DHG00 to
be the type of tuples containing the four sets1 Input, Output, Inner, and Edge,
together with the five functions gOut, eOut, eArity, eLabel, and eIn. The choice
to have separate functions for assigning each edge its arity (number of edge
input positions), its label, and its actual input node sequence has been made to
introduce the right kind of problems for discussion in the current paper.

Different input positions need to be associated with different nodes — for
simplicity, we identify input positions and input nodes, and introduce a separate
carrier set for “inner” nodes, that is, nodes that are not input nodes. Both
input nodes and inner nodes can be used as edge inputs, so we introduce the
abbreviation2 “Node” for the set of all nodes, constructed as the disjoint sum of
the input node set and the inner node set:

This models directed hypergraphs with input and output interfaces, but not yet
term graphs where eOut needs to be bijective—we will come back to that only in
Sect. 11. Dealing with directed hypergraphs is motivated by the fact that we use

1 We gloss over the fact that in any real Agda development of these mathematical
definitions, Setoid types will normally be used instead of Set. A variant using setoids
of the definitions of the current section can be found in (Kahl 2011, Sect. 3).

2 Agda record declarations simultaneously define modules, and as such can contain
other definitions besides field declarations.

106 W. Kahl and Y. Zhao

them as setting for double-pushout (DPO) rewriting of term graphs—directed
hypergraphs include the “term graphs with holes” that occur as gluing and host
graphs in DPO rewriting steps.

The DHG00 record type declaration corresponds again to a coalgebraic sig-
nature in the sense explained above, after expanding the Node abbreviation, as
can be seen in the following reformulation:

Since the presence of the local definition for Node may perhaps be confusing for
readers unfamiliar with Agda, we will stick with continue our development from
this expanded version.

4 Interface-Parameterised Directed Hypergraphs

We will need to implement several operations on our directed hypergraphs, in
particular sequential composition: If the set of output positions of G1 coincides
with the set of input positions of G2, then their sequential composition G1 � G2

results from “gluing them together” along this common interface.
Since we want type-checking to guarantee well-definedness of any applications

of � we use in programs manipulating term graphs, the input and output
interfaces need to be part of the type of G1 and G2. In Agda, this is achieved
by making the record type parameterised:

(Mathematically, this corresponds to defining a functor from trivial two-sort
coalgebras to coalgebras of shape DHG01.)

A Flexible Categorial Formalisation of Term Graphs 107

5 Implemented Directed Hypergraphs

So far, the record types we defined are mathematical datatypes, with sets as
components, exactly in the way used for mathematical studies of term graphs.
Since we used Agda as our mathematical language, and Agda can be used as a
proof checker, we can build a mathematical theory of directed hypergraphs and
term graphs on top of these definitions.

However, since Agda is also a programming language, we would like to also
use our definitions for data structures used in programs that manipulate term
graphs. However, records containing Set fields are hard to use—how do you save
one of those to a file? The field Edge could be a set of functions. . .

To come from the opposite perspective, consider now what a plausible imple-
mentation datatype for directed hypergraphs might look like. We present a
“proof-of-concept” implementation based on arrays, using the Vec datatype con-
structor for dependently-typed vectors from the Agda standard library (Daniels-
son et al. 2018)—the type “Vec A n” is the type of n-element vectors with ele-
ments of type A. (A “production” implementation might for example use some
kind of binary trees, or a type of arrays with constant-time access.)

A plausible design is then to use as carrier sets only sets constructed by Fin;
for a natural number n, the type “Fin n” is the type of natural numbers less
than n. The elements of “Fin n” are precisely the indices that can be used with
vectors of type “Vec A n”.

However, where the mathematical data structure contains Sets of size n, the
implementation data structure will contain only the index n:

It is straight-forward to write a function that maps each element of
“VecDHG1 mn” to the mathematical representation of that graph in the type
“DHG02 (Fin m) (Fin n)”, and this would populate also the Inner and Edge fields
with Fin types. However, it is quite cumbersome to attempt to define even a
partial inverse to that, which makes it essentially infeasible to use operations
defined on the “mathematical implementation” DHG02 to induce operations on
the “executable implementation” VecDHG1.

Perhaps more importantly, there is no good way to “obtain” the definition
of VecDHG1 “from” that of DHG02, or even more generally, to adapt DHG02 to
finite node and edge sets—one could do this via an extension that adds finiteness
proofs. But using this approach to restrict DHG02s to those having node and edge

108 W. Kahl and Y. Zhao

sets of shape “Fin n” would involve a type-level propositional equality that would
be extremely awkward to use.

The solution to this problem is to obtain both as instances of a generalised,
abstract definition, with essentially the goal of being able to
– instantiate with Set and → to obtain the mathematical theory, and
– instantiate with N and flip Vec to obtain the desired implementation.
After putting it this way, the natural option is to use a category as parameter.

6 Abstract Directed Hypergraphs—First Attempt

We now assume that we are in a setting where C is an arbitrary but fixed category
with coproducts—the Agda way of expressing this is to locate the development
in a parameterised module (with additional parameters for ListF etc.):

Then occurrences of Set in DHG02 are replaced with the type of objects of cate-
gory C, and operations become morphisms instead of functions:

We shall use the name vecCategory for the category with natural numbers as
objects, and where the type of morphisms from m to n is “Vec (Fin n) m”; the
coproduct there is just addition.

Trying to instantiate C with vecCategory presents the problem that that even
if objN and ListF are supplied as module parameters in [. . .], we will not find
any n such that Fin n represents N respectively List (Input⊞ Inner). (For the sake
of the argument, we will ignore the option to restrict to some maximal arity that
might be sufficient for some particular application.)

7 Abstract Directed Hypergraphs—Second Attempt

The solution to this problem is to make use of the type discipline of a coalgebra:
Only sorts occur as argument types; infinite types like N and List (Input⊞ Inner)
only occur in the result types. We translate this into a setting where we do
not need morphisms starting from all types—we embed the parameter C (that
we plan to instantiate with vecCategory), used for the morphisms between all

A Flexible Categorial Formalisation of Term Graphs 109

relevant finite sets, including the carrier sets, in a semigroupoid3 S that provides
objects also for N and List (Input ⊞ Inner).

The semigroupoid S will need to have morphisms from objects of C to the
object objN implementing N, and in the context of our implementation, these
can all be implemented as vectors of the types “Vec N k” for natural numbers k.
However, S does not need any morphisms starting at objN, so we can characterise
S in a way that precisely fits this vector-based implementation: Vectors can
contain elements of infinite types, but vectors cannot be infinite.

The (full and faithful, coproduct-preserving, . . .) semigroupoid functor F
embedding C in S becomes another important part of the setting we now adopt:

Functions “between sorts”, here gOut and eOut, are now morphisms in the
parameter category C, while functions from a sort to an “arbitrary” (poten-
tially infinite) type are morphisms in the parameter semigroupoid S, starting
from the F-image of the sort.

Instantiating C with the category Set and S with the underlying semigroupoid
makes the resulting ADHG1 directly equivalent with DHG02.

Instantiating C with vecCategory and S with a carefully constructed semi-
groupoid (SF in AppendixB) with arbitrary vectors as morphisms resulting
ADHG1 directly equivalent with VecDHG1.

Other easy instantiations are useful, too: For example, instantiating C with
the category of all finite sets and S with the semigroupoid of all sets gives us
the variant of DHG02 restricted to finite carrier sets.

3 A semigroupoid is a “category without identity morphisms”, analogous to how a
semigroup is a “monoid without identity element”.

110 W. Kahl and Y. Zhao

8 Directed Hypergraphs—Dependently Typed

A different issue with DHG02 is the fact that the types do not enforce that the
length of an edge’s input node list corresponds to its arity: In terms of DHG02,
we want to add the following restriction:

It would be possible to add this in the spirit of datatype invariants as the type
of an additional field to the record, which then induces a proof obligation at
every record construction site. Therefore it is far more attractive to move this
invariant into the type system, which is possible in Agda due to its support
for dependent types: A dependent function type “(e : Edge)→R e” contains
functions mapping each e : Edge to an element of type “R e”, where R : Edge →
Set is assumed to be some “result” type constructor depending on an Edge
argument.

We use the additional expressivity provided by dependent types to move from
List to Vec in the result type of eIn, and for each result vector we supply the
arity of the edge in question as length:

At the same time, we also switched the type of edge labels to come from an
arity-indexed label set Label1 : N→ Set.

Although this is not anymore of the shape of a coalgebra signature as
described in Sect. 2, this is still a type of coalgebras mathematically, due to
the fact that the dependent arguments are used only as arguments to other
operations.

9 Implementation of Dependently-Typed Fields

The implementation type VecDHG1 is easily adapted to such dependent fields,
exploiting the presence of dependent pair types (Σ-types): The type “Σa : A •
B a” is inhabited by pairs “a , b” where a : A and b : B a (where B : A→ Set is
a type constructor taking an argument of type A).

A Flexible Categorial Formalisation of Term Graphs 111

Straight-forwardly embedding the type constructors for labels and input vec-
tors in Σ-types yields the following refined implementation type:

Such structures will then be subject to the following datatype invariants:

A more rational implementation (which can easily be obtained by a system-
atic transformation from VecDHG2) would store these three equal values only
once, and at the same time also be closer to directly representing the functor
underlying the coalgebra type here:

10 Dependently-Typed Abstract Directed Hypergraphs

For abstracting dependently-typed operations into the category-semigroupoid
setting of Sect. 7, we introduce an minimal interface to dependent objects that
can be seen as individual building blocks of a type-category as described by Pitts
(2001), adapted so that it “does not demand existence of too many morphisms”
for our semigroupoid:

Definition 10.1. For an object I of S, an object D of S is a dependent object
indexed over I iff for every object Y : C.Obj and every morphism f from F Y to
D in S there is a morphism indD f from F Y to I in S such that the operation
indD commutes with C-pre-composition, that is, for every object X of C and every
morphism g from X to Y in C, the following holds:

��

112 W. Kahl and Y. Zhao

The Σ-types of Sect. 9 are an instance of dependent objects by virtue of imple-
menting indD f as (Vec.map proj1 f), extracting the index from dependent pairs.
The “trick” of dependent objects is that the dependent-pair-projection proj1 used
here does not need to be a morphism of the semigroupoid S, making it possible
to define S in a way that all its morphisms can be implemented based on vectors.

For the abstract variant, we assume a dependent objects Label and a “depen-
dent functor” VecF; the latter needs to map any object A of S to a dependent
object with the common index objN. (The dependent functor image of a mor-
phism f can be implemented as f itself tagged with a name of the functor, see
AppendixB.)

We introduce two new abbreviations, so that operation types now can be of
the following three kinds (due to the coalgebra nature, all have to “conceptually
start” at sorts, which are objects of C):

That is, f�D contains pairs of shape (g , p) where g : X�D and p is a proof for
the morphism equality of indD g with f.

For the instance VecDHG2, these proofs are exactly proofs for the datatype
invariants mentioned there. The final abstract version of our directed hypergraph
type therefore also starts closer to VecDHG2 than to VecDHG3:

While � is essentially just a kind of “casting” that emphasises the “starting at
a sort” intention, the type constructor � is the real innovation here; thanks to
�, the presentation of ADHG2 does not require local variable binders; � there-
fore introduces the possibility of result type dependencies on the result of other
operations into coalgebraic signatures while preserving the overall character of
traditional signatures. (Technically, � and � can be considered as parts of a
shallowly-embedded DSL for a novel kind of coalgebra signatures.)

Expanding definitions, we see that ELabel : eArity� from above is a depen-
dent pair of type Σg : Edge � Label • (indLabel g = eArity); for convenience, we
give individual names to the two constituents of this pair, which then have the

A Flexible Categorial Formalisation of Term Graphs 113

following types, the second of which corresponds to the first datatype invariant
in Sect. 9 (where fst implements indLabel).

11 GS-Monoidal Categories of Abstract Term Graphs

The definition of abstract directed hypergraphs we actually use also has the
Node definition again, and therefore is even more readable:

As mentioned in Sect. 2, we are really interested in jungles, which are directed
hypergraphs with a one-to-one correspondence between edges and inner nodes
established by eOut. Since we need directed hypergraphs as common substrate
for an adapted kind of double-pushout term graph rewriting, we define jungles
separately as “ADHG3s where eOut is an isomorphism in C”, in Agda:

The full setting used as context for this includes a few properties not yet
mentioned in Sect. 7; it consists of the following items:
– A category C intended to have (representations of) all possible carrier sets as

objects, and (representations of) functions between these as morphisms.
C needs to have coproducts, a terminal object, and a strict initial object.

– A semigroupoid S intended to have (representations of) all possible value sets
(including label sets, N, vector sets) as objects.
S is only required to contain the morphisms associated with the additional
structure below; it can be quite “sparse”.

– A full and faithful semigroupoid functor F from the semigroupoid underlying
C to S that preserves identity morphisms, coproducts, and initial objects.
This functor is understood as embedding C into S.

114 W. Kahl and Y. Zhao

– Specifically as setting for the ADHG definitions, a natural number object objN,
an objN-indexed dependent object Label, and an objN-indexed dependent func-
tor VecF for vectors satisfying an appropriate vector specification.

In this setting, we have implemented large parts of the theory of gs-monoidal cat-
egories introduced by Corradini and Gadducci (1999): For term graphs, monoidal
composition ⊗ is “parallel composition” that “concatenates” (via coproduct) the
input and output interfaces; gs-monoidal categories are monoidal categories with
additional transformations ! and ∇:
– !A : A → 1l is the terminator and introduces garbage, and
– ∇A : A → (A ⊗ A) is the duplicator and introduces sharing.
These are present also in cartesian categories such as Lawvere theories, and there
they are natural transformations. In gs-monoidal categories they do not need
to be natural, which is important for term graphs, where garbage and sharing
make a difference.

We have implemented (Zhao 2018a,b) Agda-verified gs-monoidal categories
with ADHGs respectively Jungles as morphisms fully at the abstract level in
the category-semigroupoid setting described above. We also implemented Jungle
decomposition and proved it correct, which is the core of the result of Corradini
and Gadducci (1999) that term graphs (i.e., jungles) form a free gs-monoidal
category. For this part, we followed Corradini and Gadducci’s set-up, which
specialises C.obj to N, interpreting n : N as the type Fin n—this is justified by
the fact that there will be a forgetful functor from every practically useful gs-
monoidal category mapping the object monoid to N, and this functor will reflect
decomposition. We used this specialisation for decomposition of wiring graphs
(which have no edges); apart from that, we elaborated the proofs at the abstract
category-semigroupoid level as far as we found feasible. An improved library of
dependent functors will make fully abstract proofs possible in the future. We
also started to develop a rewriting mechanism for these Jungles via constrained
DPO rewriting steps in the category of ADHG matchings, see (Kahl and Zhao
2019).

12 Conclusion

An important observation arising from the development of our ADHG formalisa-
tions is that categorial abstraction is frequently enhanced by embedding a “nice”
category in a “big” semigroupoid. Careful choices then allow us to develop theory
and implementations at the abstract level, and obtain the conventional Set-based
mathematical theory as one instantiation, while correct-by-construction executa-
bles can be generated via instantiations with concrete datatypes. In this way,
we achieve re-usability of theoretical developments as implementations that are
tunable for efficiency.

A Representation Contexts

We now provide a more fine-grained abstraction for the category-semigroupoid
setting of Sections Sects. 7 and 11. Recall that the key idea is to provide a

A Flexible Categorial Formalisation of Term Graphs 115

separate interface, the category C, for objects that can be used as carriers of
coalgebra sorts, and “extend” this category to an encompassing semigroupoid
S that can contain also other objects that may be used to interpret the result
type expressions of coalgebra function symbols. For example, the (conceptu-
ally) infinite datatype String will never be used as node set of a graph, but it
may well be used for node labels. In addition, a type of “representations” for
S-morphisms that “start at C-objects” is assumed—these are the morphisms
that may serve as interpretations of coalgebra function symbols. The “upwards
arrows” are motivated by visualising the semigroupoid S above the category C,
which is “embedded” into S via R.

Definition A.1. A representation context X = (C,S,R,⇗,S,R,↗) consists of
– a category C
– a semigroupoid S
– a full and faithful semigroupoid functor R : C → S that preserves identities
– for each object k of C and each object A of S, a collection k ⇗ A of repre-

sentations, together with a bijection Sk ,A between k ⇗ A and the S-homset
R k → A,

– for any two objects k and m of C, a bijection Rk ,m between the C-homset k → m
and k ⇗Rm, and

– for each representation U : k⇗A and each S-morphism g : A → B a compo-
sition U ↗ g in k ⇗ B

such that the following are satisfied:

The implementation setting described in Sect. 7 for obtaining VecDHG1 from
ADHG1 can be explained as a representation context where
– C has N as object collection, and Fin m → Fin n as homset from m to n;
– S is the semigroupoid underlying Set ;
– R : C → S maps n : N to the set Fin n, and is the identity on morphisms;
– for each k : N and each set A, the type of representations is k ⇗A = VecA k ,

and Sk ,A is the canonical isomorphism between Vec A k and Fin k → A;
– for each k ,m : N, the canonical isomorphism between Fin k → Fin m and

Vec (Fin m) k is used as Rk ,m ;
– for each vector U : Vec A k and each Set-morphism g : A → B , the composition

is U ↗ g =mapVec g U .
Note that there are “more” vectors than there are morphisms in C, and yet more
set functions in S than there are vectors.

Theoretically, one could choose to identify k⇗A with the S-homset R k → A,
but we consider it useful to keep the two separate: The point of having ⇗ as
a separate component of representation contexts is that it can be instantiated

116 W. Kahl and Y. Zhao

with morphism implementations for which S provides the semantics in terms of
the semigroupoid S, which in turn is intended to provide the connection to Set .

For interpretation of coalgebra signatures (as shown in Sect. 2), we assume
a fixed interpretation function F that maps n-ary functor symbols to semi-
groupoid functors from Sn to S that preserve identities (and correspond to
meet-preserving relators). If a structure A provides an interpretation of sort
symbols as objects in C, then let �t�A be the resulting interpretation of the type
expression t , where each sort s is interpreted as �s�A = R sA, and functor symbol
applications are interpreted as the corresponding functor applications:

�F (t1, . . . , tn)�A = (F F)(�t1�A, . . . , �tn�A)

For each type expression T , this gives rise to an identity-preserving semigroupoid
functor, written �t�, from the sort-indexed product category CSortΣ to S.

Definition A.2. Let a coalgebraic signature Σ and a representation context X =
(C,S,R,⇗,S,R,↗) be given. A Σ-X -coalgebra A consists of
– for each sort s an object sA of C
– for each function symbol f : s → t a representation fA : sA⇗ �t�A
Given two such coalgebras A and B, a Σ-X -coalgebra homomorphism φ from A
to B consists of
– for each sort s a representation φS : sA⇗(R sB) of the C morphism (R−1

sA,sB
φS) : sA → sB ,

– such that for each function symbol f : s → t, the following homomorphism
property holds:

This homomorphism property is an equality of representations; in concrete appli-
cations this will be a decidable equivalence.

It is easy to see that the Σ-X -coalgebra homomorphisms of Definition A.2
form a category; this is a “good implementation” of Σ-coalgebras in the following
sense:

Theorem A.3. Let a coalgebraic signature Σ, and a representation context X =
(C,Set,R,⇗,S,R,↗) using the full category Set for S be given. For each Σ-
X -coalgebra A, applying R to each carrier object sA, and applying S to each
function symbol interpretation fA maps the Σ-X -coalgebra A to a conventional
Set-based coalgebra in a way that gives rise to a full and faithful functor. ��

In the setting of Sect. 7, the category of Σ-X -coalgebras is therefore equiva-
lent to the subcategory of Σ-coalgebras over Set which results from restriction
to finite carrier sets.

A Flexible Categorial Formalisation of Term Graphs 117

B Concretised Representation Context

For an implementation based on, for example, the vectors of Sect. 5, the question
arises how to represent not only the components of coalgebras and of morphisms,
both of which are representations, but also the results of functor application to
morphisms, which are used in the context of the dependent functors mentioned
in Sect. 10.

We now assume a language F of functor symbols (with arity). Our goal is to
move from an abstract semigroupoid S, such as Set , to one that has a concrete
representation amenable to implementation using finite datastructures. (Objects
of Set , as far as relevant in this context, are considered to be implemented as
datatype identifiers or type expressions.)

Given a representation context X = (C,S,R,⇗,S,R,↗) and a functor symbol
semantics that maps each functor symbol F : F to a semigroupoid endofunctor
�F � (of corresponding arity) on S, we construct a new concretised representa-
tion context X F

= (C,SF ,RF ,⇗F ,SF ,RF ,↗F
) over the same base category C,

where:
– A SF object is

• either LIFT k for a C object k ,
• or EMBED A for an S object A,
• or WRAP F (Q1, . . . ,Qn) for an n-ary functor symbol F and SF objects

Q1, . . . ,Qn .
SF objects are assigned a straightforward “semantics” as S objects:

�LIFT k� = R k
�EMBED A� = A

�WRAP F (Q1, . . . ,Qn)� = �F �(�Q1�, . . . , �Qn�)

– SF morphisms are
• either S

F
k ,Q U : LIFT k → Q for a representation U : k ⇗F Q , which is a

representation in k ⇗ �Q� ,
• or MAP F (g1, . . . , gn) : WRAP F (Q1, . . . ,Qn) → WRAP F (P1, . . . ,Pn)

for an n-ary functor symbol F and morphisms gi : Qi → Pi .
(There are no morphisms starting from EMBED objects.)
Morphisms are also given a straightforward semantics in S.

– R
F , the composition .,F in SF , and the composition ↗F are determined by

the semantics; RF is induced by LIFT.
X F is a well-defined representation context, and if R preserves finite colimits,
so does RF . Note that SF is only a semigroupoid, and cannot be a category,
since there are no morphisms starting at EMBED objects, not even identity
morphisms. This fact is the motivation for asking only for a semigroupoid in
this place in a representation context.

For signatures Σ over the functors in F , the concretised representation con-
text X F generates the same Σ-coalgebras as the (possibly abstract) context X ,
but extends the concretely implementable morphisms to “exactly all morphisms
ever required while reasoning about Σ-coalgebra transformation”.

118 W. Kahl and Y. Zhao

Theorem B.1. The category of Σ-X F -coalgebras is equivalent to the subcate-
gory of the corresponding category of Σ-coalgebras in S restricted to carriers
in C. ��

References

Corradini, A., Gadducci, F.: An algebraic presentation of term graphs, via GS-monoidal
categories. Appl. Categ. Struct. 7(4), 299–331 (1999). https://doi.org/10.1023/A:
1008647417502. ISSN 1572–9095

Corradini, A., Rossi, F.: Hyperedge replacement jungle rewriting for term-rewriting sys-
tems and logic programming. Theor. Comput. Sci. 109(1–2), 7–48 (1993). https://
doi.org/10.1016/0304-3975(93)90063-Y

Danielsson, N.A., Daggit, M., et al.: Agda standard library, version 0.17 (2018). http://
tinyurl.com/AgdaStdlib

Hoffmann, B., Plump, D.: Implementing term rewriting by jungle evaluation. Informa-
tique théorique et applications/Theor. Inform. Appl. 25(5), 445–472 (1991). https://
doi.org/10.1051/ita/1991250504451

Kahl, W.: Dependently-typed formalisation of typed term graphs. In: Echahed, R. (ed.)
Proceedings of 6th International Workshop on Computing with Terms and Graphs,
TERMGRAPH 2011. EPTCS, vol. 48, pp. 38–53 (2011). https://doi.org/10.4204/
EPTCS.48.6

Kahl, W.: Categories of coalgebras with monadic homomorphisms. In: Bonsangue,
M.M. (ed.) CMCS 2014 2014. LNCS, vol. 8446, pp. 151–167. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44124-4 9. Agda theories at
http://RelMiCS.McMaster.ca/RATH-Agda/

Kahl, W.: Graph transformation with symbolic attributes via monadic coalgebra homo-
morphisms. ECEASST 71, 5.1–5.17 (2015). https://doi.org/10.14279/tuj.eceasst.71.
999

Kahl, W., Zhao, Y.: Dependently-typed formalisation of typed term graphs.
In: Fernández, M., Mackie, I. (eds.) Proceedings of Tenth International Workshop
on Computing with Terms and Graphs, TERMGRAPH 2018. EPTCS, vol. 288, pp.
26–37 (2019). https://doi.org/10.4204/EPTCS.288.3

Norell, U.: Towards a practical programming language based on dependent type theory.
Ph.D. thesis, Department of Computer Science and Engineering, Chalmers Univer-
sity of Technology (2007). See also http://wiki.portal.chalmers.se/agda/pmwiki.php

Pitts, A.M.: Categorical logic. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.)
Handbook of Logic in Computer Science, vol. 5, pp. 39–128. Oxford University Press,
Oxford (2001)

Zhao, Y.: A machine-checked categorial formalisation of term graph rewriting with
semantics preservation. Ph.D. thesis, McMaster University (2018a)

Zhao, Y.: A formalisation of term graph rewriting in Agda – TGR1. Mechanically
checked Agda development, with 283 pages literate document output (2018b).
http://relmics.mcmaster.ca/RATH-Agda/TGR1/

https://doi.org/10.1023/A:1008647417502
https://doi.org/10.1023/A:1008647417502
https://doi.org/10.1016/0304-3975(93)90063-Y
https://doi.org/10.1016/0304-3975(93)90063-Y
http://tinyurl.com/AgdaStdlib
http://tinyurl.com/AgdaStdlib
https://doi.org/10.1051/ita/1991250504451
https://doi.org/10.1051/ita/1991250504451
https://doi.org/10.4204/EPTCS.48.6
https://doi.org/10.4204/EPTCS.48.6
https://doi.org/10.1007/978-3-662-44124-4_9
http://RelMiCS.McMaster.ca/RATH-Agda/
https://doi.org/10.14279/tuj.eceasst.71.999
https://doi.org/10.14279/tuj.eceasst.71.999
https://doi.org/10.4204/EPTCS.288.3
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://relmics.mcmaster.ca/RATH-Agda/TGR1/

	A Flexible Categorial Formalisation of Term Graphs as Directed Hypergraphs
	1 Introduction
	2 Jungle Representation of Term Graphs
	3 Directed Hypergraphs—Simplified
	4 Interface-Parameterised Directed Hypergraphs
	5 Implemented Directed Hypergraphs
	6 Abstract Directed Hypergraphs—First Attempt
	7 Abstract Directed Hypergraphs—Second Attempt
	8 Directed Hypergraphs—Dependently Typed
	9 Implementation of Dependently-Typed Fields
	10 Dependently-Typed Abstract Directed Hypergraphs
	11 GS-Monoidal Categories of Abstract Term Graphs
	12 Conclusion
	A Representation Contexts
	B Concretised Representation Context
	References

