
p3Enum: A New Parameterizable
and Shared-Memory Parallelized Shortest

Vector Problem Solver

Michael Burger(B), Christian Bischof, and Juliane Krämer

Fachbereich Informatik, Technische Universität Darmstadt, Hochschulstraße, 10,
64289 Darmstadt, Germany

{michael.burger,christian.bischof}@sc.tu-darmstadt.de,
jkraemer@cdc.informatik.tu-darmstadt.de

Abstract. Due to the advent of quantum computers, quantum-safe
cryptographic alternatives are required. Promising candidates are based
on lattices. The hardness of the underlying problems must also be
assessed on classical hardware. In this paper, we present the open source
framework p3Enum for solving the important lattice problem of find-
ing the shortest non-zero vector in a lattice, based on enumeration with
extreme pruning. Our parallelized enumeration routine scales very well
on SMP systems with an extremely high parallel efficiency up to 0.91
with 60 threads on a single node. A novel parameter ν within the prun-
ing function increases the probability of success and the workload of the
enumeration. This enables p3Enum to achieve runtimes for parallel enu-
merations which are comparable to single-threaded cases but with higher
success rate. We compare the performance of p3Enum to publicly avail-
able libraries and results in the literature. For lattice dimensions 66 to
88, p3Enum performs the best which makes it a good building block in
lattice reduction frameworks.

1 Introduction

We need cryptography in our daily lives to secure the applications like social
media and online banking. However, we know that all public-key cryptography
based on prime factorization and elliptic curves in use today will be broken
once large-scale quantum computers exist. Therefore, a vivid field of research
is post quantum cryptography, where cryptographic algorithms that withstand
attacks with quantum computers are developed. Algorithms based on lattices
are promising since they are versatile and efficient. One of the frequently stud-
ied algorithmic problems in lattice cryptography is the shortest vector problem
(SVP) which cannot be solved by quantum computers efficiently. However, to
be practical, lattice-based cryptography does not only have to withstand attacks
with quantum computers, but the exact hardness in relation to classical comput-
ers and HPC systems has also to be determined so that secure parameters, e.g.,
key sizes, can be chosen. Regarding the SVP, the most promising techniques

c© Springer Nature Switzerland AG 2019
J. M. F. Rodrigues et al. (Eds.): ICCS 2019, LNCS 11540, pp. 535–542, 2019.
https://doi.org/10.1007/978-3-030-22750-0_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22750-0_48&domain=pdf
https://doi.org/10.1007/978-3-030-22750-0_48

536 M. Burger et al.

to solve it are extreme pruning [2] and sieving [4]. To understand their full
potential, they have to be analyzed on parallel systems. To that end, we present
p3Enum which is a parallelized, parameterizable open source framework based
on extreme pruning.

2 Preliminaries

We denote vectors with bold lower case letters, e.g., u, matrices with bold upper
case letters, e.g., B, and scalars with normal lower case letters, e.g., β. Bm×n

stands for an m × n matrix. If the dimensions are clear from the context, we
simply write B. Integers are denoted by Z and the real numbers by R. The
standard inner product is denoted by 〈·, ·〉 and the Euclidean norm by ‖·‖.

A lattice of dimension d is a discrete additive subgroup of Rd. Every lattice
Λ ⊂ R

d can be represented by a basis, i.e., a set of R-linearly independent vectors
B = {b1, . . . ,bn} ⊂ R

d such that Λ = Λ(B) = Zb1 + · · · + Zbn. We identify
lattice bases with matrices whose columns represent the basis vectors. In this
case, d is called the dimension of the lattice and n ≤ d is called its rank. If
n = d, the lattice is called a full-rank lattice. All lattices within this work are
full-rank. The Gram-Schmidt (GS) basis (obtained by GS orthogonalization) of
a basis B is denoted by B∗ = {b∗

1, . . . ,b
∗
n} ⊂ R

d, the respective GS-lengths by
||b∗

1||2, . . . , ||b∗
n||2, and the GS-coefficients by μi,j with 1 ≤ j < i ≤ n.

The quality of a lattice basis B can, e.g., be measured by the decrease of the
series ||b∗

1||2, . . . , ||b∗
n||2, or by the value of ||b∗

1||2. Improving the quality of a basis
is called basis reduction. Geometrically, basis reduction means, in particular, to
make the basis vectors shorter and more orthogonal. The most commonly used
basis reduction algorithm is BKZ 2.0 [2]. BKZ 2.0 works on local blocks of lattices
of dimension β < n and optimizes the basis by sliding over all basis vectors in
contiguous blocks. A basis processed by BKZ with block size β is called BKZ-β
reduced. Solutions for the SVP or approximately good solutions, delivered by a
so-called SVP-oracle, are required within each local block. The two most common
types of SVP-oracles employ enumeration [2,3,5] with extreme pruning or sieving
algorithms [1,4]. p3Enum uses enumeration and hence searches for coefficient vec-
tors u fulfilling ||u ∗ B|| < A in a heuristically pruned search tree. The extreme
pruning function A = (A1, . . . , An) with A1 ≤ A2 ≤ · · · ≤ An ≤ A determines
the maximal costs Ai for a partial solution vector with length i. Large parts of the
search tree are cut off and in general the search has to be repeated several times
on randomized input bases to succeed [2].

3 Related Work

The single-threaded, template-based fplll C++-library [3] implements important
algorithms from the lattice domain like LLL, BKZ, or enumeration with extreme
pruning. Pruned enumeration is possible for bases with n ≤ 90.

p3Enum 537

Kuo et al. [5] presented an implementation of extreme pruning on GPUs. The
enumeration tree is split into starting vectors generated on the CPU which are
completed on GPUs. The pruning function A is a scaled polynomial of degree
eight.

Aono et al. [2] developed progressive BKZ which avoids a predefined BKZ-
strategy but starts with a small β and iteratively increases it in appropriate steps.
The pruning functions are based on the so-called full enumeration cost (FEC)
which results from benchmarks, heuristics, and optimized estimates for A.

Concerning sieving, SubSieve [4] employs progressive sieving [6] which works
on sublattices instead of directly solving the SVP on the whole lattice basis.
It also takes advantage of the fact that the output of sieving a list of short
vectors. This allows to solve the n-dimensional SVP with sieving calls on (n−δ)-
dimensional sublattices, where δ is heuristically determined.

Albrecht et al. [1] combine the principles of SubSieve with further algorithmic
improvements into the General Sieve Kernel (G6K). G6K processes the basis in
non-contiguous blocks and its parallelized C++-implementation holds the record
in the Darmstadt SVP challenge1 (D-SVPC), where researchers are invited to
search short vectors within provided random lattices.

4 Implementation of p3Enum

p3Enum is implemented in C++112. The randomized bases are reduced by two
different BKZ calls to the fplll library. First, we execute a classical BKZ without
pruned enumeration calls on a relatively small block size of pre-β ∈ {2, . . . , 36}.
It is followed by a call with β ∈ {2, . . . , 54} and pruning and heuristical early
abortion enabled so that BKZ 2.0 terminates when the heuristic detects no
further considerable improvements in the basis quality. The values of pre-β and
β depend on the dimension of the lattice and we try to weight the required
runtimes in a relation of 2 : 1 since our experiments showed the best performance
for this combination.

For the extreme pruning function, we employ the polynomial of degree eight
from [5] (cf. Sect. 3) scaled to the respective dimension of the lattice. We eval-
uate the polynomial at each position l ∈ {1, . . . , n} and multiply the result
∈]0, . . . , 1.0] with A. This value is assigned to the respective entry Al of the
pruning function vector A.

4.1 Parallelization Strategy

Our parallelization strategy is twofold. First, the enumeration itself is parallelized
and second, multiple instances of basis reduction are executed in parallel.

The parallelization of the enumeration is strongly related to the approaches
of [2,5]. Within the OpenMP parallel region, the first thread arriving starts at

1 https://www.latticechallenge.org/svp-challenge/.
2 https://github.com/MiBu84/p3enum.

https://www.latticechallenge.org/svp-challenge/
https://github.com/MiBu84/p3enum

538 M. Burger et al.

a pre-defined depth η = 10 which is chosen based on experiments. This thread
enumerates vectors from η to the root which are smaller than the corresponding
Ai’s, called candidates. They are inserted in a thread-safe, shared ring-queue,
developed by us. The size can be reconfigured at runtime and the fixed size
allows to calculate its memory requirements. If the queue is filled above a given
threshold, all threads except the one filling the queue start processing the partial
tree at level η + 1.

Experiments with the fplll library showed that running multiple instances
on the same compute node does not have a considerable negative effect on the
runtime compared to running one instance. Hence, p3Enum performs multiple
instances on different randomized bases in parallel to make efficient use of the
compute capabilities of modern computers. This also considerably reduces, if not
even removes, the drawback that serial BKZ-implementations prevent efficient
parallelization on an SMP-system, as mentioned in [5]. In that way, we create a
bunch of randomized, reduced bases for processing in about the same time as a
single basis otherwise. One drawback of this approach is that the time to reduce
a basis varies for randomized instances. Consequently, some threads finish faster
than others. Empirical experiments show a difference of about 2 in the runtime
between the fastest and the slowest thread.

4.2 Parameterized Workload

Performing experiments with the progressive BKZ library [2] show a conspicu-
ous behavior. The library internally decides whether to execute the pruned enu-
meration in the OpenMP-parallelized or the single-threaded version. For many
dimensions <85, the heuristic chooses the single-threaded version since the work-
load is too small and the predicted single-threaded execution time far below 1 s.
Comparably fast runtimes can be achieved with p3Enum: When directly run-
ning pruned enumeration on a random lattice of dimension 80, which is BKZ-30
reduced and a tight bound A for the shortest vector is known (as described
below), the single-threaded execution time is below 0.01 s and a parallelization
will not pay off. Hence, we introduce a new pruning-parameter ν which works
in the following way. We first evaluate the polynomial of [5] for the consid-
ered entry l ∈ {1, . . . , n}, resulting in a value α ∈]0, . . . , 1.0]. Now, we update
α = min (α + ν, 1.0) and finally calculate the value of the pruning function A at
entry l by Al = α ·A. Mathematically, we shift the graph of the pruning function
along the positive y-axis.

In that way, we increase the probability of keeping the shortest vector in the
pruned tree and increase the workload so that a parallelization pays off. The goal
is to set ν such that it enables p3Enum to efficiently run parallel enumerations
in the time of single-threaded enumerations, but with increased success rate.

p3Enum 539

4.3 Heuristics to Improve the Performance

To reduce the number of randomized bases to be processed, the bases reduced in
parallel are processed in ascending order of their ||b∗

1||2 values. Mainly for smaller
dimensions <80 this reduces the number of processed bases at no additional cost.

To cope with the different runtimes of parallel BKZ-instances, the program
measures the runtimes during the first round of reductions and, based on the
observed timing variance between threads (cf. Sect. 4.1), sets a time limit for the
BKZ-calls in the following rounds to 2.1 times of the fastest reduction in the
first round. If the ||b∗

1||2 value of the BKZ calls terminated because of this time
limit lies in the range of the ||b∗

1||2’s of the other bases, the basis is processed
normally, otherwise it is discarded.

5 Experiments and Results

5.1 Methodology

system1 nodes are dual socket Intel E5-2680 v3 CPUs (24 cores) with 64 GB of
RAM. system2 nodes are quad socket Intel E7-4890 v2 CPUs (60 cores) with
1024 GB of RAM. For p3Enum and fplll we use gcc 8.2.0 and for SubSieve gcc
4.9.4. All random lattices are in Goldstein-Mayer form of the D-SVPC with
seeds (0, 237, 6880, 97575, 98937). To have an upper bound for the length of the
vectors, we performed, like [4], several runs of fplll’s pruned SVP-routine with a
target success probability of 99%.

5.2 Performance Analysis

The parameterization for p3Enum (ν ∈ [0.03, . . . , 0.3] , β ∈ {2, . . . , 58},pre-β ∈
{2, . . . , 38}) was based on empirical test runs and constant for a lattice dimension
d. It is available on p3Enum’s github. Figure 1 summarizes the runtimes and
splits the data into three diagrams to refine the logarithmic scale on the y-axis.

66 68 70 72 7410
0

10
1

dimension d

To
ta
lr
un
tim

e
in

s

pEnum

SubSieve

fplll

G6K

76 78 80 82
10
1

10
2

dimension d
84 86 88 90

10
2

10
3

dimension d

Fig. 1. Performance comparison for dimensions 76-90 on system1 nodes.

540 M. Burger et al.

Table 1. Speedup of p3Enum when compared to other solutions.

Solver n

66 68 70 72 74 76 78 80 82 84 86 88 90

fplll [3] 1.5 1.4 1.9 1.8 2.8 1.7 3.3 3.8 5.4 4.1 3.7 4.9 4.8

GPUEnum [5] - - - - - 2.4 4.8 4.5 4.2 3.8 2.9 3.6 1.7

ProSieve [6] 15.7 21.9 29.3 42.9 58.7 50.3 113 109 148 - - - -

SubSieve [4] 1.6 2.3 2.2 3.4 5.0 3.6 7.2 7.5 10.5 7.7 7.2 7.5 4.9

G6K [1] 1.5 1.5 1.9 1.8 1.9 1.2 2.5 1.3 1.6 1.1 1.1 1.0 0.34

p3Enum, SubSieve, and fplll are visualized as dots which are created by the
average of at least 75 measurement points (at least 15 per seed). Finally, the
stars indicate the average runtime of G6K whose runtime are taken from [1].

Figure 1 shows that p3Enum delivers faster runtimes than fplll and SubSieve
for all tested dimensions. Table 1 summarizes the speedup of p3Enum compared
to other solutions.

We calculated the speedup when employing p3Enum compared to the imple-
mentation in the first column. The values in italics result from least squares
fitting and extrapolation of the other data points given in the literature.
p3Enum outperforms the GPU-enumeration from [5] in all dimensions consid-
ered, although [5] employs a system with eight GPUs, providing more theoretical
FLOPs and consuming much more energy than system1. Progressive sieving [6] is
also slower in all dimensions. G6K, however, is faster than p3Enum in dimension
90. This seems to underpin the assumption of [4] that a good implementation
of the novel sieving algorithms will outperform all pruned enumeration solvers
somewhere around dimension 90. Since p3Enum delivers the best performance
in n = {66, . . . 88} it is a very suitable SVP-oracle within basis reduction for
that range.

5.3 Scaling Behavior and Efficiency

On our 60-core system2 we measured the parallel efficiency by the fraction of the
achieved speedup compared to the single-threaded baseline with four different
lattice dimensions (seed 0). The enumeration was configured such the 60 core
runs required between 5 and 10 s by setting ν. The target length was set shorter
than the shortest vector in the lattices to have reproducible runtimes. Figure 2
summarizes the results.

The efficiency with 60 threads is at least 0.85, demonstrating very good scal-
ing. For dimension 100, the efficiency is even higher than 0.9 for 60 threads. In
dimensions 80 and 90 we see two outliers at 5 threads and 10 threads, respec-
tively. Since we noticed this effect only for a small number of threads and the
efficiency is still over 0.75, we do not consider this a relevant shortcoming of
p3Enum.

p3Enum 541

1 5 10 20 40 40 50 60
0

0.5

1
E
ffi
ci
en
cy

Dim 70

1 5 10 20 40 40 50 60

Dim 80

1 5 10 20 40 40 50 60

Dim 90

1 5 10 20 40 40 50 60

Dim 100

Fig. 2. Parallel efficiency on system2. x-axis: # threads employed.

5.4 New Shortest Vectors in Darmstadt SVP Challenge

We found shorter solutions with a different seed in higher, already solved dimen-
sions for in the D-SVPC. Table 2 compares the fastest succeeding trial of p3Enum
(row 1) and SubSieve (row 3), the runtimes of former solutions in the D-SVPC
(row 2), and the average time of G6K from [1]. The underlying parameterization
for p3Enum varies and may not be the ideal one (cf. D-SVPC entries for details).

Table 2. Comparison of runtime in s for higher dimensions.

Solver n

91 92 93 94 95 96 97 98 99 100

p3Enum 25 397 233 279 76 190 65 107 897 4000

D-SVPC 4.4 · 105 3.7 · 105 3600 1800 5400 7200 27360

SubSieve 553 823 1642 1015 2083 1447 2872 1734 3467 3363

G6K - 312 - 375 - 815 - 995 - 1964

Table 2 shows that higher dimensions can be solved with a competitive run-
time. p3Enum’s time for dimensions 91, 95, and 97 is smaller than the shortest
run of fplll and SubSieve achieved on the 90-dimensional bases. Additionally, the
results highlight the randomness in the runtime of SubSieve in higher dimensions.
Although we performed five runs, the fastest runtime in dimension 94 is consid-
erably lower than in dimension 93. The seeds for G6K were different and no
direct comparison is possible.

6 Conclusion

We introduced the open source framework p3Enum for solving the SVP with its
additional parameter ν enabling a parallel efficiency rate of more than 0.9 on a
60-core system by adjusting the workload and the success probability. p3Enum
is the fastest solver in dimensions 66–88 compared to available SVP solutions.
Hence, p3Enum can be employed as a building block in lattice reduction frame-
works. To further increase p3Enum’s performance we will extend it with MPI
and implement a search for the pruning function as realized in [2,3].

542 M. Burger et al.

Acknowledgments. This work has been co-funded by the DFG through CRC 1119
CROSSING and BI 714/6-1. Calculations were conducted on the Lichtenberg computer
of the TU Darmstadt, and computing resources granted by RWTH Aachen University
under project prep0016. We thank L. Ducas et al. for providing the preliminary version
of [1].

References

1. Albrecht, M., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W., Stevens,
M.: The general sieve kernel and new records in lattice reduction. Cryptology ePrint
Archive, Report 2019/089 (2019)

2. Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ algo-
rithms and their precise cost estimation by sharp simulator. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 789–819. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49890-3 30

3. The fplll development team. fplll, a lattice reduction library (2016). https://github.
com/fplll/fplll

4. Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 125–145.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 5

5. Kuo, P.-C., et al.: Extreme enumeration on GPU and in clouds. In: Preneel, B.,
Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 176–191. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23951-9 12

6. Laarhoven, T., Mariano, A.: Progressive lattice sieving. In: Lange, T., Steinwandt,
R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 292–311. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-79063-3 14

https://doi.org/10.1007/978-3-662-49890-3_30
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-3-642-23951-9_12
https://doi.org/10.1007/978-3-319-79063-3_14

	p3Enum: A New Parameterizable and Shared-Memory Parallelized Shortest Vector Problem Solver
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Implementation of p3Enum
	4.1 Parallelization Strategy
	4.2 Parameterized Workload
	4.3 Heuristics to Improve the Performance

	5 Experiments and Results
	5.1 Methodology
	5.2 Performance Analysis
	5.3 Scaling Behavior and Efficiency
	5.4 New Shortest Vectors in Darmstadt SVP Challenge

	6 Conclusion
	References

