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Abstract. The Internet of Things (IoT) is a novel paradigm based on the
connectivity among different entities or “things”. IoT environment in the form of
interconnected smart “things” represents a great potential in terms of effective
and efficient solutions related to urban context (e.g., system architecture, design
and development, human involvement, data management and applications). On
the other hand, with the introduction of the IoT environment, devices and net-
work security have become a fundamental and challenging issue. Moreover,
growing number of users connected via IoT system necessitates focusing on the
vulnerability of complex networks and defence challenges at the topological
level. This paper addresses these challenges from the perspective of graph
theory. In this work, the authors introduce a novel AV11 algorithm to identify
the most critical and influential IoT nodes in a Social IoT (SIoT) network in a
smart city context using ENEA Portici CRESCO infrastructure.

Keywords: IoT � Malware � Complex networks � Graph theory �
Infrastructure � Smart city � Social Internet of Things (SIoT) network �
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1 Introduction

In a smart city context, the introduction of the Internet of Things (IoT) paradigm has
become a fundamental concept: devices become pervasive and blend with human
beings. It is the state wherein there is no distinguishable difference between the
operation of devices surrounding us and our actions. Consequently, devices play an
interactive role in the IoT systems and enhance the human experience. There is a
seamless integration between us and the things around us. Various devices commu-
nicate intelligently with one another with minimal human intervention. Thus, devices
of the IoT system are interconnected; they communicate with one another, transfer and
retrieve data, intelligently respond to requests and trigger actions [1].
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Hence, the introduction of the IoT in smart cities context involves the consideration
of a vast number of aspects. These include system architecture, design and develop-
ment, use of embedded devices, communication technology, human involvement, data
management and applications, security and privacy concerns. According to the reports
by Cisco [2], Gartner [4] and Ericsson [3], 50 billion of heterogeneous devices will be
connected to the Internet by 2020. These devices are getting increasingly smarter,
connected to the global networks and among themselves, giving value to the IoT
paradigm that is generating an unprecedented volume and variety of data. In [2] and
[5], authors have estimated that the data caused by physical objects would reach 507.5
Zettabytes (ZB) per year (42.3 ZB per month) by 2019, which is 269 times more than
the amount of data transmitted to Data Centers (DCs) from end-user devices and 49
times higher than total DCs traffic [13]. This brings up crucial discussion regarding all
the data generated, stored or transmitted by IoT devices as well as its security and how
this relates to the privacy of the users. Every approach of IoT system must have a
secure network and provide a necessary level of control and privacy to the users. To
accomplish these goals and then the success of the IoT systems’ implementation, a
baseline to build secure IoT network is one of the central aspects achievable with IoT
graph topology.

Motivated by such challenges and inspired by graph theory, we aim to identify the
most critical and influential IoT nodes in a Social IoT (SIoT) network [6] to address the
way towards building a secure IoT environment for smart city context. This paper
discusses security issues at the baseline level of IoT system and proposes topology of a
graph, to target security challenges and vulnerabilities of different IoT systems. In
detail, in this work the authors utilize a revised version of the AV11 algorithm [15] in a
real SIoT network [21] to identify crucial infected nodes in the graph that corresponds
to a set of key IoT systems (e.g., smartphone, laptop, computer, tablet, home sensors,
etc.). The procedure allows extracting information from the graph topology regarding
the best k nodes (namely the “budget”) to immunise or remove; thus, the remaining
network is more robust to attacks. In IoT networks, the concept of attack handling can
be translated to the identification of the IoT nodes that become “infected” in a specific
configuration and hence, to defend the graph discovering these infected nodes become
a crucial issue. Besides the defence concerns, the procedure also allows controlling
virality of the network, identifying the most influential nodes (the influencers).

In summary, this work aims to investigate the network risk security based on the
rapid deployment of IoT systems around the digital world. For IoT network, risk
assessment is complex due to its vast deployment and diversity in terms of devices.
Thus, traditional risk assessment frameworks do not adequately address the risk related
to the topology of the network and then the risk assessment of IoT to be completed
needs also to include a risk framework at a graph level.

The following objectives will support this aim:

(a) Apply the algorithm AV11 for real IoT network [21] and provide the assessment
risk framework;

(b) Analyse topology structure of the network in terms of infective IoT nodes;
(c) Perform data analysis to calculate statistics associated with the infective IoT nodes

and hence, the graph topology in terms of devices;
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(d) Evaluate stability of the IoT graph with IoT devices configuration;
(e) Assess the risk based on (a–d) in a real IoT network in a smart city context;
(f) Versus risk assessment and mitigation of IoT dynamic network and future asso-

ciation of energy consumption of IoT device in the configuration network.

The paper is organized as follows: Sect. 1 – Introduction; Sect. 2 – Background:
Related Works and AV11 Algorithm presentation; Sect. 3 – Methodology; Sect. 4 –

Assessment of an IoT graph; Sect. 5 – Conclusions and Future Works.

2 Background: Related Work and AV11 Algorithm

In recent years, significant research efforts and technological developments have been
devoted to IoT paradigm [8] targeting energy efficiency of IoT systems. Indeed, these
“things” enable new computing applications and represent the base of the vision of a
global infrastructure composed of complex networked physical objects. According to
[7], IoT systems represent the principal source of big data and, consequently, are the
drivers of the plethora of applications, e.g. in smart cities [14]. Due to the inherently
diverse nature of IoT paradigm, it attracts lots of risks in various forms. Therefore,
understanding the processes and mechanisms involved in the evolution of complex
networks for the IoT is a significant challenge.

Undeniably, in the IoT paradigm in smart cities context, mathematics plays an
essential role in understanding complex networks. To address the networks with
mathematical models, one is naturally led to dynamical systems, in which the graph
describing the network is also a dynamical variable. The graph’s dynamics is coupled
with that of other variables not explicitly considered in the model. Analysis of such
dynamics requires development of some new tools inspired by the graph theory
[16–18]. Historically, the study of networks has been mainly a branch of discrete
mathematics known as graph theory [9] that proves useful in understanding complex
networks. The network structure is irregular, complex and dynamically evolving in
time, with the main focus moving from the analysis of small networks to that of
systems with thousands or millions of nodes, and with renewed attention to the
properties of networks with dynamical units.

The complexity of the network structure poses significant challenges of capturing
risks associated with the topological structure of the graph and risk assessment. In
[10–12] a summary of the current literature related to fundament, kernel, methods,
environment for IoT and associated risks is provided. Even if many efforts are addressed
to IoT paradigm architecture, no investigation into the security aspects associated with
the IoT graph in terms of complex network topology is present. Nowadays, IoT is
missing security and in particular at the topologic level; for this reason, the security has
emerged as a significant challenge for the IoT. Therefore, in this paper, the authors
investigate topological and functional structures of an IoT network - where IoT system is
represented by the nodes - to analyse the system and the specific infection nodes and
malicious propagation attack. This study is based on the application of the algorithm
AV11 [15, 22, 23] which intends to immunise or remove chosen nodes and make the rest
of the network more robust and resilient to attacks. With this analysis, we are also able to
figure out intelligent and robust characters of IoT.
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The application of our AV11 algorithm at the topological structure level of the graph
is the baseline for the dynamic network analysis. In the paper, the authors also explore
those intrinsic structures that are independent of data and methodology. The AV11
algorithm is a topological vulnerability tool, meaning that the vulnerability is taken into
consideration according to a particular position of a node in a graph representing a
technological network, such as an IoT network. In straightforward cases, such as the
star, it is clear that the node in the centre is the most important/critical/influential one, but
usually, for more complex topologies, the problem is not that trivial. The spreading of
dangerous malware (malicious software) in networks of electronics devices has raised
deep grave concern because infections may propagate from the ICT networks to other
Critical Infrastructures producing a well-known domino effect. There are two diffusion
strategies: targeted intrusion and cooperative search. The first strategy foresees a direct
conventional approach to the actual target, while the second one demands a distributed
control system, a sophisticated communication scheme and a consensus-like decision-
making process. As a side effect of the cooperative search, the malware will spread in the
network like a disease (the “epidemic” spreading). Actually, any worm follows the
epidemic spreading, but a standard worm will attempt to invade the maximum number
of machines as quickly as possible. In contrast, a sophisticated malware adopting a
cooperative search strategy or even a simpler network aware approach will infect
(relatively) few machines during an extended period. In any case, both seem to prop-
agate following the epidemic spreading model, at least during the initial phase of the
attack. Understanding this model may help to counteract the spreading at its very
beginning when the cost of defence is more affordable. Researchers are attempting to
develop a high-level analysis of malware propagation, discarding software details, to
generalise to the maximum extent the defensive strategies. Since the maximum eigen-
value of the adjacency matrix of the network acts as a threshold for the malware’s
spreading [15], spectral analysis of the graph’s adjacency matrix has a relevant role.

In this section, a brief description of the AV11 algorithm development by the
authors is presented; the application of the algorithm to a specific IoT network will be
shown in the next paragraph.

2.1 Description of AV11 Algorithm

The problem to be faced is: find k best nodes (the “budget”) of an IoT network to
immunise/remove them with the intention to make the whole network more resilient to
malware attacks. Malware is malicious software designed to damage an ICT (Infor-
mation and Communications Technology) network, often called viruses. Today viruses
are net-aware in the sense that they can exploit vulnerabilities of the network, carefully
selecting the critical nodes. Something similar could describe the spreading of faults, a
well-known domino effect or cascade failure.

A defensive strategy should protect the most critical or influential nodes. Since,
unfortunately, available resources are limited, to safeguard at most only k nodes of the
network we should select them to maximise the probability to stop or reduce the spread
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of the malware or the fault in the network. This is what we mean by “find the best k
nodes”. This task is not trivial since it is not clear what nodes are the most important in
a network, because the interdependencies among them are often counter-intuitive.
Thus, to identify these k nodes many algorithms have been used in the past years:
degree, closeness, betweenness, Estrada indices, most infected, k-core, dynamical
importance, and other [15, 19, 22, 23]. Standard topological centrality indicators such
as degree, closeness, clustering, etc., are relevant quantities for assessing useful
information. These parameters can also be employed to provide the first, non-trivial
understanding of the network’s dependencies, but are insufficient to unveil more subtle
relations among the nodes, and as a matter of fact, spectral methods usually perform
better. Even worse is the performance of the “most infected” strategy. According to this
procedure, influential nodes that provide significant support to the epidemic spreading
are the nodes that get infected more frequently during simulations. Our experiments
demonstrate the weak points of this strategy. In the complex environment of the IoT,
relying on such an approach could be extremely dangerous.

In this paper, we propose to solve the issue related to finding the best k nodes with
our AV11 algorithm, which follows a combinatorial spectral paradigm [19] and has
proved to be the most effective [15]. We use standard notation and terminology of
graph theory and refer to the network as a graph, the node as a vertex and the link as an
edge hereafter. Let G be the graph for it. It is well known that the largest eigenvalue k1
of a graph is related to a threshold for the epidemic propagation of a fault or a malware
in the network [22]. If the ratio probability of infection, i.e. probability to cure is under
this threshold, the spreading does not take place and vice versa [22]. Here, to “cure”
means to provide an antivirus or some other kind of protection to the node/device. In
practice, AV11 removes a set of k nodes and finds a sub-optimal decrease of the largest
eigenvalue of the graph G as indicated in the pseudocode below. A brute-force strategy
would be impossible to use even for small graphs, because of the vast number of
combinations given that the problem is NP-complete [22]. Nevertheless, our subopti-
mal algorithm AV11 reduces the algorithmic complexity to Oðk � n3 � log nÞ. However,
it should be noted that even such a complexity is by far too cumbersome for a PC.
Therefore, we have used the ENEA’ infrastructure (CRESCO) to determine the most
critical nodes from the adjacency matrix representing an IoT network [21]. Out of
16216 devices (nodes), 3300 were identified as the most critical ones. These 3300
nodes are those to be immunized somehow, since they guarantee to provide the
maximum protection. It has to be considered that immunizing a node involves a non-
negligible cost and that the available resources are scarce. In our case-study, the
number of 3300 was chosen large enough to test the CRESCO potential, but actually,
to determine the number of nodes to be immunized it would be necessary to run some
Monte Carlo simulations to know the minimum number of nodes able to stop the
spreading of the malware. Therefore 3300 it is crucial to refer only to verify the
CRESCO calculation capabilities.
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The AV11 pseudocode (see [15] for more details) is:

Where, In is the identity matrix of order n and 0\p� n is a parameter based on the
longest cycle of the graph.

3 Methodology

This work focuses on IoT network graph assessment through a topology structure
analysis using the AV11 algorithm [15, 22], particularly, on the evaluation of infected
IoT-nodes [21]. To address this challenge, in this paper, we analyse real data of the IoT
network consisted of 16216 IoT devices (nodes) provided by the authors in [21]. In
detail, real IoT devices are available in the city of Santander and categorized in [6, 21]
with respect to typologies and data model for objects introduced in the FIWARE data
models [24]. As we have already mentioned, an experimental campaign which consists
of the application of the AV11 algorithm to this real network is conducted by the
ENEA infrastructure, on the Cluster named CRESCO4 (hosted by ENEA R.C. Portici).
The principal goal is to calculate critical nodes of IoT devices and explore their
characteristics. In this work, improvements have been made to previous studies con-
ducted on the IoT environment concerning the topology and graph control. In partic-
ular, the authors provide an assessment of dynamical properties of the network through
spectral eigenvalue analysis and also more in-depth knowledge of the IoT devices.
Results are also expressed in terms of statistical data that could be generalized and
applied in a real smart city context.

Briefly, the cluster CRESCO4 consists of 38 Supermicro F617R3-FT chassis, each
hosting 8 dual CPU nodes. Each CPU, specifically an Intel E5-2670, hosts in its turn 8
cores, for a total number of 4864 cores. These CPUs operate at a clock frequency of
2.6 GHz. Moreover, the system is provided with a RAM memory of 4 GB per core.
Computing nodes access a DDN storage system, for a total storage amount of 1 Pbyte.
The connection between computing nodes is realized via an Infiniband 4xQDR
QLogic/Intel12800-180 switch (432 ports, 40 Gbps).
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3.1 IoT Graph in the Smart City

As aforementioned, the authors consider as IoT network the case-study provided by the
Santander testbed [20, 21] of real IoT objects.

The Santander testbed considered in this current work as IoT network is composed
of several thousand devices that comply with IEEE 802.15.4 standard (10-m com-
munications range with a transfer rate of 250 kbit/s), 200 GPRS modules and 2000
joint RFID, positioned at static locations (e.g., streetlights, bus stops) or mobile
location such as on-board of vehicles (e.g., buses, taxis), in order to provide envi-
ronmental monitoring, outdoor parking area management, mobile environmental
monitoring, traffic intensity monitoring, guidance to free parking lots, parks and gar-
dens irrigation, and participatory sensing. The general idea is to develop an architecture
to support the smart city concept.

Briefly, we present characteristics of Santander IoT network used in this manuscript
to apply the AV11 algorithm. The IoT objects are categorized with typologies and data
model for objectives introduced by FIWARE Data Model and comprehend a total of
16216 devices, of which 14600 from private users and 1616 from public services. The
following form has been used to describe network objects: id_device, id_user (owner id
of device), device_type (category associated with a device in the form of code to
differentiate between public and private devices from 1 to 16), device_brand (each
device is assigned with a number from 1 to 12 encoding a brand), device model (it is
associated with each device, a number from 1 to 24). The device_type code is provided
to every object by the global Web Index 2017 [27] that identifies both the status (static:
home sensors, PC, etc., or mobile: smartphone, car, etc.) and the type of device being
private or public (Table 1).

Besides, the adjacency matrix is compiled by notions of Social Internet of Things
(SIoT): social relationships between the nodes are established by a disjunction (OR) of
five elementary relationships [6]. Mobile devices are carried with the users during their
movements, while static objects are left in the users’ home.

To simulate the user’s movements, authors in [6] rely on a mobility model called
Small World in Motion (SWIM). In this way, the authors of [6] obtained the estimate of
the relationships between the devices on a given day, producing the 16216 � 16216
adjacency matrix of the Santander case study. In Fig. 1 a Gephi [26] visualization of
this network is showed. These datasets are freely downloadable from [21]; they are
among very few ones available for IoT offering a valuable estimation of real-life
phenomena.

Table 1 summarizes a legend of groups of devices: a code number identifies each
group, also classified as public or private and static or mobile.
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Table 1. The first column is the code number defined by the device type and mobility
characteristic provided in the second and third columns respectively.

Device
type

IoT-device Kind

1 Smartphone Mobile
2 Car Mobile
3 Tablet Mobile
4 Smart Fitness Mobile
5 Smartwatch Mobile
6 PC Static
7 Printer Static
8 Home Sensors Static
9 Point of Interest (specific point location that a user may find useful or

interesting)
Static

10 Environment Weather Static
11 Transportation (Vehicles, taxis or buses) Mobile
12 Indicator (Digital signage to display information) Static
13 Garbage Truck Mobile
14 Street Light Static
15 Parking (Location designed for parking) Static
16 Alarms (Security supervisor or traffic monitoring) Static

Fig. 1. Gephi visualization of the graph representing the network of the Santander case study
with all 16216 nodes.
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4 Assessment of an IoT Graph

As we have already mentioned, among topological analytical tools, the spectral
description of networks deserves special attention. By its means, it is possible to infer
insights on dynamical properties based on “static” parameters. Following Restrepo, Ott
and Hunt [19] the authors focus on the largest eigenvalue of the graph adjacency
matrix. This parameter (under a set of commonly accepted hypotheses) is closely
related to the epidemic spreading of viruses or failures. The dynamical importance of a
node (or an edge) [19] is defined as a normalised amount by which the maximum
eigenvalue of the graph decreases if the node is removed. Therefore, if we remove a
node, we can infer a measure of its “dynamical dependence” for all the other nodes
employing the variation of the maximum eigenvector (the eigenvector of the maximum
eigenvalue). Thus, if we consider a node (link), its dynamical importance will define its
“importance” for the graph. The purpose of a network defence technique is to intervene
in certain elements (the “budget”) of the network to limit the impact of an attack or the
spread of a virus or information.

Our algorithm AV11 selects a subset of k nodes all at once according to spectral
combinatorial methods, to immunize or remove them to make the remaining network
more robust to attacks. In particular, AV11 classifies all the nodes of a graph according
to a spectral parameter that describes dynamical properties of the graph’s nodes in
terms of the node influence on the network. A selected subset may be optimal or
suboptimal, as a result of the brute-force method, and is not unique.

In [15] it is shown that the AV11 algorithm performs better than other selection
techniques such as k-core in different topological scenarios. Note that although it might
seem counterintuitive, the degree of centrality is not the best choice. In contrast, it often
gives the wrong results. The same supposedly holds for the most important degree-like
parameters, like k-core presented by the articles [15, 23] where the percentage of
infected nodes is presented after the application of techniques to identify the immu-
nizations nodes. Even more critical is the inferior performance of the “most infected”
strategy. According to this procedure, influential nodes, i.e. those nodes that provide
significant support to the epidemic spreading or the cascade effect, are those that get
infected more frequently during simulations. Our experiments demonstrate how
deceiving this idea is [22, 23]. In the complex environment of the IoT, relying on such
a strategy could be extremely dangerous.

4.1 Data Analysis: Results and Discussion

In this paper, the authors have used the spectral algorithm AV11 to determine the first
3300 critical nodes on the IoT network created by the authors in [6] composed in total
by 16216 nodes. Table 2 presents the first “best” ten nodes of 3300 classified by the
algorithm to be protected from malware.
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The algorithm goes like this: choosing a set of k nodes (in our case study k ¼ 3300)
simultaneously and removing them from the graph G, we obtain a new graph, and
therefore we can calculate a new k1, smaller with respect to the old k1. Since the
infection threshold depends on the inverse of k1, the lower k1 the stronger the resilience
to the infection spreading. Thus, we are interested in choosing k nodes that will provide
the minimum possible k1. Moreover, AV11 provides an individual ranking for each of
the k selected nodes (Table 2, third column AV11 value).

Then we analyse the major device groups (see Table 2) in order to provide some
group statistics (Table 3).

For each type of group device, parameters taken into consideration are the number
of devices in the group, the percentage of the total number of devices, mean and
variance of the eigenvalues per group, eigenvalue sum per group and the percentage
related to the total sum of the 3300 eigenvalues.

Therefore, within the subset of the 3300 nodes, the relevance of each device group
concerning the transmission of any interaction to the whole network is represented by
the sum per group of the eigenvalues of the group. For example, as shown in Table 3,
the sum of the 375 eigenvalues of the type 2 devices accounts for 12.50% of the 3300
eigenvalues sum. Then the type 2 group is placed among the most influential of the
network. In other words, since any physical action in the real world somehow finds a
counterpart in the graph spectral analysis, the of contribution of each group type to the
eigenvalue sum (see Table 3, last column) may be read as the relative relevance in the
virtual world of the graph produced by real phenomena in the physical world.

The most relevant effect on the total eigenvalue sum is caused by smartphones,
accounting for 27% of the total number of devices and 31.50% of the total eigenvalue
sum. The second massive contribution comes from the PCs (25.70%), the third one
from cars (12.50%). Smartphones, cars, tablets, printers and PCs represent 86% of the
total sum of the eigenvalues, therefore are by far the most critical part of the network.
However, it is immediately evident that some devices, namely 6, 7, 12, 13 (PCs,

Table 2. The first ten nodes/devices of the IoT graphs from the AV11 analysis; they are all type
1 device, i.e. smartphones. The AV11 algorithm provides the value that is used to rank the
importance of the node (third column); thus, these nodes are recognized as the most influential
and need to be protected in the first place.

Classification Node Max_Eingevalue

1 247 364.837169
2 1407 363.841058
3 1521 362.846303
4 593 361.856203
5 728 360.910795
6 274 359.966537
7 240 359.021899
8 3631 358.075309
9 3322 357.135808
10 2314 356.211899
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printers, indicators, trucks) even if not the most numerous, have high eigenvalue mean
values, meaning that their impact on the network is important, despite the total number
of devices.

It is particularly interesting to note the importance of indicators and printers since at
present they are the favourite targets of hackers. Moreover, if we associate a cost to a
device, it would be possible to produce a cost function describing the trade-off between
the risk reduction provided by a security measure applied to a specific group of devices
and the economic cost of the measure itself. Not surprisingly in this sense, it may be
more affordable to spend more on the security of PCs, printers, indicators and trucks
than on smartphones.

In essence, the IoT environment will continue to increase in size and complexity.
Therefore, a domino effect due to net-aware malware has to be considered probable and
not only possible. Inherent vulnerability of IoT devices and structures exacerbate the
problem to the point that does not allow an ex-post reaction of the attack, and it is not
even viable to trust the enhancement of the IoT resilience. Thus, it is mandatory to rely
on a formal ex-ante defence analysis, able to provide cost-effective countermeasures.

Table 3. In the first column codes of devices are indicated, then for each type of device the
following statistics are shown: the absolute number of that type of device present in the network,
percentage of the device type related to the total number of devices, the average and the variance
of the AV11 values per type, and finally the percentage of the eigenvalues of a type_device
related to all the AV11 values.

Type_device Nodes % Nodes AV11 value
Mean

AV11 value
Var

% AV11
Total

1 887 27 114 11399 31.50
6 535 16 155 9432 25.70
2 375 11.30 107 4654 12.50
15 361 10.90 33 208 3.80
7 317 9.60 99 3644 9.80
3 252 7.60 85 2519 6.60
14 141 4.30 54 1003 2.39
11 128 3.90 69 944 2.80
4 127 3.80 52 661 2.00
8 68 2.10 35 168 0.75
9 50 1.50 39 1136 0.61
10 27 0.82 93 9775 0.79
5 15 0.45 21 9 0.10
12 10 0.30 98 1799 0.31
13 7 0.21 138 15 0.30
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5 Conclusion and Future Works

In this paper, we proposed the AV11 algorithm and shown its applicability on a real
IoT network example with the goal to provide an assessment framework based on the
graph theory for the IoT network in a smart city context. The IoT network has been
modelled as an undirected graph, and the nodes/devices have been classified according
to a spectral technique able to identify the most influential nodes, i.e. the nodes that can
propagate malware through the network. Since it was demonstrated [22, 25] that
immunizing a small set of properly selected nodes can prevent or at least reduce the
spreading, it is mandatory to identify these nodes in advance. Meanwhile, it is not a
viable solution to immunise a large part of an IoT network, because of the vast number
of devices. The economic advantages of the proposed algorithm are thus clear. For
example, instead of concentrating the defence efforts on smartphones, it could be
equally efficient but more economical to protect static assets such as computers,
printers, indicators. Further, as part of future work, we aim to approach an IoT network
dynamic risk assessment and mitigation and the association of the energy consumption
of each device in the configuration network. Since limited research is devoted to
topological structures of other complex networks for IoT in comparison with the
investigation of IoT software technology and also to the ongoing investigation on the
energy efficiency of the IoT devices, the authors aim to address in the future works
these results on dynamic IoT network in smart cities context.

Acknowledgments. The authors would like to express their gratitude to the HPC research group
at ENEA R.C. Portici to using ENEA Infrastructure for calculations.
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