)

Check for
updates

Smart Campus Parking — Parking Made Easy

Amanda Vieira' , Iolanda Rosa’ , Ivo Santos'*?)
Tiago Paulo' , Nuno Costa'*? , Marisa Maximiano'*? s
and Catarina I. Reis'®?

! School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
{2160832,2161477,2160837,2161352}@mny. ipleiria. pt,
{nuno. costa,marisa.maximiano,
catarina.reis}@ipleiria.pt
2 Computer Science and Communication Research Centre,
Polytechnic Institute of Leiria, Leiria, Portugal

Abstract. The number of users of the parking lots from the campus of the
Polytechnic of Leiria, a higher education institution in Portugal, has been
increasing each year. It is becoming a major concern to the organization to
address the high demand for a free parking spot on campus. In order to ease this
problem, this paper proposes the design of a smart parking system that can help
users to easily find a free parking spot, using an integrated system that includes
sensors and a mobile application.

The system is based on the information about the occupation status of parking
lots generated by parking sensors. This information is available in the mobile
application that consumes a REST webservice and is presented to end-users,
thus contributing to the decrease of time wasted on the quest of finding a free
spot. The software architecture consists on a set of decoupled modules that
compute and share the information generated by sensors. This architectural
approach is noteworthy because it maximizes the system scalability and
responsiveness to change. It allows the system to expand with the integration of
new applications and perform updates on the existing ones, without an overall
impact on the operations of the other system modules.

Keywords: IoT - Sensors * Smart parking + Android + API + REST

1 Introduction

1.1

The development of the economy leads to a continuous growth in the number of
available motor vehicles. Nowadays, the demand for a free parking spot versus the
number of available spots is a daily concern [1]. Therefore, drivers that need to park
their vehicles have the, sometimes troublesome, task to find a free parking slot. Usually
drivers waste their time and end up parking in an available space on the streets that they
find through a struck of luck or, in a worst case scenario, they fail to find a free parking
slot [2]. Parking issues also show a close relation with traffic congestion, accident, and

Context

environment pollution [3].

© Springer Nature Switzerland AG 2019
J. M. F. Rodrigues et al. (Eds.): ICCS 2019, LNCS 11540, pp. 70-83, 2019.
https://doi.org/10.1007/978-3-030-22750-0_6

http://orcid.org/0000-0002-5171-8587
http://orcid.org/0000-0003-1358-6744
http://orcid.org/0000-0001-5148-0233
http://orcid.org/0000-0002-7652-5335
http://orcid.org/0000-0002-2353-369X
http://orcid.org/0000-0002-1212-7864
http://orcid.org/0000-0003-1529-629X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22750-0_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22750-0_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22750-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-22750-0_6

Smart Campus Parking — Parking Made Easy 71

This reality is starting to become a challenge even for higher educational institu-
tions that want to provide the best parking conditions to their users, and the Polytechnic
of Leiria is not an exception. The increasing number of enrollments (shown in Table 1)
and the high percentage of vehicle ownership, lead to a decrease of supply of free
parking spots, which results in triggering blockage of vehicles, traffic congestion,
wastage of time and fuel [4] and to high levels of pollution.

Table 1. Evolution of the total number of enrolled students and employees of the Polytechnic of
Leiria for the academic years 2015-2018 [5].

Academic year |2015/2016 |2016/2017 | 2017/2018

Total students | 10417 10472 11026

Total employees | 1128 1162 1245

Therefore, the development of a smart parking system can play an important role to
help with this scenario. According to a report, smart parking can result in 220 000
gallons of fuels saving till 2030 and approx. 300 000 gallons of fuels saved by 2050,
when implemented successfully (shown in Fig. 1) [6].

500,000
450,000
350,000

250,000
200,000
2000 M

50,000

A& & &
¥ ,‘@&\ &
YSS* <@

&

3
%
%,
%,
%
%
Q
&

Fig. 1. Assumption of saving fuel consumption.

In addition to the reasons described above, there are other advantages resulting
from the usage of smart parking systems that also establish a motivation for this work:

¢ Efficiently manage the use of parking lots decreasing the traffic flow. Since drivers
do not need to circle around to find an available parking spot, this leads to an
improvement of the time that a driver takes to find the best spot, while minimizing
the occurrence of incidents;

e Improve the environment by reducing pollutants’ emission resulting from fuel
wasted on the quest of searching for a parking spot;

e Allow users to access real-time information about the parking lots occupancy rate
(information also available for any time of the day);

e Allow the integration with other functionalities such as obtaining user’s vehicle
location when it’s parked, see the most popular parking spot, the last reported
incidents on a parking spot, among others;

72 A. Vieira et al.

e Conduct various statistical analysis. For instance, explore the periods with most
traffic congestion and see if there’s a possible relation with the occurrence of
incidents.

1.2 Motivation

This paper aims to present the design and development of a smart parking system for
the efficient management of parking lots in the Campus 2 of the Polytechnic of Leiria.
The main goal is to provide guidance to drivers about the availability of parking spots
at the campus, delivering them with up-to-date information obtained from sensors in
the parking lots.

The work relies on the integration of several technologies and applications that aim
to collect, compute and persist data generated by parking sensors in real-time. End-
users can access this data using an Android application that communicates with a
REST webservice in order to obtain a response to the user’s requests.

The operation of the system, shown in Fig. 2, can be described as a group of
sensors detecting the occupancy status of the parking spots and sending this data to a
set of integrated applications that unify and persist the information on a centralized
database. On the other hand, there is a REST webservice that will expose this data to
answer to the received requests from end-user applications. View parking information,
use and find the best parking spots, report incidents, view statistical information among
other administrative tasks, are some of the features provided by the web service.

One of the main concerns while developing the system was its scalability con-
sidering the premise that this platform should easily allow the future integration of new
applications that will also receive and share information. Besides, the system must be
responsive to change, and thus, it should be easy to expand in order to integrate new
parking lots, new services and perform updates in a part of the system without affecting
the other modules. In order to meet this goal, the approach consists of an intercon-
nected modules’ architecture with maximum decoupling between them.

o O
Y T (D

sensor

. e REST A _ Receive response
-\ Setofservicestodata | : -§* webservice) / :
R i i) ~ / i
ot} N integration and Y, : a/ H
! 1 (" persistence | Get data ? !
Data 1 =< L -
I N - i
generatedl : — !
by the : i
I

Send

1
1
1
1
1
1
1
1
1
1request
1

Parking Lot
End-User

Fig. 2. General outline of system operation.

Smart Campus Parking — Parking Made Easy 73

There are some important features that should be considered when choosing real
sensor devices to use in the system:

Low installation and replacing time to reduce the costs;

Resistance to atmospheric conditions specially in parking lots located outdoors;
Compatibility with wireless networks;

Optimized for low-power consumption;

Simple for developers to work;

Allow remote management of several node parameters at the same time.

A good example of a sensor device with all these features is the one of Libelium
shown in Fig. 3(a).

(b)

(a) » Read the sensor

\J
Does the slot 8 Send a frame
change the state? to the cloud

Y

Gotodeepsleep =

Fig. 3. (a) Libelium smart parking sensor device and (b) the basic working loop diagram [7].

This sensor can be configured remotely using wireless access and supports bidi-
rectional communication. It works in a very efficient way as shown in Fig. 3(b). Reads
the sensor data and sends a frame when the parking spot changes its status. Then, it
sleeps a desired time before starting the loop again [7].

Currently, and regarding the work here described, the Polytechnic of Leiria does
not have sensors on its parking spots due to the initial economic investment that is
necessary to deploy such a system. Thus, to mitigate this limitation, two applications
that mimic the data generated by real sensors were created (providers).

1.3 Related Work

Related systems already exist. We started by identifying related mobile applications
available in the Apple Store [8] and Play Store [9]. Their main functionalities include
obtaining the location of an available parking slot in an area, reserve it and pay it via
app.

Next, we present some examples of applications with the referred functionalities:

e JustPark Parking: Android application that includes around 20 000 parking
locations that are available for booking [10].

e ParkMobile Parking: Android application that allows the users to have favorite
parking zones, update personal details, change payment method, download their
invoice, view parking history, etc. [11].

74 A. Vieira et al.

e ParkNow Parking: Android application that works on-street and off-street and the
payment due is charged monthly. It also allows a user to choose a parking spot
based on distance and price [12].

e PayByPhone: Smart parking application available on iPhone, Android, Blackberry
and Windows. Allows the user to find parking lots, pay the parking fee through the
application and even extend the time the user wishes to be parked for [13].

¢ BestParking: iPhone application that allows the user to find an available spot at the
best price [14].

¢ SmoothParking: iPhone application that notifies the user when the legal parking
time is up. It’s available in English and Spanish [15].

e Parking Hero: iPhone application that notifies the user about promotions, and
shows the locations of special spots like taxis, pickup and delivery points, tourist
buses or truck parking on the highway [16].

2 Smart Campus Parking — System Architecture

Figure 4 presents the general architecture of the system. The parking sensors on our
system are represented by the providers.

Providers

E
a

'
I
'
'
'
'
1
ata !
tion Parking Spot / |
ent ooooo0o0) — sx?;:ies:)pp — 8 :
r: it i

Database ' SmartPark Spots

J (ParkDB) 1 [(RESTul web service) (Android Application)

'

BOT-Spot :
- R=N -
[xLs) H

Fig. 4. General service and Spots app communication layer architectural schema.

py
Parking Ac
DLL fe——1 an

2.1 Application Programming Interface — Tailored Services

The Spots app (see Sect. 3) will obtain the parking lots information using a REST
webservice named SmartPark. The REST architectural style [17] was adopted in the
development of the SmartPark API because it is stateless, which is a fundamental
aspect for the scalability of the system allowing many clients to connect to the API
without degradation of the response time. Thus, the SmartPark role is to provide
endpoints and supply data to client applications such as:

e Parking lots general information: name, operating hours, total of spots, etc.;
Information about occupation status of parking spots and sensor’s battery status;
Instant occupation rate value and perform historical queries about parking occu-
pation at a specific time or during a time period, among others.

Smart Campus Parking — Parking Made Easy 75

This service acquires information from a database where data is placed by the
ParkSS application which, on its side, is a part of a system formed by a layer of
modules whose purpose is to receive and persist the information generated by the
sensors in a unified format.

2.2 Sensors Data Collector and Transformation Modules

As previously mentioned, there are no sensors installed on the parking lots of the
Polytechnic of Leiria, so in order to develop the system two providers that mimic the
behavior of real sensors were made. The ParkingSensorNodeDLL is a library that
generates and pushes data directly to the receiver application in a preset time interval.
The BOT-SpotSensors, on other way, is a SOAP webservice [18] that generates data in
xml and data contract formats. BOT-SpotSensors follows a “pull” approach meaning
that the applications who want to obtain the sensors’ data are responsible to request this
information to the service. Both providers generate data about occupation status and
sensor battery, in a random way. This approach is not the ideal, but it’s the simplest and
fastest way to implement and, accurately, test the system.

The data generated by these providers needs to be integrated with other information
(geolocation and parking lots data) into a unified format and this is done by the
ParkDACE application. Therefore, the ParkDACE goal is to receive and collect the
data from different sources, validate and integrate it in order to send this information to
other application that is responsible for the data persistence.

The sharing of the data is made using a messaging system working with the MQTT
[19] connectivity protocol (see Sect. 2.3). Under this protocol, ParkDACE plays the
role of a publisher that sends messages with the unified information to the broker. The
broker is responsible for distributing the data to all of the applications that subscribed
the publisher topics. This system allows multiple subscriptions from various applica-
tions to the same topic, without service degradation.

The ParkSS application is a subscriber that will receive the information sent by
ParkDACE and will persist the data into a relational database, named ParkDB.

All the information described above can be seen in Fig. 4.

2.3 Broker — Sensors Integration

To make parks and sensors’ information available to interested applications it was used
a message broker system. We used the broker Eclipse Mosquitto, which is an open
source broker, [21] that implements the MQTT protocol, an open protocol that uses the
publish-subscribe model, being the application ParkDACE responsible for publishing
information about the parking lots and sensors.

The MQTT protocol is lightweight and, ultimately, a good choice for sensors that
have limited resources, since it allows an efficient transmission of information.

The ParkTU application plays the essential role of the broker since it is the mediator
that controls the connection and message transmission between applications.

Regarding the Quality of Service (QoS) we used a Level 2 — Exactly Once — since it
ensures that each message is only received once. It is considered the most reliable level
in terms of guarantees for the application because it delivers all the messages. If we

76 A. Vieira et al.

have used a Level 0 — At Most Once — the analysis of the state of the parks and sensors,
such as future statistical analyzes would not be reliable. Similarly, on Level 1 — At
Least Once — the duplication of messages could occur, being then necessary an
additional processing by the applications that would receive the information to
manipulate the potential duplicated messages. Nevertheless, this level could be con-
siderable advantageous if the performance of the transmission was indeed a crucial
factor for the application that receives the data.

In the message broker, two topics were created for the transmission of information:

e Parks — information of parking lots;
e Spots — information about the sensors’ status.

When using the message broker with the publish-subscribe model, the application
becomes mores scalable. Thus, any application that wants to receive information
provided by the ParkDACE can simply subscribe to the desired topics, according to the
information that it wants to receive.

3 Spots

The Spots mobile application was developed for the Android operating system and
allows users to obtain information about the occupation state of the available parks.

The mobile application consumes data from a Firebase instance and from the
RESTful API described in Sect. 2. It also uses the Google API (including Maps),
specific georeferentiation libraries from the mobile device (GPS and Gallery) and a
specific library to create charts. The architecture can be visualized in Fig. 5 and,
additionally, more details can be found on Appendix A.

Anonymous User Authenticated User
[Person] [Person]
Anyone who wants to access the application ~, 'Anyone who accesses the application after log}
without using authentication credentials RN in with authentication credentials (email and
(email and password) S~ - password)
+ Visualize information about a predefined park S~ - + Visualize information about all parks in the system
~ - + Visualize and update information on his profile

(ESTG Park A — Campus 2)
« Register in the application
+ Make login in the application

* Visualize his list of favorites and add and remove
Spots spots to it
[Software System] + Obtain a free spot
Management of spots in * Park in a spot (manually or automatically), see his spot
parking lots and leave his spot (manually and automatically)
+ Consult statistic data
* Register and visualize information about incidents

+ Send notifications
concerning changes in user
profile and performance

1
1
1
| values of the algorithms ’, /7 1 \ AJERN ~
, ’ LEREN ~
1 , , ! \ [NEREN So
1 ’ 1 \ \ S N
’ 4 S ~
| 2 / 1 \ » S ~
. , , b \ \ ~ ~ + Draw the graphics relative
’ 2 \ A ~ N N tothe occupancy rate over
| S SN NEN &
N "
, P \ \ N ~ Graph View
I
1"+ Read and write users and ’ b \ \ S [Library Graph
| authentication information ’ + Obtain directions fromone e Draws for Android]
|+ Read and write data relative ’ I point to another he N S
| toincidents on o 1 + Obtain coordinates and N .
+ Download and upload + Obain parks an . calculate distances * View parking lots
: unages spols information Obtain de: e maps

\ Obtain photos to upload

¥
Firebase SmartParking 5"‘"';';:":": (e Google API Google Maps Smartphone Gallery
Y Software Syst
[Software System] [RESTful web service] Eestrs [Software System] [Software System] [Software System]

Fig. 5. Spots application architecture.

Smart Campus Parking — Parking Made Easy 77

This application can be used by both authenticated and unauthenticated users.
Unauthenticated users can access to the initial screens where they: see information
about the occupation state of a specific park, and where they can register or authenticate
in the application.

Figure 6(2) presents the parking layout where the green spots correspond to the
geolocation of available slots, the total number of free and occupied slots on the park
and the last update date for the information presented. It’s also possible to unauthen-
ticated users to register or authenticate themselves on the application. To register and
authenticate on the Spots app, an email address and password are required.

For authenticated users, the Spots app provides a set of functionalities displayed on
an always-present slide-drawer menu. Authenticated users can see the occupation state
for all the available parking lots of the system (Fig. 6).

105 0 6 @
< Options

Park Manually
My spot

Leave My Spot

Statistics
Change my password

Incidents Reports List

Fig. 6. Initial menu functionalities available for authenticated users (1), initial screen displaying
Parking A occupation status on Campus 2 and the selection of menu with all parks available (2),
Parking D with all slots occupied (3).

The most relevant features are:

e Profile: Users can see the information of their profile and update it. They have the
possibility to manage their favorite parking spots’ list;

e My Spot: When the user is parked the application shows the vehicle location on the
parking lot (the spot);

¢ Find a me a spot: The aim of this functionality is to provide the location of an
available spot on the user’s selected parking according to his preference. There are
three search algorithms that can be applied in order to find a free place: select the
spot with closest location according to user’s GPS location; select the best rated
spot from all the spots in a parking lot; and, select the best rated place from the
current user’s favorites list.
The user can preset a preference for the “Find me a spot” option in the update
profile screen and the application will choose the best spot according to user’s
preference. Otherwise, if the user does not have a preset preference, the application
will ask him what option to use. After that, the application will present an available
spot; will use the Google Maps service where the geolocation spot is shown, and the
user could get the directions to reach that location;

78

A. Vieira et al.

Park/Leave My Spot: The Spots application has an automatic detection mecha-
nism. When there is a change in the occupancy state of a parking, it will be checked
if there is any logged user parking or leaving the spot on that sensor location
(Fig. 7). However, it also has options in the menu to allow a user to manually
specify where he intends to park or when he’s leaving a spot. Whenever the user
leaves a parking spot, he can rate it and add it to his favorites list if that spot isn’t
already part of that list.

Fig. 7. Park Manually operation (1) and leave my spot manually (2).

Occupation rate/Statistics/Algorithm Performance: The occupation rate screen
shows the evolution of the average occupation rate during a time period in a
graphical representation. There is also some additional information regarding users
and application usage statistics, as shown in Fig. 8. The algorithm performance
screen shows the average computation time in milliseconds that each algorithm
takes to give a response to users. All this information is updated in real-time.

Park A-14.20%
Park D - 100.00%

SHOW OCCUPATION RATE EVOLUTION ON
PERIOD

Fig. 8. Statistics (1), algorithm performance (2) and occupation rate during time

(©))

charts/graphical representation.

Incidents: Allows the user to report incidents, see the list of all reported incidents
and their details (see Fig. 9).

Smart Campus Parking — Parking Made Easy 79

At 5:22 PM on December 12,2018 my
My car lock I broken, erhaps car theft car lock has been broken and I think of
tiempt? car theft attempt.

=y

;
-,
{2
Z T
1 =

Fig. 9. Incidents report list (1), incident details (2) and report an incident (3) screens.

The development of the Spots application rests in some general principles of agile
methodologies like Scrum [22], XP [23] and Kanban [24]. In this app the features
where developed in an incremental and iterative way which allows developers to get
constant feedback and improvement of the application.

For automated testing, the Cucumber tool [25] was used and it’s based on the XP
principle of Test First Programming [23], which leads the team to have a clearly
understanding of the requirements before their actual implementation. The acceptance
tests were written using the Gherkin language [26] - a “natural” language that con-
tributes to part of the documentation. For the specific implementation of the “steps” we
used the Espresso framework [27], the standard for automated testing for Android.

4 Conclusion and Future Work

This paper aims to present the design of a platform for an efficient, cost-effective smart
parking system to the Polytechnic of Leiria and thereby enhance the parking quality to
the students and employees working on this institution. This system manages data
received from sensors with focus on providing real-time information regarding the
availability of parking spots to end-users. The main goal is achieving the maximum
decoupling between the several modules that compose the system, in order to maximize
scalability and minimize the failure of the entire system just because a single module
becomes unavailable.

From the analysis of related work, we conclude that a smart parking system has
many advantages: decreases traffic congestion; minimizes fuel consumption; reduces
the number of incidents on parking lots, and optimizes the time wasted by the drivers to
search for a parking spot. Although there are still no sensors implemented on the
Polytechnic of Leiria parking lots, in the future, when it becomes a reality, the timely
planning of the platform presented on this paper will speed up the process of imple-
mentation of the smart park system.

There is future work that could be done in order to improve this system like the
upgrade of the authentication mechanism from the client application allowing the users
to have other options besides the email to authenticate themselves, like authentication
by username or with their personal institutional identification number.

80 A. Vieira et al.

Also, it should be considered the development of an administration platform for the
parking lots and other client applications, alike the proposed on this paper, and that
work on distinct operating systems. Besides, the option to incorporate activity detection
and even environmental factors would also allow us to predict, with some accuracy, the
occupancy rate and the other significant statistics of the platform.

In the future, it would also be interesting to allow remote users to previously book
an available spot for a short amount of time, before they get there, and park. This
mechanism is more difficult to implement as many changes would be required since
nowadays the Polytechnic of Leiria offers free parking. The solution would require, at
least, an access control mechanism to the parks and the count of available spots
excluding the ones that have been booked. In addition to this, it should also be con-
sidered the implementation of a security mechanism that ensures the use of the parking
lots only by students and employees from the institution.

Acknowledgements. This work is financed by national funds through the FCT - Foundation for
Science and Technology, I.P., under project UID/CEC/04524/2016.

Appendix A

See Figs. 10, 11, 12, 13, 14 and 15.

y . . « View all parks, profile, favourite list, statistic data,
Anonymous User) VieW PARK A, Login and Registration incident reports, find a spot, park and leave a spot J St enticaccalUren
[Person] [Person]

+ Obtain the images of the pars and set
Shared Preferences + Read and write the date of the last markers in the free spots and the spot
[Container] service request
Y AR - — — — — — — — — —
service to get information about -
parks occupancy -

Map fragment that will be shown
in the application

\
1
1
1
1
1
L 1
1
1
1
1
1
1
1

« Allows theuser to interact wih VL e \
application features 1

| * Obtain directions from one
| point to another

1
1
Activities + Obtain coordinates and '
. v 1
[Continer] : gllc\\,s access to and update of data 17 leulate distances \
Associated with views that show. aecompadson. 2 S=====sSssssisiE ! \
o i « Provide instances for DB access and, Maael 1 1 \
to the service L I | + View parking
Draw the graphies 7 ®. U~ 1 + Adapters for data representation leanimed| V' Jots maps
relative to the 7 \ N mmmEm e e - - Support access, representation and 1 1 \ P
\ occupamey mate/ \ S manipulation of data between 1 + Obtain device \ /
N "
Novertime /. \ 1 location. \ ,
< _-
[R e e FPmmm——————— : _________ =
Graph View - + Send notifications + Obtain parks and ! (i
" * Obtain photos concerning changes spots information I 1 oogle Maps
[G to upload in the database B 1 [l [Software System]
Draws for Android] . S 1

K] {
Smartphone Gallery Firebase SmartParking Google AP Smﬂrgl:l‘:': GPs
[Software System] [Software System] [RESTful web service] [Software System] e

Fig. 10. Spots application containers details architectural scheme.

Smart Campus Parking — Parking Made Easy 81

Graph View
" « Draws the graphics
SmartParking Activities e [Library Graph
[RESTful web - i
[1 50 (e e (e e + Class HistoryValue data Draws for Android]
service] 1 i N representation
s \ + Date validation usin;
1 Graphic Component e
F | MyDataComp
v -1 [Component: Android Activity] — = J—
; Show the graphics relative to the ! 1. Users registration and
X occupancy rate over time I, et Firebase instances | Avthentication services
| o epresentation to | * Persists and update user data in DB
1. Allows an user to register and authenticat Register and Login | crentenser. | * Listen for information changes
g B p i L [Component: Androld Activity] = e et
Allows an user to register and authenticate . i * Reads and writes anuser |
I+ Get Firebase instances | data 1
| and design | * Listen for information 1
+ Returns profile information Profile | _representation of a user changes
|_ T === [Component: Android Activity s mmmmmms =—===="
Android Application il View and update user data I+ Get Firebase instances and | 4 Create, read and update list

| design representation of a spot] of favourites
| Uses adapters to show data on| 1 sten for information

[Container: Android] [P =
vOREIies
Favourites ! the list

L - [Component: Android Activity]
* Returns the favourites spots list Shows and update the list of favourits
spots

—— | changes

1
1" Get Firebase instances,
Incidents Viewi | incident representation and |* Read DB data and download;
ncidents Viewing uses lists adapter images from storage
ialalal sl st nla ol o [Component: Android Activity] |____________‘______

the list and details of incidents 1 . * Uploads images to the

* Get Firebase instances and | storage

| uses auxiliary functionsto | Create and persists incidents
| _create an incident inDB

* Visualize incidents

« Allows a user to register new incidents Incidents Register

| ——— [Component: Android Activity] 1 o o
Choose an image Incidents
I l from gallery 1
| Dashboards ! Model Classes Firebase
1 Smartphone Galler [Component: Android Activity] 1 [Container] [Software System]
I [Software System] information about the parks 1 vy
ry
'_____________ [I]]
+ Show the authenticated and unauthenticated ;’ + Loads data of active + Listen for changes in DB
dashboards and access to the options related to each Vs m - users in application + Reads and updates data in DB

Fig. 11. Components of activities container of Spots application.

Anonymous User __ « Access the views where + Access the views where Authe
erson] = ~ - __ they do operations they dooperations _ _ = = [Person]
S~ Android Application -

SeTTT-----Ss—------o=
7=~ -
[= -
« Present the fragment with 1 B (Coumponent: XL Files) ISR Generated and controlled by activities
the markers o theusers, — — —j=— =~ T T 7 Application screens with % = rm——- [N Activities
Maps Fragment o= 4 . ‘which the user interacts ~ [Container]
[Container] P So
1 , ~
1 4 ~
.
1.
7
\
7N = iy + Use shared preferences to
« Allow views to transit to i update the date value in
‘google maps application -t . dashboard views
ot il . - \ <
o display directions _- .
A _- .« Obtain current device N

’ -7 \ location ~
7~ = 7 Calculate distances

= * Get coordinates.

Google APT Smartphone GPS System

Shared Preferences

[Software System] [Software System] [Container]

Fig. 12. Components of android application container of Spots application.

Maps Fragment
T TTTEES ~

Maps Fragment

Map fragment that will be show

in the application

« Allows application to put
arkers in free parking spots
. N
. N

Android Application Goof
[Container] [Softw

Fig. 13. Components of maps fragment container of Spots application.

82

A. Vieira et al.

Model

Fig. 14. Components of model container of Spots application.

Shared Preferences

N

Fig. 15. Components of shared preferences container of spots application.

References

11.

12.

. Wang, Z., Lian, Z., Han, K.: Designing of intelligent parking lot based on MQTT. Int.

J. Adv. Netw. Monit. Control. 2(4), 317-322 (2017)

. Vishwanath, Y., Aishwarya, D.K., Debarupa, R.: Smart parking system based on Internet of

Things. Int. J. Recent Trends Eng. Res. 2(3), 156-160 (2016)

. Liu, Y., et al.: Metropolis parking problems and management planning solutions for traffic

operation effectiveness. Math. Probl. Eng. 2012, 6 (2012)

. Lingam, C.: University Car Parking Application. Texas (2018)
. Polytechnic of Leiria: Factos e Numeros. https://www.ipleiria.pt/ipleiria/ipl-em-numeros/.

Accessed 07 Feb 2019

. Ahad, A., Khan, Z.R., Ahmad, S.A.: Intelligent parking system. World J. Eng. Technol. 4,

160-167 (2016)

. Libelium: Smart Parking (2018)
. Apple Inc.: App Store (2019). https://www.apple.com/pt/ios/app-store/. Accessed 13 Feb

2019

. Google: Google Play (2019). https://play.google.com/store/apps. Accessed 13 Feb 2019
. JustPark: JustPark Parking — Apps on Google Play. https://play.google.com/store/apps/

details?id=com.justpark.jp. Accessed 29 Jan 2019

ParkMobile: Parkmobile Parking — Apps on Google Play. https:/play.google.com/store/
apps/details?id=com.parkmobile. Accessed 29 Jan 2019

ParkNow: ParkNow Parking — Apps on Google Play. https://play.google.com/store/apps/
details?id=com.parknow.app. Accessed 29 Jan 2019

https://www.ipleiria.pt/ipleiria/ipl-em-numeros/
https://www.apple.com/pt/ios/app-store/
https://play.google.com/store/apps
https://play.google.com/store/apps/details?id=com.justpark.jp
https://play.google.com/store/apps/details?id=com.justpark.jp
https://play.google.com/store/apps/details?id=com.parkmobile
https://play.google.com/store/apps/details?id=com.parkmobile
https://play.google.com/store/apps/details?id=com.parknow.app
https://play.google.com/store/apps/details?id=com.parknow.app

13.

14.

15.

16.

17.
18.

19.
20.
21.
22.
23.
24,
25.

26.
217.

Smart Campus Parking — Parking Made Easy 83

PayByPhone: Start new parking. PayByPhone. https://m2.paybyphone.com/parking/start/
location. Accessed 29 Jan 2019

BestParking: BestParking: Find and Book Parking Anywhere. https://www.bestparking.com/.
Accessed 29 Jan 2019

SmoothParking Inc.: SmoothParking. https://itunes.apple.com/us/app/smoothparking/
id615418863?mt=8. Accessed 07 Feb 2019

Parking Hero: Smart Parking - Parking Hero. https://itunes.apple.com/us/app/smart-parking-
parking-hero/id1249834332?mt=8. Accessed 06 Feb 2019

Lange, K.: The Little Book on REST Services. Copenhagen (2016)

Tidwell, D., Snell, J., Kulchenko, P.: Programming Web Services with SOAP, Ist edn.
O’Reilly, pp. 21-36 (2001)

MQTT: MQTT.org (2014). http://mqtt.org. Accessed 13 Feb 2019

Fawcett, J., Quin, L.R.E., Ayers, D.: Beginning XML, 5th edn. (2012)

Eclipse Foundation: Eclipse Mosquitto. https://mosquitto.org. Accessed 13 Feb 2019
Schwaber, K., Sutherland, J.: The Scrum Guide: The Definitive the Rules of the Game.
Scrum.org and Scrum Inc., p. 19 (2017)

Beck, K., Andres, C.: Extreme Programming Explained - Embrace Change, 2nd edn. John
Wait, United States (2004)

Anderson, D.J., Carmichael, A.: Essential Kanban Condensed, Ist edn. Lean Kanban
University Press, Seattle (2016)

Wynne, M., Hellesoy, A., Tooke, S.: The Cucumber Book - Behaviour-Driven Development
for Testers and Developers, 2nd edn. Pragmatic Programmers, United States (2017)
Gherkin Reference. https://docs.cucumber.io/gherkin/reference/. Accessed 13 Feb 2019
Espresso (2019). https://developer.android.com/training/testing/espresso/. Accessed 13 Feb
2019

https://m2.paybyphone.com/parking/start/location
https://m2.paybyphone.com/parking/start/location
https://www.bestparking.com/
https://itunes.apple.com/us/app/smoothparking/id615418863?mt=8
https://itunes.apple.com/us/app/smoothparking/id615418863?mt=8
https://itunes.apple.com/us/app/smart-parking-parking-hero/id1249834332%3fmt%3d8
https://itunes.apple.com/us/app/smart-parking-parking-hero/id1249834332%3fmt%3d8
http://mqtt.org
https://mosquitto.org
https://docs.cucumber.io/gherkin/reference/
https://developer.android.com/training/testing/espresso/

	Smart Campus Parking – Parking Made Easy
	Abstract
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Related Work

	2 Smart Campus Parking – System Architecture
	2.1 Application Programming Interface – Tailored Services
	2.2 Sensors Data Collector and Transformation Modules
	2.3 Broker – Sensors Integration

	3 Spots
	4 Conclusion and Future Work
	Acknowledgements
	Appendix A
	References

