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Abstract. Reliable vessel re-identification would enable maritime
surveillance systems to analyze the behavior of vessels by drawing their
accurate trajectories, when they pass along different camera locations.
However, challenging outdoor conditions and varying viewpoint appear-
ances combined with the large size of vessels limit conventional meth-
ods to obtain robust re-identification performance. This paper employs
CNNs to address these challenges. In this paper, we propose an Identity
Oriented Re-identification network (IORnet), which improves the triplet
method with a new identity-oriented loss function. The resulting method
increases the feature vector similarities between vessel samples belong-
ing to the same vessel identity. Our experimental results reveal that
the proposed method achieves 81.5% and 91.2% on mAP and Rank1
scores, respectively. Additionally, we report experimental results with
data augmentation and hyper-parameters optimization to facilitate reli-
able ship re-identification. Finally, we provide our real-world vessel re-
identification dataset with various annotated multi-class features to pub-
lic access.

Keywords: Re-identification of vessels · CNNs ·
Maritime surveillance · Vessel re-identification dataset

1 Introduction

Camera-based maritime surveillance systems monitor harbors and waterways
to increase the safety and security against unknown pathless watercrafts, pre-
vent out-of-region fishery, manage urban transportation, and control the cargo
flow. Recently, vessel-behavior analysis is also an expected function for such sys-
tems, since this ability can drastically improve the efficiency of an automated
surveillance system. To this end, keeping track of vessels over consecutive camera
locations is of a vital importance. This requires a reliable vessel re-identification
approach, which aims at the successful detection of the identity of a specific ves-
sel at different camera locations. This concept is visualized in Fig. 1 with image
samples captured by different cameras.

The outdoor maritime environment poses considerable challenges to camera-
based surveillance systems by precipitation, sunshine reflection, fog, water waves,
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Fig. 1. Vessel re-identification is about finding the query vessel in the existing database
images. In this example, the blue box in the top image represents the query image.
The red box in the upper-right database image indicates the same vessel re-identified
at a clearly different location. (Color figure online)

etc. In addition to these typical problems, a vessel re-identification method has
to overcome its task-specific challenges. For instance, surveillance cameras at
different locations often capture vessels from varying viewpoints. Since vessels
are large objects, their appearances (including color, shape, hull textures, etc.)
can be entirely different from alternative viewpoints. Moreover, vessels captured
at different camera locations are surrounded by diverse types of backgrounds.
Furthermore, illumination changes caused by different weather conditions and
daytimes also deteriorate the vessel re-identification performance.

To the best of our knowledge, an in-depth study on the vessel re-identification
problem is virtually absent in literature. However, with the emergence of Convo-
lutional Neural Networks (CNNs), the related field of pedestrian re-identification
already presents methods with promising performance [1–6]. Since vessel re-
identification is conceptually similar to pedestrian re-identification, this paper
addresses the vessel re-identification problem by extending a triplet-based pedes-
trian re-identification approach to the maritime surveillance domain. However,
unlike pedestrian re-identification, in a maritime environment vessels of the same
model but different identity, may still have extremely similar appearance, which
makes the vessel re-identification even more challenging. Figure 2 illustrates this
problem by a few example vessel images.

In this paper, first, we attempt to solve vessel re-identification by introduc-
ing a new identity-oriented loss function for learning the vessel identity. Second,
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Fig. 2. Illustration of four images of similar vessels, which belong to different vessel
identities, although they are made by the same vessel manufacturing company and
have the same model.
since there is no public dataset available for exploring the vessel re-identification
problem, we provide our annotated vessel re-identification dataset, which was
captured at various locations in several harbor cities and suburbs in the Nether-
lands (Amsterdam, Rotterdam), to open public access [7]. Third, this paper
investigates the efficiency of high-performing human re-identification techniques
for the vessel re-identification problem (e.g. data augmentation, a different num-
ber of training iterations, etc.). These experiments lead to a parameter-optimized
re-identification of vessels.

The sequel of the paper is organized as follows. Section 2 provides an overview
of the related work. Section 3 explains the proposed method. Section 4 presents
the experimental results and validation. Section 5 concludes the paper.

2 Related Work

As already mentioned, due to the absence of literature on vessel re-
identification, we commence with addressing the widely investigated pedestrian
re-identification from several research works.

Pedestrian re-identification approaches attempt to re-identify the same per-
son at different camera locations. These methods typically search for the best
match of a query image among previously captured database images. Two com-
mon research directions for such methods are (1) to attempt to improve the image
discrimination in feature space and/or (2) introduce better distance metrics [8].
Generally, pedestrian re-identification methods are divided into three main cat-
egories: (a) verification models [1,2,9,10], (b) identification models [5,6,11–13],
and (c) combinational models [8,14,15], which are all briefly discussed below.

Figure 3(a) illustrates a common architecture of verification models. These
models re-identify the vessel samples belonging to the same identity by assess-
ing the feature vector similarities between their input images. The work in [1]
employs a patch-matching technique, which finds the mid-level feature similar-
ity of pairwise images, to modify a Siamese network. In [9], the method uses
matching gates to improve a Siamese network. These gates predict the critical
point of a Siamese network in higher layers by inspecting its low-level features.

A common architecture of identification models is presented in Fig. 3(b).
These methods investigate a single input image to determine the person’s iden-
tity. The work in [12] engages handcrafted features in a network for fine-tuning
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Fig. 3. Architecture of three generic pedestrian re-identification models. The numbers
in the circles at the output represent different identities, where N is the total number
of person identities in the database. Additionally, NP and PP represent negative and
positive pairs, respectively.
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a procedure to improve the re-identification performance. The method in [6]
achieves better fine-tuning performance by employing a pedestrian-attribute
dataset. This work uses the data disparity between practical datasets (which
have low quality) and the ImageNet [13] dataset. The work from [11] proposes
to use a reliable classification model, which is obtained by combining several
pedestrian re-identification datasets for person identity recognition.

Figure 3(c) presents the architecture of a typical combinational model. These
architectures incorporate both the identification and verification loss-functions to
optimize the performance. In [8], the proposed method improves a Siamese archi-
tecture by comparing the feature representations of input images using a square
layer. The work in [14] combines two identification subnets and one verification
subnet with a Siamese network to provide robust pedestrian re-identification
performance.

This paper modifies the pedestrian re-identification concept towards the ves-
sel re-identification problem. Additionally, we introduce a new triplet-based loss
function to increase the feature vector similarity between vessels belonging to
the same vessel identity. Here, we focus on re-identifying vessels in harbors
and waterways. Additionally, we provide an annotated vessel re-identification
dataset, which includes 4,616 real-world images. These images were captured
with two cameras under different weather, lighting, and timing conditions and
at different locations with variable backgrounds. All annotated vessels have been
labeled by a unique ID and appear in several images. Moreover, we have also
annotated the bounding box, vessel type and vessel orientation of each vessel for
potential further experiments.

3 Architecture Pipeline

This section describes the proposed vessel re-identification architecture, which
is depicted in Fig. 4. The visualized method (IORnet) includes three modules.
The first one is the feature extraction module, which receives a set of three
images per vessel identity and transforms them into the feature space. The sec-
ond module is the triplet subnet. This module calculates the triplet loss of the
input, aiming to pull samples closer when they originate from the same vessel,
while increasing the distance to different vessels/objects. The third module is
the identification subnet, which increases the feature vector similarity between
vessels belonging to the same vessel identity. After extracting the feature vectors
from the first module, the second and third module operate in parallel to calcu-
late the loss function. Then, the base-network weights are updated according to
the calculated loss value. The following subsections discuss the three modules in
detail.

3.1 Feature Extraction Module

This module consists of three basic CNNs to transform the input images into
feature vectors. Here we employ ResNet50 [16] as the basis architecture. The
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Fig. 4. Identity-Oriented Re-identification network (IORnet). This method receives
three input images, which are Anchor image together with its Positive and Nega-
tive pairs. Then, the triplet and identification modules calculate the loss function and
update the feature extraction CNNs.

extracted feature vectors have a dimension of 2,048 elements. Then, we append
a batch normalization layer to speed up the convergence and optimize the deep
convolution networks [17]. Finally, this module resizes the feature vectors to
1,024 elements. The three input images submitted to the basis CNNs are denoted
by IA, IP, and IN, while IA and IP belong to the same vessel identity (positive
pair) and IN represents another vessel identity (negative sample).

3.2 Triplet Module

Here, the conventional triplet model and its limitations are first briefly reviewed.
The triplet loss was introduced in [18] to improve face re-identification perfor-
mance. The objective of the triplet loss is to pull image features belonging to
the same class closer to each other, while pushing the features of different image
classes away from that cluster. For more clarification, we assume that A, P,
and N denote the Anchor, Positive, and Negative image samples, while A and P
contain the same object identity and N contains another identity. The triplet
loss is then expressed by:

DAP − DAN ≥ α, (1)

where DXY represents the distance between images X and Y in feature space
and α is the distance margin. By iteratively optimizing this process over the
whole dataset, positive pairs converge into a single cluster, while distantiating
that cluster from the negative samples. In this work, we employ the TriNet [4]
framework as the triplet subnet. This method uses a variant of the triplet loss to
perform end-to-end deep metric learning and achieves reliable results in pedes-
trian re-identification.

Unfortunately and as a limitation, the triplet architecture only considers two
different identities at a time. This can push a negative object sample against its
cluster [19], which can lead to having dissimilar feature representations for vessel
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samples belonging to the same vessel identity. This drawback also increases the
convergence time.

3.3 Identification Module

As just discussed, the triplet loss function may generate dissimilar feature vectors
for object samples belonging to the same object identity. In order to solve this
problem, we propose an Identity Oriented Re-identification network (IORnet). In
IORnet, we add an identification subnet to the triplet network, as illustrated in
Fig. 4. In this subnet, we consider all the samples belonging to the same identity
as a unique label and perform multi-class detection learning. To this end, the
feature representations extracted by the basis networks are supplied into a new
fully-connected layer. Then, the softmax function is used to normalize these
feature vectors. By adding the identification subnet, the final loss function can
be formulated now as follows:

L = γ.Ltriplet + (1 − γ) · Lidentification, (2)

where
Ltriplet = α + DAP − DAN ,

and Lidentification represents the softmax loss function. Trade-off parameter γ is
defined in the unity interval. With γ = 0, the final loss becomes the identi-
fication loss function, while γ = 1 changes the equation into the pure triplet
loss function. This proposed loss function restricts the whole system to provide
more similar feature representations for the image samples belonging to the same
vessel identity.

4 Empirical Validation

This section starts with a dataset overview and then discusses the training
parameters and analyzes the performance of the proposed method.

4.1 Vessel Re-identification Dataset

In order to train the vessel re-identification model, we have recorded several
videos from various locations in the Netherlands. These videos were captured
using two cameras during different daytimes. The videos contain a vast variety of
different viewpoints on vessels. Additionally, several vessel types with divergent
sizes and distances to the camera are found in this dataset. Finally, challenging
scenarios including vessel occlusion/truncation are also annotated.

The dataset contains 4,616 images with 733 different vessel identities. Each
vessel identity is represented by several images. Additionally, we have labeled
each vessel with a bounding box, its vessel type, and vessel orientation (i.e. the
approximate positioning angle towards the camera) to facilitate future research.
The vessel type range contains 10 classes: sailing vessel, container ship, passenger
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ship, fishing vessel, tanker, river cargo, small boat, yacht, tug, and taxi vessel.
The vessel orientations are described with the following 5 orientation labels:
front view, front-side view, side view, back-side view, and back view. Besides
this, we have provided a unique ID to each vessel and have cropped each vessel
from the whole image by an annotated bounding box. Then the dataset is split
into training and test datasets. The training dataset contains 3,651 images with
586 unique vessel identities, while the test dataset includes 965 images with
147 unique vessel identities.

4.2 Training Procedure

In this work, we have employed ResNet50 [16] pre-trained on ImageNet [13] as
the basis network for feature extraction. The Adam optimizer [20] is used with
default hyper-parameters. We have set the initial learning rate to 0.0003, which
is exponentially decayed after 35,000 iterations. The proposed re-identification
CNN is trained for 50,000 iterations. We have selected 18 vessel identities and
4 images per identity to form a mini-batch of size 72. Furthermore, we have added
a dropout layer [21] to reduce the risk of overfitting. The trade-off parameter γ
in Eq. (2) is empirically set to γ = 0.6.

4.3 Validation Results

This subsection evaluates our Identity Oriented Re-identification network (IOR-
net). We have trained both the state-of-the-art triplet-based network (TriNet)
and the IORnet on the published training dataset. Table 1 compares the per-
formance of these two methods on our test dataset. In this table, the methods
are evaluated according to mAP (mean Average Precision), Rank1, Rank5, and
Rank10 metrics. According to Table 1, TriNet provides mAP and Rank1 scores of
78.4% and 88.4%, respectively. These values indicate that extending the triplet
concept to the vessel re-identification problem by training this network on an
annotated vessel re-identification dataset provides robust results. Additionally,
IORnet improves the mAP and Rank1 results of TriNet by approximately 3%
and 2%, respectively. Evidently, the proposed loss function provides a higher
performance due to increasing the similarities between feature vectors belonging
to the same identity.

4.4 Discussion on Parameters and Data Augmentation

In order to explain the parameter-optimized vessel re-identification model in
depth, this subsection provides additional discussion on the proposed method.

Figure 5 illustrates the mAP scores provided by IORnet for different itera-
tions. It can be observed that the mAP results are not stable within the first
35,000 iterations. This occurs because the learning rate is relatively large and the
network skips some local optimizations. After 35,000 iterations (while decreasing
the learning rate), the calculated scores tend to become more stable and also
slightly improve.
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Fig. 5. Impact of training iterations on IORnet performance.

Generally, data augmentation improves the performance of pedestrian re-
identification methods. Therefore, we have tested this technique also on the
vessel re-identification problem. To this end, our vessel images are augmented
with random cropping and horizontal flipping in the training phase, similar to
pedestrian re-identification work in [1,17]. More specifically, the image size is
first increased by 9/8 with the same aspect ratio. Then, the image is randomly
copped to obtain the original size. We have also performed the horizontal image
flipping on randomly chosen images. Figure 6 compares the method performance
with and without data augmentation. It appears that the data augmentation
technique deteriorates the vessel re-identification performance. For instance, the
mAP rate is decreased from 81.46% to 76.68%. We conclude that training on
random parts of vessels does not improve the re-identification model, since for
large objects, random fragments do not provide a reliable statistical base for
identity retrieval.

Additionally, during our experiments, we have noticed that many failures in
vessel re-identification are the outcome of performing re-identification on ves-
sel samples captured from different orientations (camera viewing angle to the
ship). This happens also because vessels are large objects, having very different
appearances from varying orientations. To address this problem, the orientation
information can be integrated into the re-identification method in our future
work.

Table 1. Vessel re-identification performance.

Models mAP Rank1 Rank5 Rank10

TriNet 78.4% 88.4% 97.3% 98.6%
IORnet 81.5% 91.2% 98.6% 99.3%
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Fig. 6. Data augmentation influence on vessel re-identification performance.

As mentioned earlier, the parameter γ was introduced to control the trade-off
between the identification module and the triplet module. Tuning this parame-
ter to the optimal value is of high importance. Here, the re-identification perfor-
mance is tested with different values of the parameter to discover its influence
on the performance. The results are illustrated in Fig. 7. It can be deduced that
for γ < 0.36 and γ > 0.6 the re-identification performance deteriorates. For this
reason, we have chosen γ = 0.6, since this value achieves the highest mAP and
Rank1 scores.

Finally, to pursue real-time vessel re-identification, we have calculated the
average time of identity retrieval. The tests were performed on a workstation with
E5-1620 CPU, 16 GB of memory and a GTX-1080 GPU. There are 147 vessel
identities in our query set and 818 images in the database. The total retrieval
time measured for all 147 query images was 558.7 ms. Hence, for a single query
image, it takes 3.8 ms to perform the re-identification procedure and return the
ranking list, which would satisfy real-time execution.

It is also important to mention that the original TriNet decreases the feature
vector size from 2,048 to 128. However, according to our experiments, this small

Fig. 7. Influence of γ parameter on IORnet performance.
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feature vector size does not allow the identification module to achieve the desired
results. Therefore, we have adopted 1,024 as the feature vector size at the output
of the feature extraction module. By doing so, the training time increases from
0.3 s/iteration to 0.56.

5 Conclusion

This paper has proposed a robust vessel re-identification method to track the
identity of a specific vessel throughout a network with different camera locations.
The proposed CNN-based method extends the TriNet loss function with an iden-
tification method. The improved architecture, called IORnet, concentrates on
enhancing the similarities between vessel images belonging to the same vessel
identity in feature space. This approach also leads to a better discrimination
from other vessels. Experimental results have shown that our approach achieves
81.5% and 91.2% on mAP and Rank1 scores, respectively. Additionally, exper-
iments were conducted for vessel re-identification using several re-identification
techniques with proven value for pedestrian re-identification (like data augmen-
tation, training parameters, etc.). This supplementary inspection has resulted
into a parameter-optimized re-identification of vessels. As an important contribu-
tion, we have also developed a vessel re-identification dataset, which is annotated
with bounding boxes, vessel identities, vessel categories, vessel orientations, and
vessel capturing status (whether a vessel is truncated and/or occluded). This
dataset includes images with annotated vessels, captured at different locations
under varying weather conditions and with variable backgrounds and has become
available for public access [7].
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