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Abstract. Anomaly detection is an important data mining method
aiming to discover outliers that show significant diversion from their
expected behavior. A widely used criteria for determining outliers is
based on the number of their neighboring elements, which are referred
to as Nearest Neighbors (NN). Existing kNN-based Anomaly Detection
(kNN-AD) algorithms cannot detect streaming outliers, which present
time sensitive abnormal behavior characteristics in different time inter-
vals. In this paper, we propose a fast kNN-based approach for Time
Sensitive Anomaly Detection (kNN-TSAD), which can find outliers that
present different behavior characteristics, including normal and abnor-
mal characteristics, within different time intervals. The core idea of our
proposal is that we combine the model of sliding window with Locality
Sensitive Hashing (LSH) to monitor streaming elements distribution as
well as the number of their Nearest Neighbors as time progresses. We use
an ε-approximation scheme to implement the model of sliding window to
compute Nearest Neighbors on the fly. We conduct widely experiments to
examine our approach for time sensitive anomaly detection using three
real-world data sets. The results show that our approach can achieve
significant improvement on recall and precision for anomaly detection
within different time intervals. Especially, our approach achieves two
orders of magnitude improvement on time consumption for streaming
anomaly detection, when compared with traditional kNN-based anomaly
detection algorithms, such as exact-Storm, approx-Storm, MCOD etc,
while it only uses 10% of memory consumption.
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1 Introduction

Anomaly (a.k.a. outlier) detection [4] is an important data mining method in
applications, such as DDoS detection [12] and medical health monitoring [23].
The task is to identify instances or patterns that do not conform to their expected
behaviors [9]. Anomaly detection over data streams is a popular topic in com-
putational science because of its inherent vagueness in definition of outliers, like
how to define regular behavior, to what degree an outlier needs to be inconsistent
with the regular behaviors when confronting the one-pass and infinite high-speed
data streams [21].

Anomaly detection can be classified into supervised [20] and unsupervised [16]
in principle. Supervised scenarios are not appropriate for data steams processing
due to lack of label information about outliers for one-pass streaming elements.
Unsupervised anomaly detection does not require any label information and it is
appropriate for data steams processing. Currently, unsupervised anomaly detec-
tion methods over data streams can be classified into three categories: (1) Statis-
tical based, (2) Clustering based, and (3) k Nearest Neighbors (kNN) based [22].

kNN-based approaches have drawn the most attention of researchers to find
anomalies over data streams. kNN-based approaches assume that the proximity
of outliers to their nearest neighbors deviates significantly from the proximity
of normal data to their neighbors. Given a dataset D and a threshold k, if data
point x has less than k neighbors in D, x is marked as outlier. This kind of
approaches have gained popularity as they are easy to implement on the fly.
However, current kNN-based anomaly detection method cannot detect outliers
with time sensitive abnormal distribution. For example, in DDoS applications,
like port scanning, SATAN scanning or IP half-way scanning, attackers send
scanning packets in different time intervals and this kind of pre-attack cannot
be detected by current kNN-based methods [24,26].

We briefly describe challenges of anomaly detection over data streams, which
are addressed in our work:

(1) Abnormal distribution detection. When detecting outliers, kNN-based meth-
ods only focus on whether the NN number reaches the threshold but do not
care the changes of NN number with time. However, there may be some cases
where the NN number is normal but the distribution is significantly uneven
during a time period. This kind of anomaly cannot be detected by only
counting NN, so that we need time sensitive anomaly detection algorithm.

(2) Concept drift. Most existing data stream anomaly detection techniques
ignore one important aspect of stream data: arrival of novel anomalies. In
dynamically changing and non-stationary environments, the data distribu-
tion can change over time yielding the phenomenon of concept drift [13].
Concept drift is aware of different time intervals, but traditional anomaly
detection techniques don’t take time into consideration, and as a result many
novel anomalies cannot be detected.

(3) Real-time requirements. Streaming applications require fast-response and
real-time processing from volumes of high-speed and multidimensional
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dynamic streaming data over time. However, storing all the streaming data
requires unbearably large memory so that it is necessary to reduce memory
requirements. Additionally, algorithms communicating with DRAM (main
memory) are just too slow for the speed at which the data is generated.
Ideally, we need ultra-low memory anomaly detection algorithms that can
entirely sit in the cache which can be around 2–10 times faster than accessing
main memory [11].

The contributions of this paper are as follows:

(1) We propose a kNN-based approach kNN-TSAD for Time Sensitive Anomaly
Detection, which combines an ε-approximation scheme Deterministic Waves
(DW) with LSH to monitor streaming elements distribution as well as the
number of their Nearest Neighbors as time progresses. We use LSH to count
NN number without massive calculation of distances between data points.
We use DW to monitor distribution of streaming elements during different
time intervals. Thus, our anomaly detection method is time sensitive.

(2) The time and space efficiency of our approach is very high and it well meets
the real-time requirements. We combine DW with LSH by the way that every
item of the hash array is implemented as a DW window and data update
can be very efficient and cost very low. Furthermore, we use LSH to search
NN which does not need massive range queries and distance calculation, and
it does not need to store neighbor information for every element.

(3) We provide a comparison of our algorithm with other five traditional kNN-
based algorithms based on three real-world datasets. Our experiment shows
that kNN-TSAD is two orders of magnitude faster than other algorithms but
only uses 10% of memory consumption. Moreover the recall and precision of
kNN-TSAD are higher than others over datasets with abnormal distribution.

2 Preliminaries

In the section, we first give the problem definition, and then we will introduce
the LSH structure, SRP and the DW model used in this paper.

2.1 Problem Definition

In this paper, we take data distribution into account and we detect kNN-based
outliers as well as outliers with abnormal distribution. We give the definition of
kNN-based time sensitive outlier in the data streams in Definition 1. The used
notation is summarized in Table 1.

Definition 1. (kNN-based Time Sensitive Outlier in Data Streams). Given a
data stream DS, the current window W , a point xt in DS and two threshold
parameters α and β, we aim to decide whether xt is an outlier or not. We
denote the answer by NN(xt,W ) and V (xt,W ). Formally, if NN(xt,W ) < αμ
or V (xt,W ) > βδ, xt is an outlier, otherwise not.
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Table 1. Frequently used notations.

Notation Description

DS Data stream

xt The data point observed at time t

W Current sliding window

w Number of time intervals of every sliding

α, β Thresholds parameters

NN(xt, W ) Number of neighbors of xt in the current window

μ Mean of NN(xt, W ) till current window

V (xt, W ) Variance of the current window

δ Mean of V (xt, W ) till current window

2.2 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) is a popular sublinear time algorithm for effi-
cient approximate nearest neighbors search. LSH leverages a family of functions
where each function hashes the points in such a way that under the hash map-
ping, similar points have a high probability of getting the same hash value so
that to be mapped into the same bucket. The probability of collision for an LSH
hash function is proportional to the similarity distance between the two data
vectors, that is Pr[h(x) = h(y)] ∝ sim(x, y).

Definition 2. (LSH Family). A family H is called (S0, cS0, u1, u2) − sensitive
if for any two data points x,y ∈ R

d and h chosen uniformly from H satisfies the
following:

(1) If sim(x, y) ≥ S0 then Pr[h(x) = h(y)] ≥ u1.
(2) If sim(x, y) ≤ cS0 then Pr[h(x) = h(y)] ≤ u2.

2.3 Signed Random Projections

Usually, the family of hash functions of LSH are generated from random pro-
jections, the intuition is that points that are nearby in the space will also be
nearby in all projections [10,15]. Given a vector x, it utilizes a random vector w
with each component generated from i.i.d. normal (i.e., wi ∼ N(0, 1)), and only
stores the sign of the projection. We define a hash function hw(x) as follows:

hw(x) = sign(wT x) (1)

And corresponding to this vector w we define the projection function as follows:

sign(wT x) =

{
0 wT x ≥ 0
1 wT x < 0

(2)

For vectors x and w, the probability Pr[h(x) = h(w)] = 1 − θ(x,w)
π .
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2.4 Deterministic Waves

Deterministic Waves [14] is a ε-approximation scheme for the Basic Counting
problem for any sliding window up to a prespecified maximum window size W .
The most important thing that distinguishes DW from other sliding-window
models is that, for the sum of integers in [0, 1, ..., R] it improves the per-item
processing time from O(1) amortized (O(log N) worst case) to O(1) worst case.
The space complexity of DW is O(1ε log2(εW )).

Consider a data stream of integers and a desired positive ε < 1. The algorithm
maintains two counters: pos, which is the current length of the stream, and rank,
which is the current integers sum in the stream. The procedure of estimating the
sum of integers in a window of size n ≤ W is as follows. Let s = max(0, pos −
n + 1), we estimate the sum of integers in stream positions [s, pos]. The steps
are:

(1) Let p1 be the maximum position stored in the wave that is less than s, and
p2 be the minimum position stored in the wave that is greater than or equal
to s. (If no such p2 exists, return x̂ := 0 as the exact answer.) v is the integer
value at p2. Let r1 and r2 be the rank of p1 and p2 respectively.

(2) Return x̂ := rank − r1+r2−v
2 .

3 kNN-TSAD Algorithm

In this section we first walk through an overview of the framework, and then
describe the procedure in detail.

Fig. 1. Framework overview of kNN-TSAD.

3.1 Overview of the Framework

Our kNN-TSAD algorithm combines the functionality of LSH and sliding win-
dows which supports time-based sliding windows queries, so that it can be
used for compactly summarizing high-speed and multidimensional streams over
sliding windows. It replaces every item of the LSH array with sliding window
structures (i.e., DW windows) covering the last W time units of data streams.
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Figure 1 illustrates the overview of our proposed framework. DW W is a two-
dimensional LSH array of L rows and 2K columns. K and L are pre-specified
hyper-parameters. Hi, i ∈ 0, 1, . . . , L − 1 are a group of hash functions, and
results of Hi are corresponding to the ith row of DW W . Every item of the LSH
array is a DW window. There are two main phases of our kNN-TSAD algorithm.

Insert Phase. The framework performs inserting a data point as follows:

(1) The nearest neighbors are searched by applying LSH on the data point.
(2) The data point is inserted into corresponding neighbourhoods which are

implemented as DW windows, and expired data are deleted from DW
windows.

(3) The global mean count and the mean variance of active sliding window are
updated.

Query Phase. The framework performs an anomaly query as follows:

(1) NN number of current data point and variance of current window are cal-
culated.

(2) NN number and variance of the current data point are compared with mean
values, and then an anomaly decision result is given.

3.2 Nearest Neighbors Searching

In kNN-based methods for anomaly detection, NN searching is the most impor-
tant part. Existing methods search neighbors by computing distances of every
two data points, and then compare to a distance threshold. This process is quite
time consuming. Instead, utilization of LSH can significantly reduce time over-
head and improve efficiency of NN searching.

Fig. 2. An example of NN searching
using LSH.

Fig. 3. An example of time sensitive
monitoring.

We randomly generate K ×L vectors wij , i ∈ 0, 1, . . . , L − 1, j ∈ 0, 1, ,K − 1,
with each component generated from i.i.d. normal (i.e., wij ∼ N(0, 1)).



A Fast kNN-Based Approach for Time Sensitive Anomaly Detection 65

Then using these random vectors we define K × L independent signed random
projections hij , i ∈ 0, 1, . . . , L − 1, j ∈ 0, 1, . . . ,K − 1, given in Eqs. 1 and 2 and
each of them gives one-bit output. So that we can finally generate L K-bit hash
functions Hi(x) = [hi1(x);hi2(x); ...;hiK(x)], i ∈ 0, 1, . . . , L − 1, which respec-
tively correspond to the indexes in L rows of hash array DW W . Final NN num-
ber of a data point x is the average of all Hi(x). By this way the collision proba-
bility is significantly reduced from p = 1− θ(x,y)

π to p = Pr[H(x) = H(y)] = pK ,
if and only if hj(x) = hj(y) for all j ∈ 0, 1, . . . ,K − 1, H(x) = H(y). Figure 2
shows an example of NN searching process of a data point.

3.3 Time Sensitive Monitoring

To monitor the sliding windows in more detail, we preset a time interval whose
length is 1

w of the window size. Utilizing the recorded position queue in the DW
model, we calculate the average counts of each time interval based on different
time range within the sliding window and then work out their variance. The
variance will significantly deviate from average level if distribution of data in
current sliding window is abnormal.

We have illustrated the procedure of estimating the count of DW in
Sect. 2.4, we use the same method to calculate the count of every time interval.

Algorithm 1. kNN-based Anomaly Detection.
Input: Data stream DS, Array parameters L and K, Threshold parameter α
Hash Initialize: Generate L × K independent SRP hash functions
DW W = new DW[L][2K ], μ = 0, n=0
As a data point xt ∈ DS comes
/*Insert: add the coming data xt ∈ DS to the structure.*/
c = 0
for i = 0 to L − 1 do

Add xt to DW W [i][Hi(xt)] and delete expired data points
c = c + 1

L
DW W [i][Hi(xt)].count

end for
μ = 1

n+1
(nμ + c)

n++
/*Query: determine whether xt ∈ DS is an outlier or not.*/
if there are expired data then

if c < αμ then
Report anomaly

end if
else

for i = 0 to L − 1 and j = 0 to 2K − 1 do
Get the count c of DW W [i][j]
if c < αμ then

Report anomaly
end if

end for
end if
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Let twi, i ∈ 0, 1, . . . , w − 1 be the left bound of every time interval, and tw0 be
the left bound time of the sliding window. Let pi1 be the maximum position
stored in the wave that is before twi, and pi2 be the minimum position stored
in the wave that is after or at twi. Let ri1 and ri2 be the counts of pi1 and pi2

respectively. So that ri := ri1+ri2−1
2 , i ∈ 0, 1, . . . , w − 1, and rank is the cur-

rent exact count. Then we use different time range to compute average count of
each time interval csi and csi = rank−ri

w−i . For example, as shown in Fig. 3, p11
is the maximum position before tw1 and p12 is the minimum position after tw1.
Counts of the two positions are 16 and 24 respectively, so that we estimate the
count at tw1 which is r1 = 16+24−1

2 = 20. The current count rank is 50, thus
cs1 = rank−r1

2 = 15, cs0 = rank−r0
3 = 16 and cs2 = rank−r2

1 = 16. Finally we get
c̄s = 15+16+16

3 = 15, and then the current variance σ2 = 2.

3.4 Efficient Update

Updating operation of our algorithm is to straightforward increment (or decre-
ment) the counters when a data point is added (or removed). We only need
to add or delete data points in the corresponding DW window and update the
global mean values μ and the mean variance DW W [i][Hi(x)].δ of current sliding
window. This operation does not need lots of distance computation to update
neighbor information like traditional kNN-based algorithms.

As a new data point xt ∈ DS arrives, we add it to the DW window at
corresponding index Hi(x) of each row so that every DW window keeps the
number of hits to this particular window. We get the neighbors count c of xt,
c = 1

L

∑L−1
i=0 DW W [i][Hi(x)]. Then we calculate average count of every time

interval csj , j ∈ [0, w − 1] so as to calculate the variance σ2. We compute the
mean count μ,

μ =
1

n + 1

(
nμ +

1
L

L−1∑
i=0

DW W [Hi(x)]

)
(3)

and the mean variance DW W [i][Hi(x)].δ of past part of DW W [i][Hi(x)],

DW W [i][Hi(x)].δ =
DW W [i][Hi(x)].count × DW W [i][Hi(x)].δ + σ2

DW W [i][Hi(x)].count + 1
. (4)

Deviation from the mean values indicate anomaly. It turns out that we can
dynamically update the mean values μ and DW W [i][Hi(x)].δ on the fly, as we
observe new coming data.
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Algorithm 2. Abnormal Distribution Detection.
Input: Data stream DS, Array parameters L and K, Number of time intervals w,
β
Hash Initialize: Generate L × K independent SRP hash functions
DW W = new DW[L][2K ]
As a data point xt ∈ DS comes
σ2 = 0
for i = 0 to L − 1 do

/*Insert: add the coming data xt ∈ DS to the structure.*/
Add xt to DW W [i][Hi(xt)] and delete expired data points
Get the average counts cs0, cs2, ..., csw−1 based on different time range
c̄s = 1

w

∑w−1
q=0 csq

σ2 = 1
w

∑w−1
q=0 (csq − c̄s)2

DW W [i][Hi(x)].δ = DW W [i][Hi(x)].count×DW W [i][Hi(x)].δ+σ2

DW W [i][Hi(x)].count

/*Query: determine whether there is a distribution anomaly or not.*/
if σ2 > βDW W [i][Hi(x)].δ then

Report anomaly
end if

end for

3.5 Anomaly Detection

Our algorithm serves for data streams which are high-speed and one-pass. We
use two types of queries to accurately conduct anomaly detection.

(1) kNN-based anomaly detection queries. kNN-based anomaly detection is a
global procedure. A global mean count μ is calculated to get the threshold
αμ. In inserting phase we compute current count and compare with the
threshold, and if a DW window satisfies c < αμ, all data in that window are
marked as outliers. The process is shown in Algorithm 1.

(2) Distribution anomaly detecion queries. Distribution anomaly detection
is a local procedure. Every DW window keeps a mean variance
DW W [i][Hi(x)].δ, and with it we get a threshold βDW W [i][Hi(x)].δ
of every DW window. In inserting phase we compute current variance
σ2 and compare with the threshold, if a DW window satisfies σ2 >
βDW W [i][Hi(x)].δ, there exists a distribution anomaly. The process is
shown in Algorithm2.

3.6 Complexity Analysis

Time Complexity: For a new coming data point, we need to compute KL
hashes, Lw DW counts and a variance. For random projections based LSH,
signed random projection is a special case. We can calculate KL LSH hashes of
the data vector, with dimensions d, in time O(d log d + KL). Using DW model,
each item is processed in O(1) worst case. At each time instant, it can provide
an estimate in O(1) time. Finding the time division nodes needs to traverse the
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(a) TAO (b) Shuttle (c) KDD-Cup99

Fig. 4. Time comparison.

(a) TAO (b) Shuttle (c) KDD-Cup99

Fig. 5. Memory comparison.

position queue of DW, the time is O( 1ε (log(εW ))), thus the total time we need
is O(d log d + 1

ε (log(εW )).

Space Complexity: It is presented in [14] that an ε-approximation DW window
for basic counting uses only O(1ε log2(εW )) memory bits of workspace, and here
we need 2K × L DW windows in the two-dimensional array. K and L are preset
constant parameters, and in all our experiments we use K = 15 and L = 50
for all the three datasets. However, it is unlikely that the DW windows will get
too many hits, the number of hits of all our experiments is no more than 3000.
Therefore, with these small constant values, the memory cost is extremely low,
and the required memory is O(1ε log2(εW )).

4 Experimental Evaluation

4.1 Datasets

We choose the following three real-world and synthetic datasets for our evalua-
tion: (1) TAO, (2) Statlog Shuttle and (3) KDD-Cup99 HTTP. The first dataset
contains 575,648 records with 3 attributes. It is available at Tropical Atmosphere
Ocean project [3]. The second dataset shuttle dataset [2] describes radiator posi-
tions in a NASA space shuttle with 9 attributes. It was designed for supervised
anomaly detection. In the original datasets, about 20% of the data are regarded
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as anomaly. The third dataset is KDD-Cup99 HTTP [1]. KDD-Cup99 HTTP
dataset is the largest benchmark for unsupervised anomaly detection evaluation.
It contains simulated normal and attack traffic on an IP level in a computer net-
work environment in order to test intrusion detection systems. We use HTTP
traffic only and also limit DoS traffic from the dataset. We sample part of it and
the features of “protocol” and “port” information is removed. There are totally
395,423 instances with 6,315 labeled anomalies.

4.2 Experimental Methodology

Our experiments are conducted in a 3.30 GHz core Windows machine with 8 GB
of RAM. Experiments focus on four aspects: (1) time efficiency; (2) memory
consumption; (3) recall and precision; (4) time sensitivity property. We use five
kNN-based anomaly detection algorithms to compare with our proposal. We
summarize the time and space complexities of each algorithm and provide com-
parison in Table 2. S denotes the slide size which characterizes the speed of the
data stream, k is the neighbor count threshold, and η denotes the fraction of
the window stored in micro-clusters in the MCOD algorithm. For fair evaluation
and reproducibility, we implement all the algorithms in Java.

Table 2. Comparison of kNN-based anomaly detection algorithms.

Algorithm Time complexity Space complexity

Our proposal O(d log d + 1
ε
(log(εW )) O( 1

ε
log2(εW ))

Exact-Storm O(W ) O(W )

Approx-Strom O(W 2/S) O(W 2/S + W )

AbstractC O(W log k) O(kW )

MCOD O(kW log k + (1 − η)W log((1 − η)W )) O(ηW + (1 − η)kW )

Thresh LEAP O(W 2 log S/S) O(W 2/S)

As shown in Fig. 4, when W increases, the CPU time for each algorithm increases
as well, due to a larger number of data points to be processed in every window.
We can see among the six algorithms kNN-TSAD is consistently efficient. The
reason is that adding and removing data points in kNN-TSAD are very effi-
cient as well as neighbor searching. It does not need to carry out range queries
and calculate distances to update neighbor information like other kNN-based
algorithms, thus kNN-TSAD saves much time.

Figure 5 reports the memory consumption of the evaluated algorithms when
varying the window size W . The memory requirement increases with W consis-
tently across different datasets. The five traditional methods store neighborhood
information for every data point in current window, which requires large amount
of memory. However, every item of the kNN-TSAD array (i.e. every DW win-
dow) is a neighborhood with no need to extra store neighborhood information.
Thus kNN-TSAD consumes much less memory compared with other methods.
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Exact-Storm, AbstractC, MCOD and Thresh LEAP calculate all the neigh-
bours to decide whether a data point is an outlier. They only differ in neigh-
borhood searching and storing, such that they get almost the same anomaly
detection result. So in terms of recall and precision we solely need to test on
one of them, we choose MCOD. Approx-Storm adapts exact-Storm with two
approximations to reduce the number of data points and the space for neigh-
bor stored in each window. We plot the recall and precision of kNN-TSAD,
MCOD and approx-Storm to make a comparison (see Figs. 6 and 7). We can see
approx-Storm gets the lowest recall and precision of the three. MCOD calcu-
late exact number of neighbors of every data points so that it gives the highest
recall and precision. kNN-TSAD is between the other two algorithms on dataset
Shuttle and KDD-Cup99. But on dataset TAO, as seen in Figs. 6(a) and 7(a),
kNN-TSAD gets the best anomaly detection result. This is because that part
of abnormal data in the TAO dataset appears in a concentrated way during
a period of time. In this case the number of neighbors exceeds the threshold
due to high frequency. kNN-TSAD divides the sliding window into several time
intervals and calculates the variance of their counts to monitor count distribu-
tion. Figure 8 shows the variation of variance over the time period when outliers
appear. Obviously between 3900 s and 6000 s, the variance experienced a process
of sharp increase and decrease indicating that there appears an anomaly. How-
ever this cannot be detected by other kNN-based algorithms, and this is why
kNN-TSAD get the highest recall and precision over TAO.

(a) TAO (b) Shuttle (c) KDD-Cup99

Fig. 6. Recall comparison.

(a) TAO (b) Shuttle (c) KDD-Cup99

Fig. 7. Precision comparison.
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To summarize, kNN-TSAD provides the highest performance over dataset
TAO whose anomaly detection depends on the data distribution, and this indi-
cates the time sensitive property of our approach. Moreover, kNN-TSAD cost
the least time and space over all datasets compared with other algorithms and
shows its excellent time and space efficiency. LSH and DW introduce calculation
error to the algorithm, so that the recall and precision are slightly lower than
MCOD which count exact NN number. But when compared with the approxi-
mate method Approx-Storm, the recall and precision are significantly higher.

5 Related Work

Anomaly detection has been studied for years in the communities of multidi-
mensional data sets [5] and the metric spaces [25]. Usually, similarity is used
to decide whether an object is an outlier or not. Extensively, the problem of
anomaly detection has been studied by the statistics community [17], where the
objects are modeled as a distribution, and outliers are those whose deviation
from this distribution is more than others. However, for high-dimensional data,
statistical techniques fail to model the distribution accurately. Additionally, for
large databases these techniques fail to scale well either.

Fig. 8. Variation of variance over time.

The problem of anomaly detection has been also addressed by data min-
ing communities. Techniques that focus on identifying Nearest Neighbors-based
patterns are popular in data mining and other related communities. k Near-
est Neighbors-based outliers were first introduced by Knorr and Ng [18]. Given
parameters k and R, an object is marked an outlier if there are less than k objects
in the input data set lying within distance R from it. However, this algorithm
operates in a static fashion. This means that if there happen some changes in
the data, the algorithm must be executed from scratch, leading to performance
degradation while updating frequently. For example in the streaming case, where
objects arrive in a streaming fashion [7].

In [6], an exact algorithm exact-Storm was proposed to efficiently detect out-
liers over data streams. It stores up to k preceding neighbors and the number
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of succeeding neighbors of x. x is an outlier if x has less than k neighbors. An
approximate algorithm approx-Storm is derived from the former one. Up to ρW
(0 < ρ < 1) safe inliers are preserved for each window, and it only store the
ratio between the number of x’s preceding neighbors which are safe inliers and
the number of safe inliers in the window. Such it can estimate the number of
x’s neighbours. Kontaki et al. [19] proposed the MCOD algorithm which aims to
reduce the number of distance computations. MCOD stores the neighboring data
points in micro-clusters, and a micro-cluster is composed of no less than k+1 data
points. Some data points may not fall into any micro-clusters, if they have less
than k neighbors, they are outliers. Cao et al. [8] proposed a framework named
LEAP which encompasses two general optimization principles. First, the “min-
imal probing” principle uses a lightweight probing operation to gather minimal
yet sufficient evidence for outlier detection. Second, the “lifespan-aware prioriti-
zation” principle leverages the temporal relationships among stream data points
to prioritize the processing order among them during the probing process. Yang
et al. [27] proposed an algorithm Abstract-C which maintains a compact sum-
mary of the neighbourships, namely the count of the neighbors for each data
point. Instead of storing a list of preceding neighbors or number of succeed-
ing neighbors for each data point x, a sequence is used to store the number of
neighbors in every window that x participates in.

kNN-based anomaly detection methods rely on neighbors search to decide
whether a data point is an outlier. And neighbors searching relies on calculating
the similarity between data points which is time consuming. In this paper, we use
LSH to measure similarity between data points. Data points with high similarity
are more likely to enter the same buckets after hashing. There is no need to
calculate the similarity of every two data points.

6 Conclusion

Anomaly detection applications need to provide real-time monitoring and the
capability of detecting anomalies over continuous data streams using limited
resources. In this paper, we leverage the features of LSH and DW and propose
a kNN-based time sensitive anomaly detection approach kNN-TSAD over data
streams. Our approach can detect abnormal data distribution over different time
intervals which cannot be found by traditional kNN-based methods. Moreover,
our approach demonstrates high time and space efficiency for solving the problem
of data stream processing. However, we can see from the experiments that the
recall and precision of our approach are slightly lower than exact algorithms in
some cases. In the future, we plan to design a more efficient monitoring strategy
to improve and optimize our approach to get higher recall and precision.
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