
Immersed Boundary Method Halo
Exchange in a Hemodynamics Application

John Gounley1,2(B), Erik W. Draeger3, and Amanda Randles1

1 Department of Biomedical Engineering, Duke University, Durham, NC, USA
amanda.randles@duke.edu

2 Computational Science and Engineering Division,
Oak Ridge National Laboratory, Oak Ridge, TN, USA

gounleyjp@ornl.gov
3 Center for Applied Scientific Computing,

Lawrence Livermore National Laboratory, Livermore, CA, USA
draeger1@llnl.gov

Abstract. In recent years, highly parallelized simulations of blood flow
resolving individual blood cells have been demonstrated. Simulating such
dense suspensions of deformable particles in flow often involves a parti-
tioned fluid-structure interaction (FSI) algorithm, with separate solvers
for Eulerian fluid and Lagrangian cell grids, plus a solver - e.g., immersed
boundary method - for their interaction. Managing data motion in paral-
lel FSI implementations is increasingly important, particularly for inho-
mogeneous systems like vascular geometries. In this study, we evaluate
the influence of Eulerian and Lagrangian halo exchanges on efficiency and
scalability of a partitioned FSI algorithm for blood flow. We describe an
MPI+OpenMP implementation of the immersed boundary method cou-
pled with lattice Boltzmann and finite element methods. We consider
how communication and recomputation costs influence the optimiza-
tion of halo exchanges with respect to three factors: immersed boundary
interaction distance, cell suspension density, and relative fluid/cell solver
costs.

Keywords: Red blood cell · Immersed boundary method ·
Parallel computing

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-
AC05-00OR22725 with the U.S. Department of Energy. The United States Government
retains and the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this manuscript, or allow others to
do so, for United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

c© Springer Nature Switzerland AG 2019
J. M. F. Rodrigues et al. (Eds.): ICCS 2019, LNCS 11536, pp. 441–455, 2019.
https://doi.org/10.1007/978-3-030-22734-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22734-0_32&domain=pdf
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1007/978-3-030-22734-0_32

442 J. Gounley et al.

1 Introduction

High-resolution computational simulations of blood flow have been employed
to study biomedical problems such as malaria [7], thrombosis [28], and sickle-
cell anemia [16]. However, as simulations are scaled from microvasculature to
mesovasculature, the problem size demands efficient and scalable parallel fluid-
structure interaction algorithms. As reviewed by [12], one of the most popu-
lar fluid-structure interaction algorithms in this space is the immersed bound-
ary (IB) method. The IB method is often implemented as a partitioned fluid-
structure interaction scheme, with separate solvers for the fluid and cells. Char-
acterized by a time-invariant Eulerian fluid lattice and body-fitted Lagrangian
meshes for the cells, the IB method transfers data between the fluid and cell
grids using smoothed discrete delta functions [17,20]. While maintaining sepa-
rate Eulerian and Lagrangian grids provides distinct advatanges (e.g., avoiding
remeshing), it also complicates parallelization in a distributed-memory environ-
ment. In this study, we introduce a scalable IB framework for a hemodynam-
ics application and explore how model parameters influence the cost of halo
exchange and recomputation in the IB method.

Parallelization of the IB method for blood flow has several components.
Depending on the method, the fluid solver requires at least a halo exchange. Like-
wise, the movement of blood cells across MPI domains must also be accounted
for. Additionally, due to the diffusivity of the IB interface, the IB method inter-
action of the cell and fluid grids must also be parallelized. This halo exchange for
the IB method is particularly interesting: because the IB method can transfer
data between the fluid and cell grids, these Lagrangian and Eulerian data are
effectively equivalent. Consequently, in principle, either could be communicated
on the halo. For notational simplicity, we will denote as Lagrangian and Eulerian
communication the transfer of the eponymous types of data.

Implementations of the IB method with distributed-memory parallelism orig-
inate with the work of [25] and [8]. While differences necessarily exist between
continuous and direct forcing immersed boundary methods, the general chal-
lenges related to Lagrangian and Eulerian grids remain similar. In these and
subsequent frameworks, the domain decomposition and requisite communica-
tion of IB-related data take various forms. To reduce or eliminate the movement
of IB structures between tasks, [8] and [26] use separate domain decomposi-
tions for Eulerian and Lagrangian data and perform Eulerian communication of
IB-related data. In contrast, the majority of implementations have used coin-
cident domain decompositions for the fluid and structure. These schemes typi-
cally employ Lagrangian communication on a halo region (e.g., [18,24,25,27,29]).
Eulerian communication over a halo region was judged prohibitively expensive
for coincident domain decompositions [6]. More recently, a hybrid parallelization
approach has improved load balance of the IB-related workload [19].

Intuitively, the optimal communication arrangement is expected to depend
on particular details of the physical system being modeled. For instance, in the
implementations discussed above, the IB structures being considered range from
a suspension of point particles to a set of small cells to a single large mem-
brane. Algorithmic choices would also seem to play a role: dynamic Lagrangian

Immersed Boundary Method Halo Exchange in a Hemodynamics Application 443

communication is inherently more complex than static Eulerian communication,
but this could be offset by smaller message sizes. Further, other aspects of the
simulations may already demand at least a basic level of Lagrangian or Eulerian
communication. Moreover, choices about communicating Eulerian or Lagrangian
data have implications for which aspects of the algorithm are fully parallelized
versus involving some re-computation on overlap regions.

In this study, we investigate the relative parallel efficiency and scaling of
Eulerian and Lagrangian communication frameworks applied to blood flow with
coincident fluid and structural domain decompositions. Simulations are con-
ducted with HARVEY, a parallel hemodynamics solver for flows in complex
vascular geometries [22]. We describe an MPI+OpenMP implementation of the
lattice Boltzmann and immersed boundary methods, coupled with finite ele-
ment models for the cell mechanics. We explore the relative costs of Eulerian
and Lagrangian communication for the force which is generated by the cell and
spread onto the surrounding fluid. We investigate the dependence of the commu-
nication and recomputation costs on three factors: the support of the immersed
boundary delta function, the density of the cell suspension, and the relative cost
of the finite element method.

2 Methods

HARVEY performs the fluid-structure interaction with the immersed boundary
method, coupling the lattice Boltzmann method for the fluid flow with a finite
element method representing blood cells. An early version of this framework
was presented in [9]. The present section extends that work by generalizing
the IB method implementation and by discussing the parallelization schemes in
depth. In the subsequent equations, we employ the convention of using lower-
and upper-case letters for Eulerian and Lagrangian quantities, respectively.

2.1 Lattice Boltzmann Method for Fluid Flow

The Navier-Stokes equations governing continuum-level fluid flow are solved with
the lattice Boltzmann method (LBM), which represents the fluid with a distri-
bution function f of fictitious particles moving about a fixed Cartesian lattice
[4]. The quantity fi represents the component of the distribution with discrete
velocity ci. For the D3Q19 velocity discretization used here, 18 of the 19 velocity
vectors ci point to nearest-neighbor lattice positions and remaining stationary
velocity points to the same lattice position. The lattice Boltzmann equation for
a fluid subject to an external force takes the form

fi(x + ci, t + 1) = (1 − 1
τ

)fi(x, t) +
1
τ

feq
i (x, t) + hi(x, t) (1)

for lattice position x, timestep t, external force distribution hi, equilibrium dis-
tribution feq

i , and relaxation time τ . Without loss of generality, we assume the
LBM spatial (dx) and temporal (dt) steps equal to unity.

444 J. Gounley et al.

The external force field g(x, t) is incorporated into the collision kernel – the
right-hand side of Eq. 1 – in two steps [10]. First, the moments of the distribution
function, density ρ and momentum ρv, are computed by the sums:

ρ =
19∑

i=1

fi ρv =
19∑

i=1

cifi +
1
2
g. (2)

From these moments, the equilibrium Maxwell-Boltzmann distribution is
approximated as

feq
i (x, t) = ωiρ

(
1 +

ci · v
c2s

+
vv : (cici − c2sI)

2c4s

)
(3)

for the standard D3Q19 lattice weights ωi and lattice speed of sound c2s = 1
3 .

Second, the external force g is converted into the force distribution hi,

hi =
(
1 − 1

2τ

)
ωi

[ci − v
c2s

+
ci · v
c4s

ci

]
· g. (4)

The lattice Boltzmann implementation in HARVEY is targeted at perform-
ing highly parallel simulations in sparse vascular geometries. To deal efficiently
with this sparsity, the fluid points are indirectly addressed and an adjacency list
for the LBM streaming operation is computed during setup. While the reference
implementation of LBM stores two copies of the distribution function, we imple-
ment the AA scheme in HARVEY, which stores a single copy of the distribution
function [1]. Other aspects of the lattice Boltzmann implementation, including
grid generation and boundary conditions, may be found in previous work [9,21].

2.2 Finite Element Methods for Deformable Cells

Each cell is described by a fluid-filled triangulated mesh, derived from successive
refinements of an icosahedron. Red blood cell membrane models include physical
properties such as elasticity, bending stiffness, and surface viscosity [11]. For
the sake of simplicity in this study, we model the cell surface as a hyperelastic
membrane using a Skalak constitutive law. The elastic energy W is computed as

W =
G

4

(
I21 + 2I1 − 2I2

)
+

C

4
I22 (5)

for strain invariants I1, I2, and for shear and dilational elastic modul G and
C, respectively [14]. We consider two common continuum-level finite element
methods for the structural mechanics of deformable cells in blood flow. First, by
assuming the displacement gradient tensor is constant over a given triangular
element, the forces arising from the deformation of the triangular element can be
computed using only the three vertices of the triangle [23]. This method is simple,
efficient, and widely implemented but may be limited with respect to stability
and extensibility. Second, subdivision elements have been used to develop more
stable and extensible models, but require using a ‘one-ring’ of 12 vertices to
compute the strain on a triangular element [3,5,15]. Compared with the simple
model, the subdivision model is much more computationally expensive.

Immersed Boundary Method Halo Exchange in a Hemodynamics Application 445

2.3 Immersed Boundary Method for Fluid-Structure Interaction

The Eulerian fluid lattice is coupled with the Lagrangian cell meshes by the
immersed boundary method (IB) using a standard continuous forcing approach.
Developed to model blood flow in the heart, the IB method uses discrete delta
functions δ to transfer simulation data between the two grids [20]. Three com-
putational kernels are involved in each timestep of the IB method: interpolation,
updating, and spreading. At a given timestep t, the velocity V of the cell vertex
located at X is interpolated from the surrounding fluid lattice positions x:

V(X, t) =
∑

x

v(x, t) δ(x − X(t)). (6)

The position X of the cell vertices is updated using a forward Euler method

X(t + 1) = X(t) + V(t), (7)

by the no-slip condition. With the cell having been translated and deformed by
the fluid, the elastic response to cell deformation is computed according to either
method discussed in the previous section. The Lagrangian force G is ‘spread’
from cell vertices onto the surrounding fluid lattice positions,

g(x, t) =
∑

x

G(X, t) δ(x − X(t)) (8)

which defines the external force g(x, t) acting on the fluid.
The support of the delta function, which we denoted by the symbol φ, deter-

mines the interaction distance between the Eulerian and Lagrangian grids. Sup-
port is measured by the number of Eulerian grid points in a given physical
dimension which may influence or be influenced by a given IB point. For a given
vertex, the delta function is computed for each dimension at each fluid point
within the finite support, using the single-dimension distance r ≥ 0 from the
fluid point to the IB vertex. This corresponds to 8, 27, and 64 fluid points per
IB vertex for delta functions with 2, 3, and 4 point support, respectively. The
support of the delta function influences on simulation stability and accuracy,
with certain supports being favorable for particular applications [14,20]. We
consider three delta functions, where the index i indicates whether the distance
r ≥ 0 is taken in the x, y, or z direction.

Delta function support φ = 2:

δi(r) =

{
1 − r if r ≤ 1
0 if r > 1

(9)

Delta function support φ = 3:

δi(r) =

⎧
⎪⎪⎨

⎪⎪⎩

1
3

(
1 +

√
1 − 3r2

)
if r ≤ 1

2

1
6

(
5 − 3r −√−2 + 6r − 3r2

)
if 1

2 < r ≤ 3
2

0 if r > 3
2

(10)

446 J. Gounley et al.

Delta function support φ = 4:

δi(r) =

{
1
4

(
1 + cos(π

2 r)
)

if r ≤ 2

0 if r > 2
(11)

We note that computational expense of the interpolation and spreading opera-
tions varies with the number of vertices, the complexity of the delta function and
the number of fluid point within the support. The latter factor is exacerbated
when the fluid points are not directly addressed, such as the indirect addressing
in this study. Unlike the static adjacency list for LBM streaming, the dynamic
set of fluid points falling within the support of a given IB vertex varies in time.
Consequently, a lookup operation must be performed for each fluid point in the
support to identify the memory location for the Eulerian velocity or force data
with which it is associated. As the indirect addressing scheme is not random but
has limited local patterns, it can be advantageous for larger φ to guess-and-check
a subset of lookups and, if successful, interpolate between them.

2.4 General Parallelization Framework

The simulation domain is spatially decomposed among tasks into rectangular
cuboid bounding boxes. Forming a partition of the vascular geometry, the bound-
ing boxes for the Eulerian fluid domain and Lagrangian cell domain are coin-
cident. The boundary between two bounding boxes is located exactly halfway
between the last fluid point belonging to each bounding box. Based on [18],
communication between tasks is governed by a hierarchy of overlapping halos
on which Lagrangian or Eulerian communication is performed. When the halo
of a task overlaps with the bounding box of another task, the latter task is con-
sidered a ‘neighbor’ of the former task with respect to this halo and vice versa.
For linguistic convenience, fluid points and IB vertices which are and are not
located within the task bounding box will be denoted as ‘owned’ and ‘shared’,
respectively, from the task’s perspective. Analogously, a cell is considered to be
owned or shared based on the position of the unweighted average of its vertices.
An example of the bounding box decomposition in shown in Fig. 1.

Fig. 1. Example of domain decomposition, with cells coloured by the bounding box to
which they below. Dotted lines indicate halo for the green task.

Immersed Boundary Method Halo Exchange in a Hemodynamics Application 447

Fluid Halo: A halo of fluid points is placed around the task bounding box, with
a two-fold purpose. First, a single point-wide halo may be used to communicate
LBM distribution components which will stream into the bounding box in the
subsequent timestep. Second, by setting the halo width to �φ

2 �, the IB interpo-
lation operation may be computed locally for all owned vertices. As δi(32) = 0
in Eq. 10, we have a single point-wide fluid halo for φ = 2 and 3, but a two
point-wide fluid halo for φ = 4.

Cell Halo: A halo for cells is placed about the task bounding box in order to
facilitate IB-related computation. In contrast to [18], a shared cell in a halo is
a complete and fully updated copy of the cell. The width of this halo is set to
�φ
2 � + r, in which r is the largest cell radius expected in the simulation. This

width ensures that all vertices which may spread a force onto a fluid point owned
by the task are shared with the task. That is, if forces were known on cells within
the halo, spreading may be computed locally for all owned fluid points.

2.5 Lagrangian and Eulerian Communication for IB Spreading

Algorithm 1 shows the basic coupling of fluid solver and finite element solver
with the immersed boundary method for a serial code. To explore the options
of communicating Eulerian or Lagrangian data, we focus on the parallelization
of the last two steps: the finite element method (FEM) to compute forces at
vertices of the cells and the IB spreading operation, in which forces defined at
cell vertices are spread onto the fluid lattice. Two general approaches are possible
for handling the communication at task boundaries.

Algorithm 1. FSI workflow
1 LBM: Collision and streaming
2 IB: Interpolate velocity of cell vertices
3 IB: Update position of cell vertices
4 FEM: Compute forces on cell vertices
5 IB: Spread forces onto fluid domain

First, Lagrangian data – the forces defined at cell vertices – can be commu-
nicated, as depicted in Fig. 2. This allows for the finite element method to be
computed in a conservative manner. In our implementation, tasks run the finite
element method over cells which they own. Forces defined at vertices within
another task’s halo are then communicated, which allows each task to perform
the spreading operation locally. However, recomputation occurs when multiple
tasks perform the spreading operation for vertices located near task boundaries.

Second, Eulerian data – the forces defined on the fluid grid – can be com-
municated instead, as depicted in Fig. 3. We compute the forces at all owned
vertices, which leads to recomputation for finite elements which include vertices
owned by two tasks. The forces of a task’s owned vertices are spread onto owned

448 J. Gounley et al.

Fig. 2. Lagrangian communication for the IB spreading operation for φ = 2. First
(left), the Lagrangian force is computed on the owned IB vertex (black circle) by the
upper task and communicated to the same vertex (yellow circle) on the lower task.
Second (right), the IB spreading operation (red box) is performed for this vertex by
both tasks. Solid blue lines indicate fluid grid points owned by the task, dash blue line
denotes fluid points on the halo, and the dotted line represents the boundary between
tasks. (Color figure online)

Fig. 3. Eulerian communication for the IB spreading operation for φ = 2. First (left),
the upper task computes the Lagrangian force on the owned vertex (black circle) and
perform the IB spreading operation (red box). Second (right), the upper task commu-
nicates the Eulerian forces to the same fluid grid points (yellow box) on the lower task.
Solid blue lines indicate fluid grid points owned by the task, dash blue line denotes
fluid points on the halo, and the dotted line represents the boundary between tasks.
(Color figure online)

and halo fluid points, which is a conservative operation. Finally, a halo exchange
is performed for forces on fluid points adjacent to and located on the halo.

3 Results

3.1 Simulation Setup

The fluid domain is assumed to be cylindrical, representing an idealized blood
vessel. A variety of approaches exist for generating dense suspensions of red blood
cells or other suspended bodies. In the context of blood flow, the density of the
suspension – the volume percentage of red blood cells in blood – is referred
to as the hematocrit (Hct) level. Iterative schemes for packing rigid [30] and
deformable [13] red blood cells have been demonstrated to achieve physiological

Immersed Boundary Method Halo Exchange in a Hemodynamics Application 449

hematocrit levels. To avoid the additional startup and parallelization cost of
such a scheme, we perform dense packing of minimally enclosing ellipsoids in
a cubic geometry using an external library [2]. The cubic arrangement is used
to periodically ‘tile’ the vascular geometry during preprocessing and red blood
cells meshes are initialized within ellipsoids. A warmup period is necessarily
required before a well-developed flow is realized but other schemes incur similar
costs [30]. In subsequent simulations, we completely tile the geometry with a
dense red blood cell suspension and, if necessary, randomly remove cells until
the desired hematocrit is achieved. A small example of a dense cell suspension
in a vascular geometry is shown in Fig. 4.

Fig. 4. Example image of red blood cells at a bifurcation in a vascular geometry. Cells
are colored by vertex velocity. (Color figure online)

Runs are conducted on two different architectures, Intel Broadwell and IBM
Blue Gene/Q. Part of the Duke Computer Cluster (DCC), the Broadwell system
is a cluster with two Intel Xeon E5-2699 v4 processors per node and 56Gb/s
Mellanox Infiniband interconnect, using 32 MPI ranks per node and 2 OpenMP
threads per rank. The LLNL Blue Gene/Q system Vulcan has a Power BQC 16C
on each node and custom interconnect, and is used with 16 MPI ranks and 4
OpenMP threads per rank. In the subsequent sections, we investigate single node
performance and scaling across multiple nodes. For single node performance on
Intel, we study a cylindrical geometry with a radius of 197µm, which includes
approximately 900,000 red blood cells when packed at 43% hematocrit. Due to
the limited memory available on a Blue Gene/Q node, we use a scaled cylinder
with a radius of 99µm and approximately 100,000 red blood cells. For weak
scaling across nodes, we consider progressively larger cylinders which maintain
the same number of red blood cells per node when densely packed.

450 J. Gounley et al.

3.2 Comparing Lagrangian and Eulerian Communication On-Node

In this section, we compare the efficiency of Lagrangian and Eulerian communi-
cation methods from Sect. 2.5 for performing the IB spreading operation. Accord-
ingly, we focus on the three components of the simulation related to this task
(the finite element model, IB spreading itself, and pertinent communication) and
consider the runtime of these three components, rather than the runtime of the
entire simulation.

An important difference between the two communication schemes is the
amount of data to be transferred. For the Lagrangian scheme, communication
size will be dependent by the number of cells located near to task boundaries.
Assuming a non-pathological distribution of cells, this will vary with the density
of cells in the flow or Hct. In contrast, the Eulerian scheme will have a uniform
communication size independent of Hct. Further, the communication pattern for
the Eulerian scheme is time-independent, while bookkeeping may be necessary
to update the Lagrangian scheme as cells move and deform. In Fig. 5, we observe
the intuitive result: runtime for Eulerian communication time is constant while
the Lagrangian communication time varies directly with hematocrit.

Fig. 5. Communication time for Lagrangian and Eulerian schemes for a DCC (Broad-
well) node at left and a Vulcan (Blue Gene/Q) node at right. Communication times
are measured in seconds and are normalized by the value of the Lagrangian scheme for
φ = 2 and Hct=5.

The size of the data to be transferred will also depend on the support of the
delta function. For φ = 4, the fluid halo increases to two grid points. This effec-
tively doubles the amount of communicated data for the Eulerian scheme relative
to the single grid point halo for φ = 2 or 3. While the amount of Lagrangian
data to be communicated is somewhat higher for φ = 4, we observe in Fig. 5 that
this increase is considerably more modest. Additionally, while hematocrit value
at which Eulerian scheme begins to outperform is roughly similar between the
two architectures, this cross-over value is consistently approximately 5% higher
on Vulcan (Blue Gene/Q).

However, the merits of the two communication schemes also have to be judged
in the context of the recomputation required and its impact on overall runtime.
Figure 6 shows how the significance of recomputation varies not only with the

Immersed Boundary Method Halo Exchange in a Hemodynamics Application 451

Fig. 6. For φ = 2, we compare runtime on a DCC (Broadwell) node as a function of
Hct for Lagrangian (left bar) and Eulerian (right bar) communication. Runtimes are
measured in seconds and, for a given Hct, are normalized by the Lagrangian runtime.
Left and right images show simple and subdivision finite element models, respectively.

communication scheme but also with the finite element model. As discussed
above, the IB spreading operation performs expensive lookup operations when
used with an indirectly addressed fluid grid. When paired with an inexpensive
finite element model, we observe that the IB spreading recomputation performed
by the Lagrangian scheme in the spreading operation becomes expensive relative
to the finite element recomputation of the Eulerian scheme. As a result, the
Eulerian scheme outperfoms in this framework, even at the low hematocrit values
for which the communication cost exceeds than of the Lagrangian scheme.

Conversely, this situation is reversed for the subdivision finite element model.
Due to the high computational expense of this model, the recomputation when
computing forces on the cells exceeds that of the IB spreading operation. The
Lagrangian scheme consequently proves more efficient for higher hematocrit val-
ues, with communication costs for either scheme being relatively inconsequential.
This result is also relevant to other approaches for modeling cell mechanics, such
as discrete element methods, which have reported that the force computation
kernel is responsible for the majority of their runtime [18].

In summary, we observe that both communication and recomputation are
associated with the relative performance of Lagrangian and Eulerian communi-
cation schemes. Looking solely at communication time, the Eulerian communica-
tion scheme clearly outperform its Lagrangian counterpart at the hematocrit val-
ues typical of blood flow. This advantage is most significant for smaller immersed
boundary supports but remains even for φ = 4. This result for a high density
of immersed boundary vertices serves as a complement for the experience of [6],
who found performing Eulerian communication was inefficient for a simulation
with φ = 4 and a density of immersed boundary vertices comparable to 10% Hct.
However, we also find that the disparity between the cost of the finite element
and spreading operations may render recomputation a more important factor
than communication cost in determining the more efficient scheme, especially at
higher cell densities.

452 J. Gounley et al.

3.3 Weak Scaling

As the purpose of a distributed memory parallelization scheme is to enable large
simulations which require multiple nodes, the scalability of a communication
scheme is also important. In contrast to the previous section, we now consider the
scalabity of the full simulation, rather than the kernels and communication which
differed in the Lagrangian and Eulerian communication schemes. Figure 7 shows
weak scaling at 43% hematocrit for φ = 2, 3, and 4 and using the simple finite
element model. For weak scaling, we increase the problem size proportionately
with the number of tasks, maintaining the same amount of work per task over
successively larger task counts. To measure weak scalability, we normalize all
runtimes by the runtime at the lowest task count.

Fig. 7. Weak scaling for φ = 2, 3, and 4 for DCC (Broadwell) in the top row and
Vulcan (Blue Gene/Q) in bottom row

We observe broadly similar performance with the two architectures, although
DCC (Broadwell) benefits from the much larger problem size per node. On both
architectures, we observe a drop in performance between 32 and 64 tasks due to
the maximum number of neighboring tasks being first encountered on the latter
task count. A similarly marginal gain occurs with the Eulerian communication
scheme for the IB spreading operation, which outperformed for this parameter
set on a single node and maintains this modest advantage when the problem is
weakly scaled across nodes. However, the primary influence on scalability comes
from the delta function support, as performance with φ = 4 is limited by larger
communication and recomputation times due to the larger halo. In contrast,
weak scaling remains around 89% parallel efficiency for φ = 2 and 3.

3.4 Discussion

In this study, we investigate the factors influencing the performance of
halo exchange for the immersed boundary method in the context of the

Immersed Boundary Method Halo Exchange in a Hemodynamics Application 453

hemodynamics application HARVEY. Focusing on the on-node performance of
the IB spreading operation, we compare Lagrangian and Eulerian communica-
tion frameworks. In this comparison, the purpose is not to propose an optimal
configuration based on our application, but to provide a starting point for evalu-
ating IB method parallelization options for a given physical problem and model.

With respect to purely communication-related costs, we find that the intu-
itive cross-over for more efficient Eulerian than Lagrangian communication for
the IB spreading operation occurred for a density of IB vertices relevant to many
applications including blood flow. For physiological values of red blood cell hema-
tocrit, Eulerian communication may provide an improvement, regardless of the
delta function support. Conversely, for lower IB vertex densities and φ = 4, we
agree with the assertion of [6] that Eulerian communication may not be an effi-
cient scheme. However, the exact cross-over point will nonetheless be variable:
on systems with limited memory per node, like the Vulcan Blue Gene/Q, we
see the hematocrit cross-over point, at which Eulerian scheme outperforms the
Lagrangian, to be about 5% higher than the larger Broadwell nodes on the DCC
cluster.

However, we find that communication costs must also be assessed in the
context of the required recomputation. The support of the delta function and
relative cost of the IB spreading and finite element model will influence the
relative costs of communication and recomputation. We observe that while larger
delta function support sizes necessarily increase compute costs, the additional
communication costs may be modest relative to factors like recomputation. In
future work, we plan to extend this study of immersed boundary halo exchange to
simulations on heterogeneous CPU-GPU compute nodes, where the differences
in recomputation and data motion cost are expected to become more significant.

Acknowledgments. We thank Thomas Fai and Charles Peskin for their comments
and insight during the code development process. This work was performed under
the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-
07NA27344. Computing support came from the LLNL Institutional Computing Grand
Challenge program. Research reported in this publication was supported by the Office
of the Director, National Institutes of Health under Award Number DP5OD019876.
The content is solely the responsibility of the authors and does not necessarily represent
the official views of the National Institutes of Health. Support was provided by the Big
Data-Scientist Training Enhancement Program of the Department of Veterans Affairs
and by the Hartwell Foundation.

References

1. Bailey, P., Myre, J., Walsh, S.D., Lilja, D.J., Saar, M.O.: Accelerating lattice boltz-
mann fluid flow simulations using graphics processors. In: 2009 International Con-
ference on Parallel Processing, pp. 550–557. IEEE (2009)

2. Birgin, E., Lobato, R., Mart́ınez, J.: A nonlinear programming model with implicit
variables for packing ellipsoids. J. Global. Optim. 68(3), 467–499 (2017)

3. Boedec, G., Leonetti, M., Jaeger, M.: Isogeometric FEM-BEM simulations of drop,
capsule and vesicle dynamics in Stokes flow. J. Comput. Phys. 342, 117–138 (2017)

454 J. Gounley et al.

4. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid
Mech. 30(1), 329–364 (1998)

5. Cirak, F., Ortiz, M., Schroder, P.: Subdivision surfaces: a new paradigm for thin-
shell finite-element analysis. Int. J. Numer. Meth. Eng. 47(12), 2039–2072 (2000)

6. Di, S., Xu, J., Chang, Q., Ge, W.: Numerical simulation of stirred tanks using a
hybrid immersed-boundary method. China J. Chem. Eng. 24(9), 1122–1134 (2016)

7. Fedosov, D., Caswell, B., Suresh, S., Karniadakis, G.: Quantifying the biophysical
characteristics of plasmodium-falciparum-parasitized red blood cells in microcir-
culation. Proc. Nat. Acad. Sci. USA 108(1), 35–39 (2011)

8. Givelberg, E., Yelick, K.: Distributed immersed boundary simulation in Titanium.
SIAM J. Sci. Comput. 28(4), 1361–1378 (2006)

9. Gounley, J., Draeger, E.W., Randles, A.: Numerical simulation of a compound
capsule in a constricted microchannel. Procedia Comput. Sci. 108, 175–184 (2017)

10. Guo, Z., Zheng, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice
Boltzmann method. Phys. Rev. E 65(4), 046308 (2002)

11. Hochmuth, R., Waugh, R.: Erythrocyte membrane elasticity and viscosity. Ann.
Rev. Physiol. 49(1), 209–219 (1987)

12. Imai, Y., Omori, T., Shimogonya, Y., Yamaguchi, T., Ishikawa, T.: Numerical
methods for simulating blood flow at macro, micro, and multi scales. J. Biomech.
49(11), 2221–2228 (2016)

13. Krüger, H.: Computer simulation study of collective phenomena in dense suspen-
sions of red blood cells under shear. Ph.D. thesis (2012)

14. Krüger, T., Varnik, F., Raabe, D.: Efficient and accurate simulations of deformable
particles immersed in a fluid using a combined immersed boundary lattice Boltz-
mann finite element method. Comput. Math. Appl. 61(12), 3485–3505 (2011)

15. Le, D.V.: Effect of bending stiffness on the deformation of liquid capsules enclosed
by thin shells in shear flow. Phys. Rev. E 82(1), 016318 (2010)

16. Li, X., et al.: Patient-specific blood rheology in sickle-cell anaemia. Interface Focus
6(1), 20150065 (2016)

17. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech.
37, 239–261 (2005)

18. Mountrakis, L., Lorenz, E., Malaspinas, O., Alowayyed, S., Chopard, B.,
Hoekstra, A.G.: Parallel performance of an IB-LBM suspension simulation frame-
work. J. Comput. Sci. 9, 45–50 (2015)

19. Ouro, P., Fraga, B., Lopez-Novoa, U., Stoesser, T.: Scalability of an Eulerian-
Lagrangian large-eddy simulation solver with hybrid MPI/OpenMP parallelisation.
Comput. Fluids 179, 123–136 (2019)

20. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)
21. Randles, A., Draeger, E.W., Oppelstrup, T., Krauss, L., Gunnels, J.A.: Massively

parallel models of the human circulatory system. In: 2015 SC-International Con-
ference for High Performance Computing, Networking, Storage and Analysis, pp.
1–11. IEEE (2015)

22. Randles, A.P., Kale, V., Hammond, J., Gropp, W., Kaxiras, E.: Performance anal-
ysis of the lattice Boltzmann model beyond Navier-Stokes. In: 2013 IEEE 27th
International Symposium on Parallel & Distributed Processing (IPDPS), pp. 1063–
1074. IEEE (2013)

23. Shrivastava, S., Tang, J.: Large deformation finite element analysis of non-linear
viscoelastic membranes with reference to thermoforming. J. Strain Anal. 28(1),
31–51 (1993)

Immersed Boundary Method Halo Exchange in a Hemodynamics Application 455

24. Spandan, V., et al.: A parallel interaction potential approach coupled with the
immersed boundary method for fully resolved simulations of deformable interfaces
and membranes. J. Comput. Phys. 348, 567–590 (2017)

25. Uhlmann, M.: Simulation of particulate flows on multi-processor machines with
distributed memory. Technical report Centro de Investigaciones Energeticas
Medioambientales y Tecnologicas (CIEMAT) (2004)

26. Wang, S., He, G., Zhang, X.: Parallel computing strategy for a flow solver based
on immersed boundary method and discrete stream-function formulation. Comput.
Fluids 88, 210–224 (2013)

27. Wiens, J.K., Stockie, J.M.: An efficient parallel immersed boundary algorithm
using a pseudo-compressible fluid solver. J. Comput. Phys. 281, 917–941 (2015)

28. Wu, Z., Xu, Z., Kim, O., Alber, M.: Three-dimensional multi-scale model of
deformable platelets adhesion to vessel wall in blood flow. Philos. Trans. R. Soc.
A 372(2021), 20130380 (2014)

29. Yu, Z., Lin, Z., Shao, X., Wang, L.P.: A parallel fictitious domain method for
the interface-resolved simulation of particle-laden flows and its application to the
turbulent channel flow. Eng. Appl. Comput. Fluid 10(1), 160–170 (2016)

30. Závodszky, G., van Rooij, B., Azizi, V., Alowayyed, S., Hoekstra, A.: Hemocell: a
high-performance microscopic cellular library. Procedia Comput. Sci. 108, 159–165
(2017)

	Immersed Boundary Method Halo Exchange in a Hemodynamics Application
	1 Introduction
	2 Methods
	2.1 Lattice Boltzmann Method for Fluid Flow
	2.2 Finite Element Methods for Deformable Cells
	2.3 Immersed Boundary Method for Fluid-Structure Interaction
	2.4 General Parallelization Framework
	2.5 Lagrangian and Eulerian Communication for IB Spreading

	3 Results
	3.1 Simulation Setup
	3.2 Comparing Lagrangian and Eulerian Communication On-Node
	3.3 Weak Scaling
	3.4 Discussion

	References

