
Accelerating Wild Fire Simulator
Using GPU

C. Carrillo(B), T. Margalef, A. Espinosa, and A. Cortés

Computer Architecture and Operating Systems Department,
Universitat Autònoma de Barcelona, Barcelona, Spain

{carles.carrillo,tomas.margalef,antoniomiguel.espinosa,
ana.cortes}@uab.cat

Abstract. In the last years, forest fire spread simulators have proven
to be very promising tools in the fight against these disasters. Due to
the necessity to achieve realistic predictions of the fire behavior in a rel-
atively short time, execution time may be reduced. Moreover, several
studies have tried to apply the computational power of GPUs (Graphic
Processors Units) to accelerate the simulation of the propagation of
fires. Most of these studies use forest fires simulators based on Cellular
Automata (CA). CA approaches are fast and its parallelization is rel-
atively easy; conversely, they suffer from precision lack. Elliptical wave
propagation is an alternative approach for performing more reliable simu-
lations. Unfortunately, its higher complexity makes their parallelization
challenging. Here we explore two different parallel strategies based on
Elliptical wave propagation forest fire simulators; the multicore architec-
ture of CPU (Central Processor Unit) and the computational power of
GPUs to improve execution times. The aim of this work is to assess the
performance of the simulation of the propagation of forest fires on a CPU
and a GPU, and finding out when the execution on GPU is more efficient
than on CPU. In this study, a fire simulator has been designed based on
the basic model for one point evolution in the FARSITE simulator. As
study case, a synthetic fire with an initial circular perimeter has been
used; the wind, terrain and vegetation conditions have been maintained
constant throughout the simulation. Results highlighted that GPUs allow
obtaining more accurate results while reducing the execution time of the
simulations.

Keywords: Wild fire simulator · Fire front propagation · GPU

1 Introduction

The impact and the damage caused by Forest Fires has been increasing signif-
icantly over the last years. In the last decades, several fire spread models have
been developed and implemented in computing simulators to help control centers
in taking the adequate decisions. However, wildfires are complex systems char-
acterized by a stochastic behaviour, with a large number of involved variables.
c© Springer Nature Switzerland AG 2019
J. M. F. Rodrigues et al. (Eds.): ICCS 2019, LNCS 11540, pp. 521–527, 2019.
https://doi.org/10.1007/978-3-030-22750-0_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22750-0_46&domain=pdf
https://doi.org/10.1007/978-3-030-22750-0_46


522 C. Carrillo et al.

Accurate simulators tend to take longer execution times. So, their effectiveness
in real-time prediction is reduced. In order to improve the performance of fire
spread simulators, several strategies have been developed to reduce the execu-
tion time without altering the accuracy of the simulations. In this context, some
studies apply multicore architectures by increasing computational power, raising
the number of CPUs, [1–3]. At the same time, the increase in the computational
power of the Graphical Processing Units (GPUs) has turned them into an ideal
tool for the modelling of complex systems. Different works have been carried out
to apply the computational capacity of GPUs to accelerate the simulation of for-
est fire behavior [5,8,9,11,13]. These works have focused on the application on
simulators based on Cellular Automata (CA). The main problem is that the sim-
ulators based on the CA approach have low intrinsic accuracy. Simulators based
on the Huygens principle, or Elliptical Wave Propagation, have higher precision
than those based on CA; however, their execution time is higher. In the present
work, we focused on FARSITE (Fire Area Simulator) [6], which is a forest fire
simulator based on the Elliptical Wave Propagation. Two different paralleliza-
tions are proposed; on the one hand, we have extracted the FARSITE simulation
kernel and implemented it in OpenMP (Open Multi-Processing) [4], which is a
set of compiler directives, library routines, and environment variables that can
be used in any multicore CPU. On the other hand, we used CUDA (Compute
Unified Device Architecture) to execute the simulation kernel in GPU. The aim
of this work is to evaluate the performance of the two parallel strategies and
analyse when the execution of one is more efficient than the other. As a first
approach to the problem, a synthetic fire is used, which consists of a circular
front in flat terrain, with constant wind speed, wind direction and the vegetation
conditions throughout the simulation. To be able to compare the different execu-
tions (GPU and CPU) the simulations have been performed with different time
propagation, in order to analyze in which conditions the execution in the CPU is
more efficient than the execution in GPU. This paper is organized as follows. In
Sect. 2 the principal characteristics of FARSITE are presented. Section 3 details
the methodology used. Section 4 presents the experimental results and, finally,
Sect. 5 summarizes the main conclusions and future work.

2 FARSITE Forest Spread Simulator

FARSITE is a simulator which spreads the front of the fire resolving Rothermel’s
equation [12]. The Rothermel’s model is formulated in the following way:

R = R0 · (−→n +
−→
φ w +

−→
φ s) (1)

where R0 represents the rate of spread in a particular point with no wind and
no slope, −→n is the normal direction to the fire perimeter on that particular
point,

−→
φ w is the wind factor and

−→
φ s the slope factor. In the Elliptical Wave

Propagation, the perimeter of the fire is divided into series of points, [10]. To
obtain the evolution of the fire perimeter, an ellipse is generated for each point.
The shape of the ellipses is determined by the local characteristics at each point.



Accelerating Wild Fire Simulator Using GPU 523

In this way, the new perimeter is obtained by joining the obtained ellipses, see
Fig. 1(a).

(a) Elliptical wave propagation
from t1 to t2.

(b) Graphic representation of time step
(Black), Perimeter Resolution (Green)
and Distance Resolution (Red), [7].

Fig. 1. Forest Fires Spread Simulator. (Color figure online)

In FARSITE there are three different parameters which have a direct impact
on the resolution and, therefore, on the execution time [7], see Fig. 1(b):

– Time Step: The time step is the maximum amount of time that the condi-
tions at a given point are assumed constant so that the position of the fire
front can be projected.

– Perimeter Resolution: The perimeter resolution determines the maximum
distance between points used to define the fire perimeter. The perimeter res-
olution controls the ability of a fire perimeter to respond to heterogeneities
occurring at a fine scale.

– Distance Resolution: The distance resolution is the maximum projected
spread distance from any perimeter point. This distance cannot be exceeded
in a time step before new local data are used to compute the spread rate.

The precision of FARSITE is directly proportional to the number of points in
which the fire front is split. The higher the number of points in the fire perimeter
(low Perimeter Resolution), the more detail can be reproduced the fire fronts
behaviour, consequently, the accuracy of the simulation will be better; therefore,
the execution time is longer.

3 Parallelization of Forest Fire Simulator

We extracted the FARSITE simulation kernel and re-implemented in parallel
into the FARSITE body. When the fire is propagated in serial, at each time
iteration the propagation of the points is done sequentially. Consequently, when
the number of points to expand increases, the execution time also increases pro-
portionally. So, simulations with high resolutions provide long execution times,
which limits their use in real situations. In the parallel implementations, the



524 C. Carrillo et al.

point propagation was carried out in parallel. At each time iteration, each thread
computes the spread of a single point. When the evolution of all points is fin-
ished, the threads are synchronised, and the spread in the next time iteration is
performed. All calculations were performed in double precision.

In order to parallelize the code on CPU, we have re-written the simulation
kernel code thoroughly with OpenMP. For implementing the code on GPU accel-
erators, the simulation kernel code has been re-written with CUDA. All data are
copied at the beginning of the simulation from the Host to Device. However,
the perimeter data is copied from the Device to the Host at the final of each
time iteration. Each thread only computes the evolution of one single point. We
are interested in the evolution of the throughput in a series of simulations with
increasing the number of points; we look for the number of points on which the
execution in the GPU is faster than the CPU or when the number of propagated
points per second is higher in the GPU than in the CPU.

As a first approximation, a synthetic fire was used with an initial circular
perimeter. In this particular case, it has been considered a flat terrain, with
homogeneous vegetation and constant wind speed and wind direction during the
whole simulation.

4 Experimental Study and Results

All calculations reported here were performed using a single GPU and single
CPU; we measured the serial CPU performance using a single core, 2, 4 and 6
cores. As execution platform, we have used an Intel(R) Xeon(R) CPU E5-2620 v3
@ 2.40 GHz, with 6 cores and for the GPU simulations, a GeForce RTX 2080 Ti
with 4352 CUDA cores was used. The tested propagation times were 1, 2, 5 and
10 h. The Perimeter Resolution was modified in each execution by increasing two
thousand points at each simulation, so the extreme cases are 2, 000 and 184, 000
points. The higher the number of points, the higher resolution employed for the
simulation.

Figure 2 displays the number of points per second of the CPU implemen-
tations and the GPU implementation for the different propagation time. In
Fig. 2(a) we can see that above 132, 000 perimeter points, the GPU implementa-
tion is more efficient than the Serial implementation. However, for this propaga-
tion time, all the OpenMP implementations are faster than the GPU application.
It can observe that we are in front of a compute-bound problem, so the CPU is
quickly saturated in all cases (below 8, 000 points), while the number of prop-
agated points per second grows linearly in the GPU implementation. For 1 h
of propagation time, the OpenMP implementations compute more points per
second, which means that the OpenMP implementations are more efficient than
the GPU implementation. Moreover, we see that the maximum number of prop-
agated points per second decrease faster for all CPU implementations when the
propagation time increase than for the GPU. Figure 3(a) shows the maximum
propagated points per second for all implementations. It can be seen how the
maximum of propagated points per second for each implementation decreases
when the time of propagation is increased.



Accelerating Wild Fire Simulator Using GPU 525

(a) 1 hour of fire propagation. (b) 2 hour of fire propagation.

(c) 5 hour of fire propagation. (d) 10 hour of fire propagation.

Fig. 2. Points per second depending on the number of perimeter points by the CPU
and GPU.

Table 1. Number of points from which the execution in the GPU is more efficient than
the CPU execution in Serial and with 2, 4, and 6 cores.

Propagation time Number of points

Serial 2 Cores 4 Cores 6 Cores

1 h 132, 000

2 h 66, 000 112, 000

5 h 28, 000 44, 000 70, 000 74, 000

10 h 14, 000 22, 000 34, 000 38, 000

Figure 3(b) shows the number of points from which the efficiency of the GPU
is higher than the efficiency of the CPU. This number depends on the propaga-
tion time of the fire. The longer the time propagation of the simulated fire is, the
less number of perimeter points is necessary so that the execution in the GPU
is faster than the CPU (Table 1).

In Fig. 4 we can see the speed up of the GPU implementation against
OpenMP implementation with 6 threads when the fire front is split in 184, 000
perimeter points. We saw that, when we simulated propagation time below two
hours, the execution in the CPU is faster when 6 threads are used. Nonetheless,
above this propagation time, the execution of the GPU implementation is the
fastest one.



526 C. Carrillo et al.

(a) Number maximum of points per second
depending on the propagation time.

(b) Number of points from which the GPU
is faster than the CPU.

Fig. 3. Execution performance of the different Forest Fire Spread implementations.

Fig. 4. Speed Up of the GPU implementation versus OpenMP implementation with 6
threads when 184, 000 perimeter points are used.

5 Conclusions and Future Work

The computational capabilities of GPUs make them ideal for the simulation of
any complex system. In our case, we have focused on the study of forest fire
propagation simulators based on the Elliptical Wave Propagation, in particular,
FARSITE. In this work, a synthetic fire has been used, with constant wind and
vegetation conditions throughout the simulation. The obtained results demon-
strated that the use of the GPU open a new way of approaching forest fire spread
simulation in the sense that we expect to get more accurate results and, at the
same time, faster and, therefore operationally simulation time.

According to the study carried out, for long fire propagation simulations,
the GPU implementation is more efficient than the OpenMP implementation.
Moreover, GPU is better than CPU when we face compute-bound. We also
highlighted that the number of propagated points per second by the GPU is
much higher than the number of spread points per second in the CPU in all
cases, so the efficiency of the GPU is higher than the CPU.

Future work will be oriented to increase the efficiency of the GPU implemen-
tation and use real fires to determine under in which conditions it is better to
do the propagation of the fire front in the GPU.



Accelerating Wild Fire Simulator Using GPU 527

Acknowledgments. This research has been supported by MINECO-Spain under
contract TIN2017-84553-C2-1-R and by the Catalan government under grant
2017-SGR-313.

References

1. Artés, T., Cencerrado, A., Cortés, A., Margalef, T.: Core allocation policies on
multicore platforms to accelerate forest fire spread predictions. In: Wyrzykowski,
R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol.
8385, pp. 151–160. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55195-6 14

2. Brun, C., Margalef, T., Cortés, A., Sikora, A.: Enhancing multi-model forest fire
spread prediction by exploiting multi-core parallelism. J. Supercomput. 70(2), 721–
732 (2014). https://doi.org/10.1007/s11227-014-1168-z

3. Cencerrado, A., Artés, T., Cortés, A., Margalef, T.: Relieving uncertainty in forest
fire spread prediction by exploiting multicore architectures. In: Proceedings of the
International Conference on Computational Science, ICCS 2015, Computational
Science at the Gates of Nature, Reykjav́ık, Iceland, pp. 1752–1761, 1–3 June 2015.
https://doi.org/10.1016/j.procs.2015.05.380

4. Dagum, L., Menon, R.: OpenMP: an industry standard api for shared-memory
programming. Comput. Sci. Eng. 5(1), 46–55 (1998)

5. D’Ambrosio, D., Di Gregorio, S., Filippone, G., Rongo, R., Spataro, W., Trun-
fio, G.A.: A multi-GPU approach to fast wildfire hazard mapping. In: Obaidat,
M.S., Filipe, J., Kacprzyk, J., Pina, N. (eds.) Simulation and Modeling Methodolo-
gies, Technologies and Applications. AISC, vol. 256, pp. 183–195. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-03581-9 13

6. Finney, M.A.: Farsite: Fire area simulator–model development and evaluation.
FResearch Paper RMRS-RP-4 Revised 236, Research Paper RMRS-RP-4 Revised
(1998)

7. Farsite tutorial website (2007). http://fire.org/downloads/farsite/WebHelp/using
farsite help.htm

8. Gregorio, S.D., Filippone, G., Spataro, W., Trunfio, G.A.: Accelerating wildfire
susceptibility mapping through GPGPU. J. Parallel Distrib. Comput. 73(8), 1183–
1194 (2013). https://doi.org/10.1016/j.jpdc.2013.03.014

9. Hoang, R.V.: Wildfire Simulation on the GPU. Ph.D. thesis, university of Nevada
(2008)

10. Knight, I., Coleman, J.: A fire perimeter expansion algorithm-based on huygens
wavelet propagation. Int. J. Wildland Fire 3, 73–84 (1993)

11. Ntinas, V.G., Moutafis, B.E., Trunfio, G.A., Sirakoulis, G.C.: Parallel fuzzy cellular
automata for data-driven simulation of wildfire spreading. J. Comput. Sci. 21, 469–
485 (2017). https://doi.org/10.1016/j.jocs.2016.08.003

12. Rothermel, R.: A mathematical model for predicting fire spread in wildland fuels.
Technical Report INT-GTR-115. (Ogden, UT) (1972)

13. Sousa, F.A., dos Reis, R.J.N., Pereira, J.C.F.: Simulation of surface fire fronts
using fireLib and GPUs. Environ. Model. Softw. 38, 167–177 (2012). https://doi.
org/10.1016/j.envsoft.2012.06.006

https://doi.org/10.1007/978-3-642-55195-6_14
https://doi.org/10.1007/978-3-642-55195-6_14
https://doi.org/10.1007/s11227-014-1168-z
https://doi.org/10.1016/j.procs.2015.05.380
https://doi.org/10.1007/978-3-319-03581-9_13
http://fire.org/downloads/farsite/WebHelp/using_farsite_help.htm
http://fire.org/downloads/farsite/WebHelp/using_farsite_help.htm
https://doi.org/10.1016/j.jpdc.2013.03.014
https://doi.org/10.1016/j.jocs.2016.08.003
https://doi.org/10.1016/j.envsoft.2012.06.006
https://doi.org/10.1016/j.envsoft.2012.06.006

	Accelerating Wild Fire Simulator Using GPU
	1 Introduction
	2 FARSITE Forest Spread Simulator
	3 Parallelization of Forest Fire Simulator
	4 Experimental Study and Results
	5 Conclusions and Future Work
	References




