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Abstract. The article is devoted to the history and justification of the modal
analysis of rocks and ores with a microscope. It is shown that the Delesse-
Rosiwal-Glagolev ratios do not follow from the Cavalieri principle. They do not
allow one to find the exact volume of the minerals in rocks or ores, but give only
their average estimates. It is also shown that the volume fractions of convex
mineral grains in rocks and ores, taken equal to the fractions of their flat sec-
tions, are always underestimated if compared with the matrix. Due to the wide
variety and complexity of forms of mineral grains, the methods of stereological
reconstruction lead to integral equations with a difficult to define form factor.
Most likely, tomography methods should come to replace the modal analysis of
rocks and ores in thin sections.
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1 Introduction

Modal (quantitative mineralogical) analysis of rocks and ores in thin sections is one of
the first fundamental quantitative methods of mineralogy (including technological
mineralogy), petrography (in classifications of rocks and ores, and petrological
reconstructions), and lithology (i.e., petrography of sedimentary rocks). That is why its
rigorous justification is of fundamental importance owing to the Delesse-Rosiwal-
Glagolev ratios, as well as to stereological reconstruction. It makes sense to summarize
the history of these methods in Russia and abroad, and to formulate the conclusion
about their prospects.

2 The Cavalieri Principle and the Delesse-Rosiwal-Glagolev
Ratios

First of all, we point out that the relations suggested by Delesse (1848) dVi = dSi,
Rosiwal (1898) dSi = dLi, and Glagolev (1932) dLi = dNi, decreasing the dimension of
space (namely, equating the volume fractions of minerals to areal, areal to linear, linear
to point-like), have no relation to the Cavalieri principle: S1i = S2i ! V1 = V2 (if the
areas of all arbitrarily close parallel sections of two bodies are pairwise equal, then their
volumes are also equal, Fig. 1).
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In recent notation, this principle, historically preceding integral calculus, has a clear
meaning: V1 ¼

R
S zð Þ dz ¼ V2, where S(z) is a continuous function of the areal

fraction of a certain mineral along the z axis being normal to the sections. But, the
modal analysis of rocks and ores in thin sections, which accumulates the statistics of
areal, linear or point fractions of minerals from section to section, has nothing to do
with the integration procedure. It only leads to an assessment of their average values. In
this case, it can be argued that the volume of any mineral in a rock or ore is within the
certain interval:

S zð ÞminDz ¼
Z

S zð Þmindz\V\
Z

S zð Þmaxdz ¼ S zð ÞmaxDz

where Dz is the thickness of rock sample under study.
Despite of this contradiction, which was also considered in the works (Krumbein

1935; Chayes 1956), the method became firmly established in practice because of its
apparent simplicity and was step by step automated (Shand 1916; Wentworth 1923;
Hunt 1924; Dollar 1937; Hurlbut 1939) up to the use of modern computers for image
analysis of thin sections. The list of parameters characterizing the cross-section of
minerals, and the speed of processing have grown many times. But, in terms of the
reconstruction of the true metric characteristics of mineral grains from those of their flat
or even linear sections, the ideology remains the same.

Companies that produce computer structure analyzers offer software packages
without discussing the fundamental problems. The analysis of 2D images does not use
the available chapters of mathematics. For example, the distances between the mineral
grains in thin section are replaced by the Euclidean distances between the points taken
within the grains, whereas there is a more complicated, but easily programmable
Hausdorff’s metric which allows one to do this procedure correctly. In turn, it gives us
the possibility of calculating space covariograms between the mineral grains of dif-
ferent species and their various clusters in the rock.

Fig. 1. To the justification of the Cavalieri principle
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3 Stereological Reconstruction

A new line of research, i.e. stereological reconstruction, arose from the obvious
observation that an arbitrary cross section of a spherical shape is always less than its
characteristic cross section (Fig. 2, above). And it follows from this that the volume
fraction of the convex mineral phase in the rock and ore, equal to the fraction of its flat
sections, is always underestimated if compared with the host matrix. The corresponding
general problem – finding the distribution of true particle sizes from the size distri-
bution of their random sections – belongs to the inverse problems typical for geo-
physics. It is analytically solved only for spherical and ellipsoidal particles due to
relatively simple description of these forms (Wicksel 1925, 1926). But, even in this
case, the practical use of the theory requires the selection of the best solution and an
estimate of the errors (Fig. 2, below). For more complex forms of mineral grains this
can’t be done without mathematical modeling on powerful computers.

The history of this area in Russia can be found in the following incomplete list of
works: Zhuravsky A.M. Mineralogical analysis of thin section in terms of probabilities.
Moscow-Leningrad: Gosgeolizdat, 1932. 20 p.; Glagolev A.A. Quantitative miner-
alogical analysis of rocks with the microscope. Leningrad: Gosgeolizdat, 1932. 25 p.;
Glagolev A.A. On the geometric methods of quantitative mineralogical analysis of
rocks. Moscow-Leningrad: Gosgeolizdat, 1933. 47 p.; Glagolev A.A. Geometric
methods for quantitative analysis of aggregates with a microscope. Moscow-Leningrad:
Gosgeolizdat, 1941. 263 p.; Chayes F. An elementary statistical appraisal. New York:
John Wiley & Sons, Inc., 1956; Shvanov V.N., Markov A.B. Granulometric analysis of
sandstones in thin sections//Geology and exploration. 1960. N 12. P. 49–55; Ivanov N.
V. A new direction in testing ore deposits. Moscow: Gosgeolizdat, 1963. 179 p.;
Chernyavsky K.S. Stereology in metallurgy. Moscow: Metallurgy, 1977. 375 p.;
Ivanov O.P., Ermakov S.F., Kuznetsova V.N. Improving the accuracy of determining
the weight particle size distribution of ore minerals from measurements in thin

Fig. 2. Left: the size of the cross section of a convex grain is always less than the characteristic
one, in the modal analysis its volume fraction is underestimated. Right: to recognize the true size
of spherical particles by the size of circular sections; R = 100 – particles with a radius of 100
arbitrary units; R = 100, r = 50 – two sets of particles of the same type, indistinguishable in
sections (for example, two generations of one mineral); horizontal scale – section radii from 0 to
100 bits per 10 classes; vertical scale – frequencies by classes (lower curves) and accumulated
frequencies (upper curves).
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sections//Proc. CNII of Tin. Novosibirsk: Science, 1979. p. 10–14; Gulbin Yu.L. On
stereological reconstructions of grain sizes in aggregates//Proc. Rus. Miner. Soc. 2004.
N 4. P. 71–91.

4 Conclusions

Thus, due to the extraordinary diversity and complexity of the forms of mineral grains
in rocks and ores, the methods of stereological reconstruction lead to integral equations
with an analytically difficult-to-define form factor. The practical application of the
theory is drowning in the selection of the best solution to the inverse problem and
complex estimates of measurement errors. It seems that the modal analysis of rocks and
ores in thin sections should be replaced by tomography methods. Standardizing modal
analysis of rocks and ores in thin sections by creating their artificial counterparts with
previously known volume fractions of mineral grains and a wide range of petrographic
structures can serve as an inter-laboratory comparison of the accuracy of the method.
But it does not solve the problems in essence.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.
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