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Abstract. The Sub-NUMA Clustering 4 (SNC-4) affinity mode of the
Intel Xeon Phi Knights Landing introduces a new environment for par-
allel applications, that provides a NUMA system in a single chip.

The main target of this work is to characterize the behaviour of this
system, focusing in nested parallelization for a well known algorithm,
with regular and predictable memory access patterns as the matrix mul-
tiplication. It has been studied the effects of thread distribution in the
processor on the performance when using SNC-4 affinity mode, the differ-
ences between cache and flat modes of the MCDRAM and the improve-
ments due to vectorization in different scenarios in terms of data locality.

Results show that the best thread location is the scatter distribution,
using 64 or 128 threads. Differences between cache and flat modes of the
MCDRAM are, generally, not significant. The use of optimization tech-
niques as padding to improve locality has a great impact on execution
times. Vectorization resulted to be efficient only when the data locality
is good, specially when the MCDRAM is used as a cache.
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1 Introduction

Manycore architectures as the presented by the Intel Xeon Phi Knights Land-
ing (KNL) provide highly parallel environments with a large number of cores in
a single chip, allowing developers to exploit parallelism in their algorithms. In
the case of the Intel Xeon Phi KNL, the second generation of the Intel’s many-
core processors, the most interesting features are the clustering modes and the
integrated on-package memory known as MCDRAM (Multi-Channel DRAM).

This work is focused on the SNC-4 (Sub-NUMA Clustering 4) mode, in which
the chip is partitioned into four nodes, being considered as a NUMA system.
However, this configuration differs from typical NUMA systems in latency and
bandwidth. Given that, a characterization of the KNL behaviour in its SNC-4
configuration can be useful for its users. In this work it is also included a brief
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comparison between the cache and flat modes of the MCDRAM memory and a
study of the performance improvement achieved using vectorization.

To study these elements, different implementations of the classic matrix mul-
tiplication have been used, as this algorithm has some interesting properties that
fit the goals of this work. It is a well known code and its memory access pat-
terns are predictable, regular and easy to modify by changing the order of the
loops, providing different scenarios in terms of data locality. Note that it is not
intended to optimize this code, like in [3] or [7], but to use it just as a case study.

Other works have shown studies with very specific benchmarks, testing the
MCDRAM in its different modes [12] or obtaining models of its behaviour [10].
Other authors have used benchmarks with dense matrix multiplication of small
dimensions [4] or have looked for the roofline model using benchmarks based on
sparse matrices algebra [2]. Finally, works like [6] show performance compari-
son on commonly used software. In contrast, this paper is intended to present
a general study with different conditions, as the given when optimizing and
parallelizing a code with regular memory patterns as the matrix multiplication.

2 Intel Xeon Phi KNL Architecture and Benchmarks

The Intel Xeon Phi is a manycore processor which bases its architecture in
tiles [5]. Each tile has two cores and a 1 MB shared L2 cache memory. Each
core has two VPUs (Vector Processing Unit), compatible with the AVX-512
instructions [11], and it is capable of execute up to four threads simultaneously.
With a maximum of 36 tiles, the KNL can have up to 72 cores, 144 VPUs, and
can execute up to 288 threads concurrently.

This processor has another singular features, like the clustering modes and
the MCDRAM memory [13]. Concerning the clustering modes, three main con-
figurations are available: All-to-all, Quadrant and SNC-4. The most interesting
one is the SNC-4, where the chip behaves like a singular NUMA system. Addi-
tionally, the MCDRAM memory is an integrated high-bandwidth memory (up to
450 GB/s) with 16 GB of capacity that has three different configurations: cache,
flat and hybrid modes. Using the cache mode, the MCDRAM behaves as a L3
direct-mapped cache memory. In the flat mode, the MCDRAM is configured as
another main memory. In the hybrid mode, the memory is divided 50%–50% or
75%–25% in cache and flat modes, respectively. Note that using SNC-4 and flat
modes, there are four NUMA nodes that correspond to the cores and the main
memory, and four (of 4 GB each) corresponding to the MCDRAM.

In this study, the parallel (using OpenMP [1]) dense matrix multiplication
has been used, C = A × B, A,B,C ∈ Mn×n. The matrices are located in the
MCDRAM when using flat mode, and in DDR4 memory with cache mode. The
following nests in the loops has been studied: ijk, ikj, jik and jki. E.g. the ijk
is referred as the one which has the i index in the outer-most loop, the index
j in the intermediate one, and the k in the inner-most. The matrices elements
accessed are always aik, bkj , cij . The k loop cannot be parallelized due to race
conditions, so nested parallelization has been tested only with ijk and jik nests.
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In terms of data locality, the ikj loop should have the best performance
because it accesses all the matrices by rows (the best way in C language). The
ijk nest accesses the elements of A and C by rows and B by columns, being
moderately efficient. The jik nest gets the elements of the matrices B and C by
columns, and the elements of A by rows. Finally, the jki order should show the
worst performance as all the matrices are accessed by columns.

Given the structure of the code and the organization of the cores in the SNC-4
mode, it is interesting to use a two-level parallelization. In the outer-most loop,
iterations are distributed to different thread groups. In the second loop, iterations
are shared out to the threads of each group. In the inner-most loop, vectorization
can be applied using AVX-512 instructions. The natural distribution, given the
architecture of the KNL, would be 4 groups of 64 threads, denoted as 4× 64 from
now on. This way of sharing out the iterations allows us to consider different
locations for the threads of each group, scattering or compacting them across
the cores, while the groups will be always scattered.

The basic algorithm where all the data are in contiguous positions, might
have performance issues because of the replacements in the caches when using
matrices with size n = a2b, a,b ∈ N, for certain values of b. To solve this problem,
another version that uses padding has been implemented, so 64 bytes (the length
of a cache line) are added to the end of each row of the matrices.

In the execution of the benchmarks, it has been used the Intel Xeon Phi KNL
7250 using 64 cores and 48 GB of DDR4 memory. The compiler used in the tests
was the Intel ICC 18.0.0 with the options -qopenmp, -O2, -xMIC-AVX512 and
-vec-threshold0 to ensure that the AVX-512 instructions were used. Other
optimization options might transform the code too much, so the memory access
patterns might not be the ones written in the source file. Metrics about cache
misses and memory performance have been obtained with Intel VTune 2018.

3 Results

This section shows the results of the benchmarks with matrices of dimension
n = 4096. Other sizes were tested too, achieving similar results.

3.1 Nested Parallelism

A brief summary of the results for the codes using nested parallelization and
4 groups of 16 threads each (4 × 16) are shown in Tables 1 and 2, where each
entry contains the execution times (in seconds) of the sequential and parallel
executions and the corresponding speedup.

Padding: The programs that do not use padding show higher execution times
than those which implement this technique as it reduces the L2 cache misses
up to a 98%. The ijk code shows an improvement of 97% in the sequential
execution time, while jik improves up to 98%, showing the relevance of this
kind of techniques in the KNL, improving drastically the execution times and
changing the behaviour in terms of thread location and vectorization.
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Table 1. Summary of the results obtained with the benchmarks without padding.

Cache, scatter Cache, compact Flat, scatter Flat, compact

ijkvect. 7586.96 – 238.26 (×31) 7586.93 – 106.29 (×71)3720.43 – 155.28 (×23) 3720.37 – 144.89 (×25)

no vect.3720.42 – 72.90 (×51) 3683.96 – 95.26 (×38) 3720.62 – 154.57 (×24) 3721.08 – 159.03 (×23)

jikvect. 7601.64 – 1971.87 (×3.8)7736.51 – 485.35 (×15)3721.72 – 581.76 (×6.3)3731.53 – 2158.89 (×1.7)

no vect.3729.80 – 531.64 (×7.0) 3965.88 – 302.08 (×13)3731.37 – 781.83 (×4.7)3731.61 – 2563.39 (×1.4)

Table 2. Summary of the results obtained with the benchmarks with padding.

Cache, scatter Cache, compact Flat, scatter Flat, compact

ijk vect. 247.91 – 6.96 (×35) 242.34 – 91.65 (×2.6) 248.94 – 28.16 (×8.8) 243.80 – 88.76 (×2.7)

no vect. 404.73 – 7.96 (×50) 400.84 – 83.86 (×4.7) 399.47 – 45.18 (×8.8) 401.81 – 80.67 (×4.9)

jik vect. 176.25 – 4.93 (×35) 178.17 – 12.58 (×14) 181.18 – 7.08 (×25) 175.72 – 12.17 (×14)

no vect. 330.00 – 5.28 (×62) 331.51 – 19.24 (×17) 328.87 – 11.42 (×28) 330.05 – 16.91 (×19)

Thread Location: The results of the programs which do not use padding show
that the scatter distribution is not always the best. A compact distribution can
cause the threads of the same core/tile share cache lines, reducing the traffic
in the mesh. This situation also implies a faster communication in comparison
with sharing data with external tiles. In addition, a compact distribution divides
the resources of each core, probably causing a lower performance. Also, it can
saturate the buses of the caches or the interconnection mesh, degrading the
execution times, as in the jik nest with the MCDRAM in flat mode.

Vectorization: The codes that do not use padding present poor performance
results when using vectorization. However, when padding is applied, improve-
ments up to 54% are obtained, showing that vectorization is only beneficial when
the programs have efficient data access patterns.

MCDRAM: Using the MCDRAM in cache mode and having inefficient access
patterns causes important performance problems in the vectorized programs, due
to the difficulties in feeding the registers. Note that these performance issues do
not appear with the flat mode. In contrast, cache mode shows a slightly better
performance in parallel executions.

Best Execution: The best execution time obtained using nested parallelism has
been 2.66 s (51.66 GFlop/s), achieved using the jik nest, 64 groups of 2 threads
with a compact distribution, MCDRAM in cache mode, and using padding and
vector instructions.

3.2 One-Level Parallelism

A summary of the results obtained by the codes where only the outer loop is
parallelized is shown in Tables 3 and 4, including the ikj and jki nests.

Padding: All loop nests take advantage of this technique because of the signif-
icant reduction in the number of cache misses, up to 98%.
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Table 3. Summary of the results obtained with the benchmarks without padding.

Cache, scatter Cache, compact Flat, scatter Flat, compact

ijk vect. 7586.96 – 292.25 (×25) 7586.93 – 99.18 (×76) 3720.43 – 97.22 (×38) 3720.37 – 110.56 (×33)

no vect. 3720.42 – 60.37 (×61) 3683.96 – 79.42 (×46) 3720.62 – 97.07 (×38) 3721.08 – 109.36 (×34)

jik vect. 7601.64 – 177.20 (×42) 7736.51 – 108.61 (×71) 3731.72 – 190.99 (×19) 3731.53 – 189.86 (×19)

no vect. 3729.80 – 97.26 (×38) 3965.88 – 101.02 (×39) 3731.37 – 188.71 (×19) 3731.61 – 191.46 (×19)

ikj vect. 79.54 – 9.69 (×8.2) 80.68 – 5.53 (×14) 76.94 – 6.61 (×12) 76.89 – 6.41 (×13)

no vect. 189.32 – 10.23 (×18) 189.35 – 9.66 (×19) 174.39 – 8.43 (×20) 173.38 – 8.69 (×20)

jki vect. 8670.13 – 505.25 (×17) 8831.75 – 277.52 (×31) 8624.93 – 516.27 (×16) 8584.76 – 526.59 (×16)

no vect. 8568.79 – 511.14 (×16) 8497.72 – 245.05 (×34) 8624.20 – 517.28 (×16) 8584.68 – 516.50 (×16)

Table 4. Summary of the results obtained with the benchmarks with padding.

Cache, scatter Cache, compact Flat, scatter Flat, compact

ijkvect. 247.91 – 4.59 (×54) 242.34 – 4.39 (×55) 248.94 – 4.56 (×54) 243.80 – 4.75 (×51)

no vect.404.73 – 7.33 (×55) 400.84 – 7.65 (×52) 399.47 – 7.20 (×55) 401.81 – 7.21 (×55)

jikvect. 176.25 – 3.32 (×53) 178.17 – 3.27 (×54) 181.18 – 3.79 (×47) 175.72 – 3.67 (×47)

no vect.330.00 – 5.02 (×65) 331.51 – 5.36 (×61) 328.87 – 6.54 (×50) 330.05 – 7.14 (×46)

ikjvect 69.75 – 2.61 (×26) 69.54 – 4.58 (×15) 69.61 – 3.67 (×18) 69.42 – 4.63 (×14)

no vect.180.51 – 3.92 (×46) 185.23 – 10.80 (×17) 179.36 – 4.08 (×43) 180.27 – 10.77 (×16)

jkivect. 538.61 – 22.70 (×23)551.16 – 148.99 (×33)535.75 – 100.78 (×5.3)534.93 – 158.36 (×3.3)

no vect.550.08 – 22.73 (×24)545.46 – 147.59 (×26)535.11 – 98.26 (×5.4) 536.07 – 159.72 (×3.3)

Thread Location: When only the outer most loop is parallelized, the scatter
distribution gives the best execution times. The differences are specially notice-
able in the ikj and jki cases using padding, improving up to 60% and 85%.

Vectorization: The ikj nest, the best access pattern, takes the maximum ben-
efit of vector instructions, reducing up to 63% the execution time.

MCDRAM: Using one-level parallelism, the cache mode usually achieves a
slightly better performance in parallel executions. Even though, differences
between flat and cache modes are generally not significant.

Best execution: The best time obtained using one-level parallelism has been
of 1.17 s (117.46 GFlop/s), using the ikj order, with padding, 256 threads,
MCDRAM in cache mode, and using AVX-512 instructions.

3.3 Comparative with a Real NUMA

A summary of the comparison of the Intel Xeon Phi KNL with a NUMA server
that consists of four Intel Xeon E5 4620 is shown in Table 5.

Memory Latencies: To study the effect of non-local accesses in the NUMA
server and in the KNL, the numademo command [8] with the sequential STREAM
benchmark [9] has been executed in both machines. Results in Table 6 show that
the penalties in the NUMA server go from 28% up to 40% while in the KNL these
penalties are much lower. With the MCDRAM in cache mode, the differences
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are between 3.8% and 6.9%. Using the flat mode, both kind of penalties, those
related to the DDR memory and the MCDRAM, are around 2% and 3%.

Table 5. Best execution times and speedup of the KNL and NUMA server.

Sequential As many threads as cores All available threads

KNL NUMAKNL (64 threads) NUMA (40 threads)KNL (256 threads) NUMA (80 threads)

ijk 242.34 545.73 4.39 (×55) 28.76 (×19) 11.55 (×21) 15.04 (×36)

jik 175.72 521.63 3.27 (×53) 33.54 (×15) 2.53 (×69) 16.96 (×30)

ikj 69.42 107.43 2.61 (×26) 4.11 (×26) 1.17 (×59) 2.20 (×48)

jki 535.11 521.71 22.70 (×23) 44.11 (×11) 137.90 (×3.8) 47.92 (×10)

Table 6. Average bandwidth (in MB/s) and penalty percentage given by numademo

with STREAM copy benchmark.

NUMA KNL (cache) KNL (flat)

DDR4 MCDRAM

Local 10,287 9,064 8,266 9,082

Remote 7,409 (28%) 8,712 (3.8%) 8,084 (2.2%) 8,909 (1.9%)

Worst 6,142 (40%) 8,439 (6.9%) 8,066 (2.4%) 8,803 (3.0%)

Padding: This optimization technique has a low impact in the Intel Xeon E5 in
comparison with the KNL. In the tests, adding padding to the data has improved
the sequential execution times up to 30%.

Vectorization: The Intel Xeon E5 is not compatible with the AVX-512 vector
instructions, being only compatible with the AVX2 instruction set. This kind of
instructions works with 4 operands with FMA operations, so its performance is
lower, improving just up to 9% the execution times.

Thread Location: The performance shows that using more NUMA nodes is
not always the best option to improve the performance, like in the Intel Xeon
Phi, due to the higher penalties of remote accesses on a real NUMA server.

Best Execution: In the NUMA server the best execution time has been
obtained by the ikj nest, computing the matrix multiplication in 2.20 s
(62.47 GFlop/s), using 80 threads with a scatter distribution, vectorization and
no padding. This performance is noticeably lower than the provided by the KNL.

4 Conclusions

In this work, it has been studied the behaviour of the Intel Xeon Phi KNL in
different situations, characterizing its performance in terms of thread location,
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MCDRAM mode, vectorization, data locality and, also, comparing the SNC-4
mode of the KNL with a real NUMA system.

Generally, the most efficient thread distribution is the scatter location, using
all the NUMA nodes of the KNL, and one or two threads per core. In a real
NUMA system, the behaviour is different, depending heavily on the algorithm
because of the higher penalties in the communications between nodes.

The way the data is located in memory has a deep impact in the performance
in the KNL compared to other processors. In this case, adding padding to the
data has produced a reduction of the execution time up to 98%.

Using vector instructions has shown an irregular behaviour. With a low local-
ity, the use of vector instructions had a negative impact. In opposition, with good
data locality, their use has improved the execution times up to 60%.

Differences between cache and flat modes of the MCDRAM are, generally,
not significant. Flat mode seems to perform better under inefficient data access
patterns, but cache mode has usually given better results on parallel codes.

Acknowledgment. This work has received financial support from the Ministerio de
Economı́a, Industria y Competitividad within the project TIN2016-76373-P and net-
work CAPAP-H. It was also funded by the Conselleŕıa de Cultura, Educación e Orde-
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