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Abstract. In this work we propose a new combination of finite element
methods to solve incompressible miscible displacements in heterogeneous
media formed by the coupling of the free-fluid with the porous medium
employing the stabilized hybrid mixed finite element method developed
and analyzed by Igreja and Loula in [10] and the classical Streamline
Upwind Petrov-Galerkin (SUPG) method presented and analyzed by
Brooks and Hughes in [2]. The hydrodynamic problem is governed by
the Stokes and Darcy systems coupled by Beavers-Joseph-Saffman inter-
face conditions. To approximate the Stokes-Darcy coupled system we
apply the stabilized hybrid mixed method, characterized by the intro-
duction of the Lagrange multiplier associated with the velocity field in
both domains. This choice naturally imposes the Beavers-Joseph-Saffman
interface conditions on the interface between Stokes and Darcy domains.
Thus, the global system is assembled involving only the degrees of free-
dom associated with the multipliers and the variables of interest can be
solved at the element level. Considering the velocity fields given by the
hybrid method we adopted the SUPG method combined with an implicit
finite difference scheme to solve the transport equation associated with
miscible displacements. Numerical studies are presented to illustrate the
flexibility and robustness of the hybrid formulation. To verify the effi-
ciency of the combination of hybrid and SUPG methods, computer sim-
ulations are also presented for the recovery hydrological flow problems
in heterogeneous porous media, such as continuous injection.

Keywords: Stabilized methods · Hybrid mixed methods ·
Stokes-Darcy flow · Coupled problems · Heterogeneous media

1 Introduction

Numerical methods to simulate the incompressible viscous fluid flows coupling
Stokes-Darcy problems has been widely developed due to various applications in
physiological phenomena like the blood motion in vessels, hydrological systems
in which surface water percolates through rocks and sand, petroleum engineer-
ing where are find fractured media containing vugs and caves as the naturally
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fractured carbonate karst reservoirs and industrial processes involving filtration
[8,14,17,21]. This coupled problem is characterized by the coexistence of the free
fluid governed by the Stokes equations and the porous medium modeled by the
Darcy problem connected by the interface conditions that guarantee continuity
of mass and momentum across the interface [1,18].

Numerically, among the several methods proposed for the coupled problem,
we highlight the stable and stabilized methods introduced in [3–5,13,19]; using
a Lagrange multiplier to impose the interface restrictions, we can cite [7,11,20];
and employing discontinuous Galerkin (DG) methods, we indicate [16] and [21].
Recently, hybridizations of DG methods have been successfully exploited to
derive new finite element methods with improved stability and reduced com-
putational cost but still preserving the robustness and flexibility of DG methods
[6,9,10].

In this paper, in order to obtain efficiently the velocity field, we use the stabi-
lized hybrid mixed method to solve the coupled Stokes-Darcy problem developed
by [10]. This method is characterized by the introduction of a Lagrange multi-
plier associated with the velocity field to weakly impose continuity on each edge
of the elements. Moreover, this approach naturally imposes the interface condi-
tions between porous medium and free fluid through the Lagrange multiplier.
This methodology allows the elimination of the local problems at each element
level in favor of the Lagrange multiplier. Thus, the system involves only global
degrees of freedom associated with the multiplier, reducing significantly the com-
putational cost. The accuracy of this method is presented through convergence
studies.

Once the hydrodynamic problem is calculated we supply the velocity field to
the convection-dominated parabolic equation to obtain the concentration field in
the coupled Stokes-Darcy domain. These results can, for example, characterize
a reservoir through continuous or tracer injection processes, informing the pre-
ferred direction of flow [12,14] or study the spread of pollution released in the
water and assess the danger [21]. In order to illustrate the performance of the
hybrid method applied to the coupled Stokes-Darcy-transport problem, where
the Streamline Upwind Petrov-Galerkin (SUPG) method [2] combined with a
backward finite difference scheme in time is employed to approximate the con-
centration equation, numerical simulations are demonstrated for the miscible
transport problem using a five-spot pattern for different heterogeneous scenarios
through continuous injection processes.

This paper is organized as follow. The Stokes-Darcy-transport model problem
is introduced in Sect. 2. In Sect. 3, notations and definitions required to present
the hybrid method are described. The stabilized mixed hybrid method for the
coupled Stokes-Darcy problem is presented in Sect. 4. The Sect. 5 is devoted to
convergence study and continuous injection simulations in a five-spot pattern
for different heterogeneous scenarios. And finally, in Sect. 6, we present the con-
cluding remarks of this work.
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2 Model Problem

Let Ω ⊂ R
d (d = 2 or 3) be the domain composed by two subdomains ΩS and

ΩD related to free fluid and porous medium, respectively. In the subdomain ΩS ,
with outward unit normal nS , the flow is governed by the Stokes problem and
in porous medium ΩD, with outward unit normal nD, the Darcy’s law holds.
These subdomains are separated by a smooth interface ΓSD = ∂ΩS ∩ ∂ΩD,
where tj defines an orthonormal basis of tangent vectors on ΓSD. Moreover, let
Γ = ΓS ∪ ΓD with Γi = ∂Ωi \ ΓSD (i = S,D). The Fig. 1 represents a sketch of
the described domain.

Fig. 1. A sketch of coupled Stokes-Darcy domain.

Denoting ui = u|Ωi
and pi = p|Ωi

, with i = S,D, the free fluid domain ΩS

is modeled by the Stokes problem that can be written as follows
Given the viscosity νand the source f , find the pressure pS : ΩS → R and the

velocity field uS : ΩS → R
d, such that

−ν div∇uS + ∇pS = f in ΩS , (1)
divuS = 0 in ΩS , (2)

uS = 0 on ΓS , (3)

where div and ∇ denote, respectively, the divergent and gradient operators. On
the other hand, in porous medium the flow is given by the Darcy problem

Given the hydraulic conductivity K and the source f , find the hydrostatic
pressure pD : ΩD → R and the Darcy velocity uD : ΩD → R

d, such that

uD = −K∇pD in ΩD, (4)
divuD = f in ΩD, (5)

uD · nD = 0 on ΓD, (6)
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we define K = k/μ where k is the permeability of the porous medium. The
solvability condition, which the source function f must satisfy

∫
ΩD

f dx = 0.

On the interface free fluid/porous medium ΓSD the following conditions are
imposed

uS · nS + uD · nD = 0 on ΓSD, (7)
pS − 2με(uS)nS · nS = pD on ΓSD, (8)

uS · tj = −2

√
k

α
ε(uS)nS · tj , j = 1, d − 1, on ΓSD. (9)

The conditions (7) and (8) impose the continuity of flux and normal stress,
respectively. The slip condition (9) is known as Beavers-Joseph-Saffman law
[1,18], where α > 0 is an experimentally determined dimensionless constant.
The coupled problem, modeled by the Eqs. (1)–(9), is analyzed in detail by [11],
where existence and uniqueness of the solution is demonstrated.

The Stokes-Darcy coupled problem provides the velocity field for the
diffusive-convective-reactive transport equation defined on the domain Ω =
ΩS ∪ ΩD whose problem is given by

Given the Stokes or Darcy velocity field u, the porosity φ, the diffusion-
dispersion tensor D, the sources f̂ and g and the function c0, find the concentra-
tion c(x, t) : Ω × (0, T ) → R

d, such that

φ
∂c

∂t
+ u · ∇c − div(D∇c) + f̂ c = g in Ω × (0, T ), (10)

c(x, 0) = c0(x) in Ω, (11)
D∇c · n = 0 on Γ × (0, T ). (12)

In the Stokes domain ΩS

φ = 1 and D = αmI, (13)

where αm is a molecular diffusion coefficient and I the identity tensor. In the
porous medium ΩD, the tensor D can be defined as

D = D(uD) = αmI + ‖uD‖ [αlE(uD) + αt(I − E(uD))] , E(u) =
u ⊗ u
‖u‖2 ,

with ‖u‖2 =
∑d

i=1 u2
i , ⊗ denoting the tensorial product, αl being the longitu-

dinal dispersion and αt the transverse dispersion. In miscible displacement of a
fluid through another in a reservoir, the dispersion is physically more important
than the molecular diffusion [15]. Thus, we assume the following properties

0 < αm ≤ αl, αl ≥ αt > 0 and 0 < φ ≤ 1 in ΩD.
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3 Notations and Definitions

To introduce the stabilized hybrid formulation we first recall some notations
and definitions. Let Hm(Ω) be the usual Sobolev space equipped with the usual
norm ‖ · ‖m,Ω = ‖ · ‖m and seminorm |·|m,Ω = |·|m, with m ≥ 0. For m = 0, we
consider L2(Ω) = H0(Ω) as the space of square integrable functions and H1

0 (Ω)
denotes the subspace of functions in H1(Ω) with zero trace on ∂Ω.

For a given function space V (Ω), let [V (Ω)]d and [V (Ω)]d×d be the spaces
of all vectors and tensor fields whose components belong to V (Ω), respectively.
Without further specification, these spaces are furnished with the usual product
norms (which, for simplicity, are denoted similarly as the norm in V (Ω)). For
vectors v,w ∈ R

d and matrices σ, τ ∈ R
d×d we use the standard notation.

Restricting to the two-dimensional case (d = 2), we define a regular finite
element partition Th of the domain Ω:

Th = {K} := the union of all elements K.

In cases where Ω is divided into subdomains Ωi with smooth boundary ∂Ωi and
Γi = ∂Ω ∩ ∂Ωi, we have for each subdomain the following regular partition

T i
h = {K ∈ Th ∩ Ωi},

and the following set of edges

E i
h = {e; e is an edge of K, for at least one K ∈ T i

h},

E∂,i
h = {e ∈ E i

h; e ⊂ Γi}

E0,i
h = {e ∈ E i

h; e is an interior edge of Ωi},

E ij
h = E0,i

h ∩ E0,j
h .

This last case denotes the edges that compose the interface between the subdo-
mains, where Ωi and Ωj are two adjacent subdomains.

We assume that the domain Ω is polygonal. Thus, there exists c > 0 such
that h ≤ che, where he is the diameter of the edge e ∈ ∂K and h, the mesh
parameter, is the maximum element diameter. For each element K we associate
a unit normal vector nK . Let Vl

h and Qm
h denote broken function spaces on Th

given by

Vk
h = {v ∈ L2(Ω);vh|K ∈ [Qk(K)]2, ∀K ∈ Th}, (14)

Ql
h = {q ∈ L2(Ω); qh|K ∈ Ql(K), ∀K ∈ Th}, (15)

where Qk(K) and Ql(K) denote the space of polynomial functions of degree at
most k and l, respectively, on each variable. To introduce the hybrid method,
we define the following spaces associated with the Lagrange multiplier

Mk
h = {μ ∈ L2(Eh) : μ|e = [pk(e)]2, ∀e ∈ E0

h, μ|e = 0, ∀e ∈ E∂
h }, (16)

Wk
h = {μ ∈ L2(Eh) : μ|e = [pk(e)]2, ∀e ∈ E0

h, μ|e · ne = 0, ∀e ∈ E∂
h }, (17)
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Similarly, pk(e) is the space of polynomial functions of degree at most k on an
edge e.

Moreover, we consider the following finite element spaces

V k
h (Th) = Vk

h(T S
h ) ∪ Vk

h(T D
h ) (18)

Ql
h(Th) = Ql

h(T S
h ) ∪ Ql

h(T D
h ) (19)

for velocity and pressure fields, respectively,

Mk
h (Eh) = Mk

h(ES
h \ ESD

h ) ∪ Wk
h(ED

h ) (20)

for the multiplier in both Stokes and Darcy domains, the product space Vh =
V k

h (Th) × Ql
h(Th) × Mk

h (Eh) and set Xh = [uh, ph,λh] ∈ Vh.

4 Stabilized Hybrid Mixed Method for Stokes-Darcy
Flow

Unlike the numerical methods employing Lagrange multipliers only in the inter-
face free fluid/porous medium to solve the coupled problem [7,11], Igreja and
Loula developed in [10] a stabilized hybrid mixed method, with Lagrange multi-
pliers in all domain, where the interface conditions are naturally imposed, yield-
ing a symmetric, robust and stable formulation. This formulation can be viewed
below

Find Xh ∈ Vh such that,

ASD(Xh,Yh) = FSD(Yh), ∀Yh ∈ Vh, (21)

with

ASD(Xh,Yh) =
∑

K∈Th

AK
SD([uh, ph]; [vh, qh])

+
∑

K∈Th

∑
e∈∂K

Ae
SD([uh, ph,λh]; [vh, qh,μh])

FSD(Yh) =
∑

K∈Th

FK
SD([vh, qh])

where the local bilinear and linear forms are given in the Darcy domain by

AK
SD([uh, ph]; [vh, qh]) = AK

D ([uD
h , pD

h ]; [vh, qh]), ∀K ∈ T D
h , (22)

FK
SD([vh, qh]) = FK

D ([vh, qh]), ∀K ∈ T D
h ,

Ae
SD([uh, ph,λh]; [vh, qh,μh]) = Ae

D([uD
h , pD

h ,λD
h ]; [vh, qh,μh]),∀e �∈ ESD

h

and in the Stokes domain by

AK
SD([uh, ph]; [vh, qh]) = AK

S ([uS
h , pS

h ]; [vh, qh]), ∀K ∈ T S
h , (23)

FK
SD([vh, qh]) = FK

S ([vh, qh]), ∀K ∈ T S
h ,

Ae
SD([uh, ph,λh]; [vh, qh,μh]) = Ae

S([uS
h , pS

h ,λS
h ]; [vh, qh,μh]), ∀e �∈ ESD

h .
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plus the Beavers-Joseph-Saffman interface condition on ΓSD

Ae
SD([uh, ph,λh]; [vh, qh,μh]) = Ae

BJS([uh, ph,λh]; [vh, qh,μh]), ∀e ∈ ESD
h

Electing the Lagrange multiplier λSD
h = λD

h = uD
h |∂K = λS

h = uS
h |∂K and the

stabilization parameter βSD = βS = βD on the interface ESD
h , we have [10]

Ae
BJS =

∫
e

να√
k

(uS
h · t)(vS

h · t) ds −
∫

e

(pS
h − pD

h − ν∇uS
h nS · nS)μh · nS ds

+
∫

e

λSD
h · qD

h nS ds + βSD

∫
e

(uD
h − λSD

h ) · (vD
h − μh) ds

+
∫

e

(pS
h − ν∇uS

h nS · nS)vS
h · nS ds +

∫
e

qS
h (uS

h − λSD
h ) · nS ds

−
∫

e

ν∇vS
h nS · nS(uS

h − λSD
h ) · nS ds

+ βSD

∫
e

(uS
h − λSD

h ) · nS(vS
h − μh) · nS ds.

Moreover, the local bilinear and linear forms for the Darcy problem

AK
D ([uD

h , pD
h ]; [vh, qh]) =

∫
K

AuD
h · vh dx +

∫
K

∇pD
h · vh dx +

∫
K

uD
h · ∇qh dx

+ δ1

∫
K

K(AuD
h + ∇pD

h ) · (Avh + ∇qh) dx

+ δ2

∫
K

AdivuD
h divvh dx

+ δ3

∫
K

κ rot(AuD
h ) rot(Avh) dx, (24)

Ae
D([uD

h , pD
h ,λD

h ]; [vh, qh,μh]) = −
∫

e

λD
h · qhnK ds −

∫
e

μh · pD
h nK ds

+ βD

∫
e

(uD
h − λD

h ) · (vh − μh) ds, (25)

FK
D ([vh, qh]) = δ2

∫
K

Af divvh dx −
∫

K

f qh dx, (26)

For the Stokes problem, we have

AK
S ([uS

h , pS
h ]; [vh, qh]) =

∫
K

ν∇uS
h : ∇vh dx

−
∫

K

divuS
h qh dx −

∫
K

pS
h divvh dx

FK
S ([vh, qh]) =

∫
K

f · vhdx
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and

Ae
S([uS

h , pS
h ,λS

h ]; [vh, qh,μh]) = −
∫

e

ν∇uS
h nK · (vh − μh)ds

−
∫

e

ν∇vh nK · (uS
h − λS

h)ds +
∫

e

pS
h (vh − μh) · nK ds

+
∫

e

qh (uS
h − λS

h) · nK ds + βS

∫
e

(uS
h − λS

h) · (vh − μh)ds. (27)

The stabilization parameters is given by

βS = ν
βS
0

h
, with βS

0 > 0 and βD = A
βD
0

h
. (28)

To solve this problem, the formulation (21) is splited in a set of local problems
defined at the element level and a global problem associated with the multipliers.
The degrees of freedom of the variables in the local problem are condensed,
through the static condensation technique, and a global system is assembled
in terms of the multipliers. Then, the global problem is solved leading to the
approximate solution of the multipliers, which is plugged into the local problems
to recover the discontinuous approximation of the velocity and pressure fields.
For more details see [10].

4.1 Concentration Approximation

Given the velocity field calculated through the hybrid method (21), we can obtain
the concentration field using the SUPG method [2] to approximate the transport
equation (10)–(12). For this, let the time step Δt > 0, such that N = T/Δt and
tn = nΔt with n = 1, 2, ..., N and let Ih = {0 = t0 < t1 < ... < tN = T} be a
partition of the interval I = [0, T ]. The term involving the time derivative of the
concentration is approximated by backward Euler finite difference operator

∂c

∂t
(x, tn) =

∂cn

∂t
=

cn+1 − cn

Δt
.

Therefore, a semi-discrete approximation for the transport equation for each
n = 1, 2, ...N , given c0(x) = c0(x), can be written as

φ
cn+1 − cn

Δt
+ u · ∇cn+1 − div(D(u)∇cn+1) + f̂ cn+1 = g in Ω. (29)

Combining the semi-discrete approximation (29) with a stabilized finite ele-
ment method in space (SUPG), we introduce the following fully discrete approx-
imation for the concentration equation: for time levels n = 1, 2, ...N , find
cn+1
h ∈ Ck

h, where Ck
h is a C0 Lagrangean finite element space of degree at most

k, such that

ASUPG(cn+1
h ;ϕh) = FSUPG(cn

h;ϕh), ∀ϕh ∈ Ck
h, (30)
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with

ASUPG(cn+1
h ; ϕh) = φ

∫
Ω

cn+1
h ϕh dx + Δt

∫
Ω

uh · ∇cn+1
h ϕh dx

+ Δt

∫
Ω

D(uh)∇cn+1
h · ∇ϕh dx + Δt

∫
Ω

f̂ cn+1
h ϕh dx

+
∑

K∈Th

∫
K

(
φcn+1

h + Δtuh · ∇cn+1
h + Δtf̂cn+1

h

)
(δKuh · ∇ϕh) ds

+
∑

K∈Th

∫
K

(−Δt div(D(uh)∇cn+1
h )

)
(δKuh · ∇ϕh) ds (31)

and

FSUPG(cn
h;ϕh) = φ

∫
Ω

cn
h ϕh dx + Δt

∫
Ω

gϕh dx

+
∑

K∈Th

∫
K

(φcn
h + Δt g) (δKuh · ∇ϕh) ds. (32)

In the system (30) the velocity field uh is given by the solution of the hybrid
formulation (21). The stabilization parameter δK is defined on each K ∈ Th as
described in [2,14].

5 Numerical Results

In this section we present numerical experiments to evaluate the rates of con-
vergence of the stabilized hybrid mixed formulation (21). Moreover, we use the
approximate velocity field obtained by the hybrid method, which is responsible
for the flow displacement, to find the concentration field calculated by a predom-
inantly convective Eq. (10) that is numerically solved via SUPG method applied
to continuous injection process in a quarter of a repeated five-spot pattern for
different heterogenous scenarios [14].

5.1 Convergence Study

In this test problem, we solve a simple problem with K = I and μ = 1.0 in a
square domain Ω = ΩD ∪ ΩS = (0.0, 1.0)2, with respective Stokes and Darcy
sources

f =
[(

1/2 + 1/(8π2)
)
sin(πx) exp(y/2)

(π − 3/(4π)) cos(πx) exp(y/2)

]
, f =

(
1
2π

− 2π

)
cos(πx) exp(y/2),

with the exact solution presented in [4,10].
In the convergence study we adopt h-refinement strategy taking a sequence

of n × n uniform meshes, with n = 4, 8, 16, 32, 64, using quadrilateral elements
QkQl−pm, where k, l and m denote, respectively, the degree of polynomial spaces
for velocity, pressure and multiplier, considering equal order approximations for
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all fields k = l = m = 1 and 2 with the respectives stabilization parameters for
the Stokes and Darcy multipliers βS

0 = 12.0 and 24.0 and βD
0 = 1.0 and 15.0. For

the least square stabilization parameters defined in the interior of the elements
we adopt in all simulations

δ1 = −0.5, δ2 = 0.5, δ3 = 0.5. (33)

In Fig. 2 we can see the h-convergence study for the velocity and pressure
in the L2(Ω) norm compared to the interpolant for Q1Q1 − p1 and Q2Q2 − p2
elements, respectively. The results demonstrate optimal convergence rates for all
fields studied, except for the pressure field approximated by biquadratic elements
(Fig. 2(d)), in which case the potential loses accuracy.
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Fig. 2. h-convergence study of the Stokes-Darcy approximations (uSD
h and pSD

h ) com-
paring the hybrid method with the respective interpolant (uI or pI) in L2(Ω) norm
for Q1Q1 − p1 and Q2Q2 − p2 elements.

5.2 Continuous Injection Simulation

Here we simulate a quarter of a repeated five-spot pattern in two dimension
consisting of a square domain (unit thickness) with side L = 1000.0 ft. The
injector well is located at the lower-left corner (x = y = 0) and the producer well
at the upper-right corner (x = y = L). For this, we use the hybrid formulation
(21) to approximate the hydrodynamic problem, then we supply the velocity
field to the transport equation that is numerically solved by the SUPG method
combined with an implicit finite difference scheme in three different scenarios
described in Fig. 3.

These three cases are considered for a porous medium with homogeneous
permeability κ = 10.0mD, where K = (κ/μ)I, viscosity of the resident fluid
is μ = 1.0 cP , porosity φ = 0.1, molecular diffusion αm = 0.0, longitudinal
dispersion αl = 10.0 ft2/day, transverse dispersion αt = 1.0 ft2/day and the flow
rate is 800 square feet per day. For the Stokes region the diffusion tensor is chosen
to be D = αmI with αm = 1.0 ft2/day. We fix the same values of the numerical
stabilization parameters presented in (33) and α = 1.0. Moreover, a time step of
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Fig. 3. Three coupled porous medium (shaded) free fluid (white) domains used to
simulate the five-spot problem.
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Fig. 4. Scenario 1: front propagation of the concentration in five-spot problem.

5 days and uniform meshes of 40×40 bilinear quadrilateral elements are adopted
employing equal order approximations for all fields (velocity, pressure, multiplier
and concentration).

The Figs. 4, 5 and 6 show the concentration maps and concentration contours
for the proposed scenarios. In these graphs we can clearly observe the effect of
the barrier on the continuous injection transport generated by the low perme-
ability of the porous medium. The continuous injection concentration in the
scenario 3 (Fig. 6) takes longer time to reach the producer well due to the higher
heterogeneity of the medium, because it presents more discontinuities generated
by the free fluid/porous medium interfaces, which reduces the flow velocity.
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Fig. 5. Scenario 2: front propagation of the concentration in five-spot problem.
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Fig. 6. Scenario 3: front propagation of the concentration in five-spot problem.
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6 Conclusions

In this work we recall the stabilized hybrid mixed formulation for the Stokes-
Darcy problem to solve the hydrodynamic flow of the transport concentration
approximated by SUPG method combined with a backward finite difference
scheme in time to simulate the continuous injection in free fluid/porous medium
domain. The hybrid method imposes naturally the interface conditions due to
the choice of the Lagrange multipliers. Moreover, this formulation is able to
recover stability of very convenient finite element approximations, such as equal
order Lagrangian polynomial approximations for all fields which are unstable
with standard dual mixed formulation for each region.

The convergence results for the hybrid method illustrate the flexibility and
robustness of the hybrid finite element formulation and show optimal rates of
convergence. With respect the concentration approximation, the combination of
hybrid and SUPG methods gave stable and accurate results in heterogeneous
media formed by free fluid and porous medium capturing precisely the phenom-
ena arising of this interaction.
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(2017). https://doi.org/10.1016/j.rimni.2015.10.002

15. Peaceman, D.W.: Fundamentals of Numerical Reservoir Simulation. Elsevier Sci-
ence Inc., New York NY, USA (1991)

16. Rivière, B., Yotov, I.: Locally conservative coupling of Stokes and Darcy
flow. SIAM J. Numer. Anal. 42(5), 1959–1977 (2005). https://doi.org/10.1137/
S0036142903427640

17. Rui, H., Zhang, J.: A stabilized mixed finite element method for coupled Stokes
and Darcy flows with transport. Comput. Methods Appl. Mech. Eng. 315, 169–189
(2017). https://doi.org/10.1016/j.cma.2016.10.034

18. Saffman, P.G.: On the boundary condition at the surface of a porous medium.
Stud. Appl. Math. 50(2), 93–101 (1971). https://doi.org/10.1002/sapm197150293

19. Salinger, A., Aris, R., Derby, J.: Finite element formulations for large-scale, coupled
flows in adjacent porous and open fluid domains. Int. J. Numer. Meth. Fluids
18(12), 1185–1209 (1994). https://doi.org/10.1002/fld.1650181205

20. Urquiza, J., N’Dri, D., Garon, A., Delfour, M.: Coupling Stokes and Darcy
equations. Appl. Numer. Math. 58(5), 525–538 (2008). https://doi.org/10.1016/j.
apnum.2006.12.006

21. Vassilev, D., Yotov, I.: Coupling Stokes-Darcy flow with transport. SIAM J. Sci.
Comput. 31(5), 3661–3684 (2009). https://doi.org/10.1137/080732146

https://doi.org/10.1007/s11242-005-1457-3
https://doi.org/10.1002/nme.5527
https://doi.org/10.1002/nme.5527
https://doi.org/10.1016/j.cma.2018.05.026
https://doi.org/10.1137/S0036142901392766
https://doi.org/10.1137/S0036142901392766
https://doi.org/10.1016/S0045-7825(99)00113-9
https://doi.org/10.1002/fld.1508
https://doi.org/10.1016/j.rimni.2015.10.002
https://doi.org/10.1137/S0036142903427640
https://doi.org/10.1137/S0036142903427640
https://doi.org/10.1016/j.cma.2016.10.034
https://doi.org/10.1002/sapm197150293
https://doi.org/10.1002/fld.1650181205
https://doi.org/10.1016/j.apnum.2006.12.006
https://doi.org/10.1016/j.apnum.2006.12.006
https://doi.org/10.1137/080732146

	A New Approach to Solve the Stokes-Darcy-Transport System Applying Stabilized Finite Element Methods
	1 Introduction
	2 Model Problem
	3 Notations and Definitions
	4 Stabilized Hybrid Mixed Method for Stokes-Darcy Flow
	4.1 Concentration Approximation

	5 Numerical Results
	5.1 Convergence Study
	5.2 Continuous Injection Simulation

	6 Conclusions
	References




