
Function and Pattern Extrapolation
with Product-Unit Networks

Babette Dellen1(B), Uwe Jaekel1, and Marcell Wolnitza1,2

1 Department of Mathematics and Technology, RheinAhrCampus Remagen,
University of Applied Sciences Koblenz, Joseph-Rovan-Allee 2,

53424 Remagen, Germany
2 Third Institute of Physics - Biophysics, Georg-August-University Göttingen,

Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
{dellen,jaekel,wolnitza}@hs-koblenz.de

Abstract. Neural networks are a popular method for function approx-
imation and data classification and have recently drawn much attention
because of the success of deep-learning strategies. Artificial neural net-
works are built from elementary units that generate a piecewise, often
almost linear approximation of the function or pattern. To improve the
extrapolation of nonlinear functions and patterns beyond the training
domain, we propose to augment the fundamental algebraic structure of
neural networks by a product unit that computes the product of its inputs
raised to the power of their weights. Linearly combining their outputs in
a weighted sum allows representing most nonlinear functions known in
calculus, including roots, fractions and approximations of power series.
We train the network using stochastic gradient descent. The enhanced
extrapolation capabilities of the network are demonstrated by compar-
ing the results for a function and pattern extrapolation task with those
obtained using the nonlinear support vector machine (SVM) and a stan-
dard neural network (standard NN). Convergence behavior of stochastic
gradient descent is discussed and the feasibility of the approach is demon-
strated in a real-world application in image segmentation.

Keywords: Product units · Neural network · Function extrapolation

1 Introduction

Complex machine learning problems that have been intractable in the past are
now being solved using deep neural networks performing fast computations on
parallel hardware [9–11,15,20]. Standard neural networks eventually perform a
piecewise, almost linear approximation of the function or pattern that is to be
learned [8,13,14,16,18,19,21]. This limits extrapolation of nonlinear relation-
ships into areas of the feature space that are not covered by the training data.
However, in many applications, extrapolating and making predictions from data
is exactly what is required. In the past, solutions of this problem have been
sought by nonlinearily transforming the data implicitly or explicitly into a higher
c© Springer Nature Switzerland AG 2019
J. M. F. Rodrigues et al. (Eds.): ICCS 2019, LNCS 11537, pp. 174–188, 2019.
https://doi.org/10.1007/978-3-030-22741-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22741-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-22741-8_13

Function and Pattern Extrapolation with Product-Unit Networks 175

dimensional space [5,17] or by adding nonlinear units to the network represent-
ing terms of higher-order polynomials [4]. The disadvantage is that either the
basis of this nonlinear space or a nonlinear kernel has to be provided beforehand.
Alternatively, it would have to be adapted to the problem at hand by consid-
ering an exponentially increasing repertoire of combinatorial combinations of
them, leading quickly to a computationally intractable situation.

In this paper, we follow a different approach: We expand the algebraic capa-
bilities of the neural network by integrating input multiplication at the opera-
tional level through product units [6,12], representing a computational multi-
plicatory analogon to the classical summation unit, the McCulloch Pitts neuron
(McP) [13] (see Fig. 1a–b). We combine the output of several product units by
means of a classical summation unit into a generalized algebraic operations net-
work (GAON) (see Fig. 1c), which then can be used to build larger networks (see
Fig. 1d).

Product units have been first introduced in the past to learn the higher-order
input combinations of nonlinear problems such as the parity problem [6,12].
However, for the rather simple networks investigated in these studies, difficulties
were arising when using backpropagation to train those networks. For example,
it was reported that the parity-8 problem could not be trained using backprop-
agation [12]. In that particular case, the neural network consisted of a single
product unit. It was assumed that the solution space for product units is too
convoluted, giving rise to many local minima. Weight initialization turned out to
be especially difficult for product-unit networks. This discouraging result prob-
ably explains why the idea of product-unit neural networks was not taken much
further in the following years.

Our work differs from those approaches in several ways: (i) We only use
positive inputs to avoid difficulties otherwise arising for exponents representing
roots. This is achieved by taking the absolute value of the input before feeding
it into the product unit. For problems containing negative values, we first feed
the input to a standard summation layer (which is trained together with the
nonlinear network) to transform the input data into the positive domain. (ii)
When solving classification problems, the exponents (or weights) of the product
unit can only take positive values. This avoids exploding terms for small input
data, but does not limit the applicability of the approach (see Discussion) (iii)
We consider only networks consisting of substructures of several product units,
i.e., the GAON (see Fig. 1c). This property allows a larger range of functions
to be described by the network. (iv) For the parity-8 problem and a real-world
labeling problem with mutliple classes we choose a network in which the output
of several GAONs is fed into a standard summation layer with softmax acti-
vation. Decision hypersurfaces emerge as intersections of GAON functions in
the data space. Different from standard neural networks, those hypersurfaces
can be highly nonlinear. (v) We explore especifically the extrapolation capabili-
ties of product-unit networks and compare them to the ones of standard neural
networks [8,13,14,16,21] and the nonlinear support-vector machine [5,17].

176 B. Dellen et al.

For the problems and the network architectures that we studied for this work,
we did not encounter problems with convergence. This is not in contradiction
with the studies described before [6,12]. Our network is larger and employs the
product units in a different way.

2 Methods

In this work, we propose to augment the algebraic structure of neural networks
by allowing generalized multiplicatory operations to take place at the level of
their basic computional units. Artificial neural networks consist of simple com-
putational units that receive inputs from many other units of the same kind
(see Fig. 1a) [8,13,18] and form a weighted sum of these inputs that is passed
through a threshold or other rectifying function to still other units of the same
kind, which process their inputs in like manner. This elementary unit is known
as the McCulloch Pitts neuron (McP) [13]. In the standard neural network,
these units are arranged in layers, and information is flowing only in a single
direction through the layers [19]. Learning is usually performed by adjusting the
weights through error backpropagation after definition of a suitable loss (or cost)
function [21]. Let x = (x1, . . . , xn) be an n-dimensional input vector that is sup-
plied to an McP unit; then the net output of this unit (prior to any rectification
step) is defined by osum(x) =

∑n
i=1 wixi, where the wi, i = 1, . . . , n are the

weights of the connections (see Fig. 1a). Solutions can be thought of as a division
of the data space by a hyperplane [18], with class regions corresponding to the
resulting half spaces. If one seeks to separate regions that are defined by highly
nonlinear boundaries, many hyperplanes are needed to carve the hypervolume
corresponding to the class-defining region. This can be achieved by arranging
many McP neurons in a layer and combining their outputs again using an McP
unit, representing the output unit of the resulting multilayer perceptron [19].

In contrast to the classical approach, we aim at separating the class-defining
regions by nonlinear hypersurfaces. To achieve this, we use product units [6,
12], similar to the McP unit, that perform algebraic multiplication instead of
summation (see Fig. 1b, left panel), yielding the output omult(x) =

∏n
i=1 xwi

i ,
where the wi, i = 1, . . . , n are real numbers, representing the weights of the
connections.

From a computational point of view, the operation performed by the multipli-
cation unit can be implemented through an equivalent network consisting of a bal-
anced arrangement of McP units with logarithmic and exponential activation func-
tions (see Fig. 1b, right panel). Switching from summation to multiplication can
be achieved by taking the logarithmic values of the inputs, i.e., log x1, . . . , log xn,
and applying the exponential function to the net output, yielding

omult(x) = exp

(
n∑

i=1

wi log xi

)

=
n∏

i=1

xwi
i .

Function and Pattern Extrapolation with Product-Unit Networks 177

Fig. 1. (a) Algebraic summation by the classical McCulloch-Pitts (McP) unit. (b) Left
panel: Algebraic multiplication unit: Inputs are raised to the power of their weights and
then multiplied, followed by an activation f∗ [6,12]. Right panel: Algebraic multipli-
cation (gray broken line) can be implemented by a surrogate network with alternating
log and exp activation functions. Here, the absolute values of the inputs are taken and
a small shift is added to avoid zero values in the input. (c) Generalized algebraic oper-
ations network (GAON) built from elementary summation and multiplication units.
(d) Larger network including a hidden layer of GAONs. The first dense layer allows
transforming the input data into a suitable domain. Several parallel GAONs implement
nonlinear input-output relations and their output is passed on a dense summation layer
performing softmax activiation for classification purposes.

178 B. Dellen et al.

Fig. 1. (continued)

To approximate nonlinear functions of the type

s(x1, ..., xn) =
m∑

k=1

wk

[
n∏

i=1

x
wk,i

i

]

,

we arrange m or more multiplication units in a layer (the hidden layer) and
connect it to an McP neuron, i.e., a summation unit (see Fig. 1c). This arrange-
ment defines the generalized algebraic operations network (GAON). We choose
the identity as activation function f∗ for the hidden multiplication units of the
GAON. Then, the net output of the hidden layer of the GAON is given by

oGAON(x) =
m∑

k=1

wk

[
n∏

i=1

x
wk,i

i

]

,

where the wk,i are weights from the input units to the hidden units of the
GAON, and the wk are the weights from the hidden units to the output node of
the GAON. The final output of the GAON is then ŷ := f (oGAON(x)), where f
is the activation function of the output unit. For function approximation tasks,
we choose f to be the identity. For classification tasks, we choose the activation
function to be f(b) = 1/(1 + e−b). This form of network not only allows repre-
sentation of any polynomial of n-input variables, but also fractions and roots.
Functions that can be described by power series (such as cosine and sine) could
potentially be approximated by the network if a large enough number of hidden
multiplication units is used. Training is performed using error backpropagation
[19,21]. The loss functions and further details are provided in the appendix.
Furthermore, we integrate GAON-units into larger networks (see Fig. 1d). First,
the input is fed into a dense layer of summation units with identity activation.
A bias input is included. Then, the output of the dense layer is processed by

Function and Pattern Extrapolation with Product-Unit Networks 179

a dense layer of parallel GAON-units. The GAON-layer output provides input
to another dense layer of summation units with softmax activation. We use this
network to solve multi-label classification tasks.

Fig. 2. Surface plot of the function y = x1
√
x2+x1.8

1 . Blue colors indicate the data used
for training of the methods, the red colors represent the test data used for evaluation.
Inset: The relative logarithmic values of the loss function for the regression task during
training are plotted for the standard NN and the GAON. (Color figure online)

3 Results

3.1 Function Regression

We first test the network of Fig. 1c having m = 2 hidden units on a function-
regression task. For this purpose, we generate a data set consisting of feature
vectors (x1, x2) and output values y = x1

√
x2 + x1.8

1 . This function is plotted in
Fig. 2. The input values of the training data are in the range of x1, x2 ∈ [0, 2],
while those of the test data cover the larger ranges x1, x2 ∈ [0, 4] . The respective
areas of the function are plotted in blue (training) and red (testing) color. In this
way we can evaluate the extrapolation capacity of the method. Using stochastic
gradient descent, the algorithm converges to a stable solution after less than
100 epochs, as seen in the inset of Fig. 2, where the relative logarithmic loss is
plotted as a function of the training epochs. We observed similar convergence
behavior for other choices of the input-output relationship. For comparison, we
use a standard neural network with one hidden layer of 10 hidden McP units
(standard NN). The standard NN is trained in the same way as the GAON on
the same training set (see appendix) [19]. As seen in Fig. 2, the value of the loss
function of the standard NN remains larger than that of the GAON even after
many epoch. We should note however that the learning rate of the GAON is

180 B. Dellen et al.

Fig. 3. Function-regression task. The function y(x1, x2) = x1
√
x2 +x1.8

1 is learned and
the predicted value is plotted against the true value for (a) the GAON (b), the standard
NN, (c) the SVM with RBF kernel, and (d) polynomial kernel. (Color figure online)

slower than that of the standard NN (by a factor of ≈ 0.1), because the GAON
is more sensitive to weight changes than the standard NN (see appendix). This
results in a larger number of iterations per epoch for the GAON.

We further compare the extrapolation capabilities of our method with those
of the standard NN and the nonlinear support-vector machine (SVM), the latter
for both polynomial and radial-basis-function kernels (RBF) [3,19]. The results
are shown in Fig. 3. To evaluate the results, we plot the predicted output ŷ
as a function of the true value y for the different methods. In case of perfect
agreement, the points should lie on a line, i.e., ŷ = y (shown in black). The
results are plotted as blue circles for interpolated values (i.e., values that lie
within the range of the training data) and as red dots for extrapolated values

Function and Pattern Extrapolation with Product-Unit Networks 181

(situated outside that range). It can be seen that the results from the GAON
lie close to the line of perfect agreement for both interpolated and extrapolated
predictions (Fig. 3a). For the standard NN (Fig. 3b) and the SVMs (Fig. 3c-d),
the extrapolated predictions mostly disagree with the observed values.

3.2 Classification

We further test the network on a data-classification task. Here, we use m = 10
hidden units for the GAON, but similar results are obtained for other choices
of m (not shown). In this task, vectors belonging to class +1 (TRUE) have
end points lying within an area of symmetrical shape, namely a circle, a rect-
angle, and a diamond, defined by the implicit function |x1|p + |x2|p ≤ rp with
p = 0.5, 2, 20, respectively. The vectors lying outside of the shape belong to
class 0 (FALSE). Since the shapes are symmetric, it suffices to train and test
the methods on the absolute values of the input data. To specifically test their
extrapolation capabilities, we train the methods only on partial shapes. The
respective region of feature space used for training is underlaid in gray color in
the plots (see Fig. 4). We repeat the training and testing process 100 times, vary-
ing randomly drawn training sets and computing the frequency with which the
data point is assigned to the class TRUE. The frequency of occurrence is color-
coded in shades of blue and presented together with the correct class boundaries
of the classification problem (black line). In Fig. 4a, the results from the GAON
are shown for the different shapes. In areas where the patterns have to be extrap-
olated, our method outperforms the standard NN (Fig. 4b) and the two SVMs
(Fig. 4c–d) for all cases.

Table 1. Classification results for the different methods and data sets. The number of
support vectors is averaged over 100 trials.

Method Accuracy [%]

Total Interpolation Extrapolation # Hidden Units/Support Vectors

p = 0.5

GAON 97.68 ± 0.12 99.64 ± 0.01 91.82 ± 0.48 10

Standard NN 97.66 ± 0.04 99.65 ± 0.01 91.69 ± 0.16 10

SVM (RBF) 94.65 ± 0.04 99.04 ± 0.02 81.49 ± 0.14 352.97 ± 7.23

SVM (Polynomial) 94.40 ± 0.37 99.43 ± 0.02 79.30 ± 1.46 8.49 ± 0.08

p = 2

GAON 98.80 ± 0.09 99.72 ± 0.01 96.04 ± 0.35 10

Standard NN 97.80 ± 0.11 99.72 ± 0.01 92.03 ± 0.44 10

SVM (RBF) 97.30 ± 0.03 99.50 ± 0.01 90.69 ± 0.13 239.13 ± 4.90

SVM (Polynomial) 98.22 ± 0.24 99.61 ± 0.02 94.03 ± 0.93 6.63 ± 0.09

p = 20

GAON 99.22 ± 0.02 99.29 ± 0.01 99.00 ± 0.06 10

Standard NN 98.46 ± 0.11 99.74 ± 0.01 94.63 ± 0.45 10

SVM (RBF) 97.76 ± 0.03 99.40 ± 0.02 92.83 ± 0.12 258.01 ± 5.64

SVM (Polynomial) 98.85 ± 0.05 99.44 ± 0.02 97.07 ± 0.16 9.42 ± 0.16

182 B. Dellen et al.

The accuracy of the classifications results obtained with the different meth-
ods for the three shapes is presented in Table 1. The GAON achieves higher
accuracies than the standard NN and the two SVMs in the extrapolation task
for p = 0.5, p = 2 and p = 20. The GAON outperforms all three methods in the
extrapolation task. In the interpolation task, the standard NN and the GAON
achieve comparable accuracies.

3.3 Real-World Application

As an illustrative example for a real-world application of product-unit networks,
we considered the problem of completing incomplete labelings of images as they
occur frequently in image-segmentation tasks. In Fig. 5a the image of a tobacco
plant during plant growth is shown [2]. Using graph-based image segmentation
[7] and removing segments below a critical size threshold, an imcomplete labeling
of the image is obtained (see Fig. 5b). Areas without label are depicted in black
color. The number of labels corresponds to the number of prominent leaves in
the images plus the background. The leaf pointing north is particularly poorly
segmented by the method. Completing the labeling of the image can be posed as
a classification task, where the pixel coordinates and their respective class labels
ranging from 0 to 5 provide the input training data for the classifier. Pixels, for
which no label could be assigned, are not a part of the training data.

We use these data to train the product-unit network shown in Fig. 1d. The
two-dimensional input data, i.e., the pixel coordinates, provide the input to a
dense layer consisting of two summing units without activation. A bias is pro-
vided to each of the summing units to allow shifts of the data. The output of
the two summing units is fed to a layer of six GAON-units. The output of the
GAON-layer then is passed on to another layer of six summing units with softmax
activation. For the loss function, Tensorflow’s sparse categorical crossentropy is
used [1]. Using gradient descent with batches of 40 data points, we obtained an
accuracy of 0.9979 after 2000 epochs. We use the neural network to extrapo-
late class labels into the previously unlabeled regions and obtain the completed
segmentation shown in Fig. 5c. The segments now assume the nonlinear, approx-
imately elliptic shape of the leaves.

4 Discussion

In this work, we augmented the algebraic structure of neural networks with a
multiplicatory elementary unit [6,12] that computes the products of its inputs
raised to the power of their weights, representing the multiplicatory analogon to
the classical McP-neuron. To evaluate the extrapolation capabilities of the net-
work, we used both a function-extrapolation task and a pattern-classification-
extrapolation task. We could demonstrate that the GAON outperforms the stan-
dard NN and the nonlinear support vector machine for the given tasks. We
presume that the gain in performance originates from the property that the

Function and Pattern Extrapolation with Product-Unit Networks 183

Fig. 4. Classification results for (a) the GAON, (b) the standard NN, (c) the SVM
with RBF kernel, and (d) polynomial kernel for the different data sets. The frequency
of occurrence of the class label TRUE is color coded in shades of blue for 100 trials
and shown together with the correct class boundaries (black line).

184 B. Dellen et al.

Fig. 5. (a) Grayscale image of a tobacco plant [2]. (b) Incomplete segmentation
obtained with a graph-based image-segmentation method [7]. (c) Completed segmen-
tation obtained with a product-unit network trained with the incomplete-segmentation
result (for better visualization of the results, the color code of the segment labels has
been slightly modified).

Function and Pattern Extrapolation with Product-Unit Networks 185

multiplier network can learn arbitrary functions of the form

m∑

k=1

wk

n∏

i=1

x
wk,i

i ,

being generated by the outputs of the hidden units
∏n

i=1 x
wk,i

i , allowing extrap-
olation into unknown domains. The net outputs of the hidden units of the stan-
dard NN are linear functions and as such do not represent a generating set,
hindering extrapolation of the pattern. The nonlinear support vectors machine
is constrained by the choice of the kernel function; the polynomial kernel SVM
performs excellently for the circular shape in our example, but in this case the
kernel represents an almost perfect fit for the characteristics of the pattern.

Our proposed network is structurally simple and the training straightforward.
The use of adjustable weights that are appearing as exponents of the inputs in
the network allows the GAON to learn arbitrary functions from the data. This
property makes it fundamentally different from polynomial classifiers, where a
fixed set of predefined polynomial basis functions is chosen for the discrimination
function and combined in a weighted sum [19]. Related to this, Bayesian neural
networks employing higher-order polynomials [4] have been proposed in the past,
for which however similar restrictions apply.

We restricted ourselves to positive weights in the data classification task.
This prevents failure when input values are near zero. However, this does not
limit the applicability of the method by any means. We explain this giving an
example: The inequality 1

x1
+ x2

2 ≤ 1 contains a negative exponent, but it can
be recast by multiplying both sides with x1 (given that we work with positive
input data only, which can always be achieved by shifting). This yields the new
inequality 1 + x1x

2
2 ≤ x1, or x1x

2
2 − x1 ≤ −1, which still represents the same

classification problem as the original inequality. Hence, there exists an infinite
set of discrimination functions with positive exponents that describe the clas-
sification problem. More than that, we suspect that this property allows the
network to escape local minima by moving toward a more advantageous dis-
criminant function, securing convergence of the method. This conjecture might
further explain why the multiplier network is robust to changes in the number of
hidden units when solving classification tasks. However, when solving regression
tasks, extrapolation performance depends on the number of hidden units, and we
observed that extrapolation improves when the number of hidden units matches
the number of basis functions of the function space required for properly describ-
ing the input-output relationship. In all cases our method leads to a very sparse
representation of functions and patterns that allows, unlike nonlinear SVMs, a
direct interpretation of its components in terms of mulitplicative relationships.

We further demonstrated that product units can be intergrated in larger
networks (see Fig. 1d) using the framework Tensorflow [1] by extrapolating labels
in image segmentation into unlabeled regions (see Fig. 5). This is particular useful
when the shapes of the objects that are to be segmented are unknown prior to
the task. Our approach can be applied to other labeling problems as well, e.g.,
the assignment of disparity labels to pixels in stereo vision.

186 B. Dellen et al.

To address concerns regarding convergence of gradient-descent training, we
revisited the parity-8 problems [12] and trained the same network that was used
to solve the image-segmenation task (see Fig. 1d) for the parity-8 problem. The
method converged to solutions with accuracy 1. The authors of [12] searched
for a single set of weights that would classify the parity-8 data correctly by
considering a network that basically consisted of a single product unit only. In
a larger product-unit network, there presumably exists more than one weight
combination that classifies the data correcty. We reckon that this has an impact
on convergence.

Acknowledgements. We thank John W. Clark for his help in improving the
manuscript through his comments. B.D. and U.J. contributed in equal parts to the
ideation, design and implementation of the method. M.W. contributed to the imple-
mentation, integration and the training/testing of the method.

A Appendix

All methods are implemented in MATLAB. We use a training set size of 1000,
drawn uniformly from randomly distributed values in the range 0, . . . ,+2 for
the regression task and −2, . . . ,+2 for the classification task. Every input is
mapped onto the first quadrant by using only absolute values. To test the inter-
and extrapolation capabilities of our network, we require the examples of the
training set to satisfy the following condition: |x1| > 0.5|x2|. This defines our
interpolation region (represented as the white space in Fig. 4). The examples of
the test set are allowed to take on any value in the range indicated above. We
use self-coded functions for the GAON and standard NN and built-in functions
from Matlab for the SVMs.

We also implemented the GAON in Python within the Keras-API of the
Tensorflow library [1] to enable fast computation with graphics processing units
(GPUs) and make use of its modularity. We used this framework to build the
larger product-unit network used for multi-label classification.

A.1 GAON

For training in function-regression tasks, we use
∑N

j=1(ŷj −yj)2 as loss function,
where yj is the true value corresponding to the input vector xj and ŷj the
predicted value. For network training in classifications tasks, we use the cross
entropy ε = −∑N

j=1[yj log ŷj + (1 − yj) log (1 − ŷj)] as loss function. N is the
number of training vectors.

For our runs with the GAON we use a constant learning rate of lr = 10−3

and train the network for 10000 epochs with stochastic gradient descent, using
one training example per iteration. One epoch is defined as a complete pro-
cess over the whole training set (corresponding to 1000 iterations in our setup).
The initial values for the weights in the first layer are drawn randomly from a

Function and Pattern Extrapolation with Product-Unit Networks 187

uniform distribution, whereas those of the second layer are normally distributed.
Additionally we restrict the weights of the first layer to be only positive in the
training process (see discussion).

For the results of the classifications (Fig. 4 and Table 1) we repeat the whole
training and testing process 100 times with varying training sets and present the
mean along with the standard error of the mean.

A.2 Standard Neural Network

For our runs with the standard neural network we use a constant learning rate
of lr = 10−2. We train the network with stochastic gradient descent for 10000
epochs with one example per iteration. The initial values for the weights are
drawn in the same as in the GAON method, but here we do not restrict the
weights in any layer. We used the same loss functions as for the GAON.

A.3 Support Vector Machine

For our runs with the SVMs we use the Matlab-function fitrsvm for the regres-
sion and fitcsvm for the classification task. Our models include standardization
(centering and devision by standard deviation) of the input and an automatic
selection of the scaling factor by a heuristic procedure. The polynomial SVM
has an order of four.

References

1. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/

2. Agostini, A., Alenyà, G., Fischbach, A., Scharr, H., Wörgötter, F., Torras, C.:
A cognitive architecture for automatic gardening. Comput. Electron. Agric. 138,
69–79 (2017)

3. Bose, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers.
In: Proceedings of the 5th Annual Workshop on Computational Learning Theory,
pp. 144–152 (1992)

4. Clark, J.W., Gernoth, K.A., Dittmar, S., Ristig, M.L.: Higher-order probabilistic
perceptrons as bayesian inference engines. Phys. Rev. E 59, 6161–6174 (1999)

5. Cortes, C., Vapnik, V.: Support vector network. Mach. Learn. 20, 273–297 (1995)
6. Durbin, R., Rumelhart, D.E.: Product units: a computationally powerful and bio-

logically plausible extension to backpropagation networks. Neural Comput. 1(1),
133–142 (1989)

7. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
Int. J. Comput. Vis. 59(2), 167–181 (2004)

8. Hubel, D., Wiesel, T.: Receptive fields, binocular interaction and functional archi-
tecture in the cat’s visual cortex. J. Physiol. Lond. 160, 54–106 (1962)

9. Husain, F., Dellen, B., Torras, C.: Scene Understanding Using Deep Learning.
Academic Press, San Francisco (2017)

10. Husain, F., Schulz, H., Dellen, B., Torras, C., Behnke, S.: Combining semantic and
geometric features for object class segmentation of indoor scenes. IEEE Robot.
Autom. Lett. 2, 49–55 (2017)

https://www.tensorflow.org/

188 B. Dellen et al.

11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
12. Leerink, L.R., Giles, C.L., Horne, B.G., Jabri, M.A.: Learning with product units.

Adv. Neural Inf. Process. Syst. 7, 537 (1995)
13. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous

activity. Bull. Math. Biophys. 5, 115–133 (1943)
14. Minsky, M.L., Papert, S.: Perceptrons : An Introduction to Computational Geom-

etry. MIT press, Cambridge (1988)
15. Rajaraman, S.K., Antani, S., Candemir, S., Xue, Z., Kohli, M., Thoma, G.: Com-

paring deep learning models for population screening using chest radiography. SPIE
Med. Imaging 10575E, 1–11 (2018)

16. Rosenblatt, F.: The perceptron - a probabilistic model for information storage and
organization in the brain. Psychol. Rev. 65, 386 (1958)

17. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

18. Theodoridis, S., Koutroumbas, K.: Linear Classifiers, 4th edn. Academic Press,
Boston (2009)

19. Theodoridis, S., Koutroumbas, K.: Nonlinear Classifiers, 4th edn. Academic Press,
Boston (2009)

20. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529, 484–489 (2016)

21. Werbos, P.J.: Beyond regression : new tools for prediction and analysis in the
behavioral sciences. Harward University (1974)

	Function and Pattern Extrapolation with Product-Unit Networks
	1 Introduction
	2 Methods
	3 Results
	3.1 Function Regression
	3.2 Classification
	3.3 Real-World Application

	4 Discussion
	A Appendix
	A.1 GAON
	A.2 Standard Neural Network
	A.3 Support Vector Machine

	References

