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Abstract. Taxonomy matching aims to discover categories alignments
between two taxonomies, which is an important operation of knowledge
sharing task to benefit many applications. The existing methods for tax-
onomy matching mostly depend on string lexical features and domain-
specific information. In this paper, we consider the method of represen-
tation learning of taxonomies, which projects categories and relation-
ships into low-dimensional vector spaces. We propose a method to takes
advantages of category hierarchies and siblings, which exploits a low-
dimensional semantic space to modeling categories relations by translat-
ing operations in the semantic space. We take advantage of maximum
weight matching problem on bipartite graphs to model taxonomy match-
ing problem, which runs in polynomial time to generate optimal cate-
gories alignments for two taxonomies in a global manner. Experimental
results on OAEI benchmark datasets show that our method significantly
outperforms the baseline methods in taxonomy matching.

Keywords: Taxonomy matching · Representation learning ·
Category embedding · Relation embedding ·
Maximum weight matching

1 Introduction

Taxonomy is used to annotate entity semantic information in knowledge base,
which contains a hierarchy of categories. Categories in a taxonomy can be
described as multi-relational data and represented as triples (hc, r, tc), where
hc denotes the head category, ht denotes the tail category, r expresses the direct
relationship between hc and tc. r has three kinds of value: subclass, superclass
and sibling. Specifically, if the value of r is subclass, it indicates that ht is the
parent of hc; if the value of r is superclass, it indicates that ht is the child of
hc; if the value of r is sibling, it indicates that ht would be the sibling of hc.
As is known to all, different taxonomies sometimes contain both overlapping
and complementing data. In order to implement knowledge sharing from two
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taxonomies, we study the problem of taxonomy matching to discover categories
alignments between them.

For taxonomy matching, the key step is to calculate the category pair rele-
vance between two taxonomies. After all the category pairs relevant scores have
been calculated, we can obtain the most relevant category pairs between two
taxonomies. In recent years, taxonomy matching has received a lot of research
interests, and many approaches have been proposed (e.g., [4,9,14–16]). These
works mostly depend on string lexical features or domain-specific information to
predict the relevance score between categories. Although there are many studies
on taxonomy matching, most of those approaches have been demonstrated to
achieve good performance only on fairly domain-specific taxonomies [1,13].

Therefore, we present a representation learning based taxonomy match-
ing approach, which exploits a unified semantic model where we can learn to
place categories, supercategories, and siblings as points in a hypothetical com-
mon semantic space, i.e., a continuous low-dimensional vector space. The cate-
gory representation vector can significantly promote taxonomy matching. This
method follows the assumption in TransE [3] (designed for learning knowledge
graph representations), modeling categories relationships by translating opera-
tions between two categories in the semantic space.

Our methods works in three stages: it firstly embeds taxonomies including
both categories and relations into a continuous low-dimensional vector space.
Secondly, it creates a weighted bipartite graph to model the candidate relevant
category pairs between two taxonomies. Thirdly, it performs a maximum weight
matching algorithm to generate an optimal matching for two taxonomies in a
global manner. Key aspects of our method are: (1) it automatically learns cate-
gory and relation feature representations in semantic space to calculate the rel-
evance between categories, without external data resources except taxonomies
themselves; (2) it proposes category matching in a global manner, by finding
matching with maximum weight in a bipartite graph. In general, the main con-
tribution of this paper is three-fold:

– We show a multi-relational data modeling formulation for taxonomy match-
ing that learns a unified semantic space for categories, supercategories and
siblings, while drawing relations between them.

– We present a maximum weight matching algorithm for matching taxonomies,
which can obtain a global optimal matchings between two taxonomies.

– We show from the experiments that the multi-relational data modeling with
the maximum weight matching algorithm helps improve taxonomy matching
accuracy.

The rest of this paper is organized as follows. Section 2 discusses the related
work. Section 3 formulates the problem of taxonomy matching and proposes
TransC framework. Section 4 introduces our model for taxonomy matching,
and discusses its implementation. Section 5 introduces the experimental results.
Finally, the paper is concluded in Sect. 6.
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2 Related Work

The problem of taxonomy matching has its roots in the problems of identifying
duplicate entities, which is also known as record linkage, duplicate detection, or
coreference resolution. There are a lot of research work has been proposed for
taxonomy matching (e.g., [2,5,7,9,12,14,16]). In this paper, we try to analyze
the studies on this problem from the perspective of their measures for calculating
category relevance [5].

Specifically, we simply classify the studies into the following six categories. (1)
Lexicon-based measure: They perform taxonomy matching task according to the
mention forms (i.e., words representation) of the categories in taxonomies. (2)
Semantic-based measure: They adopt semantic dictionaries to complete taxon-
omy matching according to the meaning of the words. (3) Structure-based mea-
sure: They adopt category hierarchical information, including supercategories
and subcategories. (4) Instance-based measures: They use the instances of cate-
gories. (5) Context-based measure: The adopt the descriptive text of categories.
(6) Hybrid-based measure: They adopt various combination of different types of
information, i.e., lexicon, semantic, structure, instance and context.

PARIS [16] adopted instance based measure for taxonomy matching. It con-
sidered that the category structure in one taxonomy may be more fined-grained
than the category in the other taxonomy, so it aimed to find subclass matching
relationships between two taxonomies. RiMOM [12] exploited a dynamic mul-
tistrategy for finding categories alignments, which automatically combined the
measures based on two estimated factors, i.e., the lexicon similarity factor and
the structure similarity factor. RiMOM adopted similarity flooding technique on
a relationship graph between two taxonomies to enhance the structural informa-
tion contributing to taxonomy matching. ServOMap [14], designed for biomedical
ontologies, took advantage of lexicon and context based measure to calculate the
relevance scores of categories. It exploited an inverted index used in information
retrieval to reduce the number of candidate categories to consider. LogMap [7],
also designed for biomedical ontologies, combined lexicon and semantic as well
as structure measures to aligning categories between taxonomies.

In addition, Chen et al. [5] proposed FFCA technique, a combination of the
fuzzy theory and formal concept analysis (FCA), to match taxonomies with
the same domain. FFCA enriched each category from the source taxonomy by
information obtained form WordNet. Demidova et al. presented a Markov Logic
Network (MLN) based semi-supervised method for matching task [6]. They men-
tioned serval heuristic rules based on first-order logic to capture the similar
semantic elements. Lee et al. [11] presented a Monte Carlo algorithm for finding
greedy cuts to entity resolution problem. They adopted a combination of proper-
ties and instances based measures. SiGMa [9] adopted a simple greedy matching
algorithm with a combination of lexicon and structure measures, which finds
aligned categories in a greedy local search manner. The greedy based method
can be seen as an efficient method to the task of large-scale taxonomy match-
ing. However, due to its greedy nature, it can not correct previous mistakes in



386 H. Lin et al.

making decisions. Therefore, the greedy based method could not guarantee
obtaining a global optimal matching for two taxonomies.

Based on the above analysis, the studies on taxonomy matching either focus
on specific domains, or aim at providing a general way across various domains.
Furthermore, we can see that most of existing studies employ the combinational
strategies. Extensive experiments also show that the combination method out-
performs the single strategy based method [9,12]. However, they are mostly
capturing the linguistic features and structural features to predict the relevance
score between categories, there is no single dominant taxonomy matcher that
performs the best, regardless of its application domain [1].

3 Taxonomy Matching

In this section, we will study the problem of automatically taxonomy matching.
For this purpose, we will firstly give some notations and formulate the problem of
taxonomy matching in Sect. 3.1. Subsequently, the overall framework of TransC
will be introduced in Sect. 3.2.

3.1 Notations and Problem Formulation

Suchanel et al. defined a taxonomy as a set of a formal collection of knowledge,
including categories, relations, and the instances with their assertions [16]. In this
paper, we describe a taxonomy as multi-relational data with numerous triple
facts T = {(hc, r, tc)}. Given a triple (hc, r, tc) ∈ T , where hc, tc ∈ C denote
categories and r ∈ R denotes the relationship between hc, tc. C is categories set
and R is relation set, where R = {subclass, superclass, sibling}. Each category
c ∈ C contains an attributes set Ac. Each category and relation embedding in
the hypothetical common semantic space takes value in R

k.

Structure-Based Embeddings: hs
c and tsc are the embeddings of category

hc, tc, which are learned from the hierarchical structure of taxonomies. These
embeddings are learned from translation-based method TransE [3].

Attribute-Based Embeddings: ha
c and tac are the attribute-based embed-

dings of category hc, tc, which are learned based on category attributes. In the
following, we will elaborate on an encoder to learn attribute-based embeddings
for taxonomy categories.

We note that, in a taxonomy, the categories set C is global, which means
that some categories maybe identical across different taxonomies. Moreover, in
addition to the equivalent (≡) relationship between two categories c and c

′
, the

relationship between c and c
′
could be subcategory relationship c ⊆ c

′
or super-

category relationship c ⊇ c
′
. As the subcategory relationship or supercategory

relationship can be inferred by equivalent relationship between categories, we
aim to find out whether one category c of one taxonomy is equivalent to another
category c

′
of another taxonomy. Since the set C is global in a taxonomy, we

consider the one-to-one matching of categories between two taxonomies.
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Definition 1. Given two taxonomies T = {(hc, r, tc)} and T
′

= {(h
′
c, r

′
, t

′
c)},

the goal of the taxonomy matching is to obtain a one-to-one (1-1) equivalent
matching M from the categories set C of T to the categories set C

′
of T

′
, which

contains all semantically equivalent categories between two taxonomies.

3.2 The TransC Framework

Based on the problem definition, we propose a method called TransC, to address
the task of taxonomy matching using two modules as follows:

Taxonomy Representation Learning. To supplement lexical representation
in measuring category relevance scores, this module exploits a unified semantic
model where we can learn to place categories, supercategories, and siblings as
points (or vectors) in a hypothetical common semantic space.

Taxonomy Matching Generation. Based on taxonomy representations, this
module exploits a weighted bipartite graph to model the candidate relevant cat-
egory pairs between two taxonomies, and performs a maximum weight matching
algorithm to generate an optimal matching for two taxonomies.

In the following sections, we will introduce those modules in details.

4 Methodology

In this section, we introduce our method that obtains the categories alignments
for taxonomies. In what follows, we first introduce how to learn the representa-
tions of taxonomies, and then elaborate on the process for finding an optimal
matching for two taxonomies based on the representations.

4.1 Taxonomy Representation Learning

To exploit both triple facts (hc, r, tc) ∈ T and category attributes, we follow a
representation learning method DKRL for knowledge graphs [17], and propose
structure-based category embeddings and attribute-based category embeddings.
These embeddings adopt energy-based model, which learns category represen-
tation vectors in low-dimensional vector space. The structure-based category
embeddings are used to capture information in triple facts of taxonomies, and
the attribute-based category embeddings are used to capture meta information
in category attributes. We use the same embedding vector space to learn the
two types of category representations. The energy function of our method is
then defined as follows:

F (hc, r, tc) = FS(hc, r, tc) + FA(hc, r, tc), (1)

where FS(hc, r, tc) = ‖hs
c + r − tsc‖ is the part of structure-based category

embedding energy function, FA(hc, r, tc) is the part of attribute-based category
embedding energy function. In this paper, we define FA(hc, r, tc) as follows:

FA(hc, r, tc) = FAA(hc, r, tc) + FAS(hc, r, tc) + FSA(hc, r, tc) (2)
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where FAA(hc, r, tc) = ‖ha
c + r− tac‖ in which ha

c and tac are the attribute-based
embeddings of category hc, tc. In this paper, we also define FAS(hc, r, tc) =
‖ha

c + r − tsc‖ and FSA(hc, r, tc) = ‖hs
c + r − tac‖.

In the following subsection, we present a continuous bag-of-words encoder to
build attribute-based category representation.

Continuous Bag-of-Words Encoder. For each category, a set of attributes
are used to denote the meta information of the category. We assume that if cat-
egories are similar, their attributes should be similar. In the encoder, we take
the words in the attributes for each category as input. Firstly, we sum up the
words representation vectors to obtain the attribute representation vector. Sec-
ondly, we sum up the representation vectors of attributes to obtain the category
representation vector:

ca = a1 + · · · + ak, (3)

where ai is the i-th attribute representation vector belonging to the attributes
set Ac of category c; ai = x1+ · · ·+xm, where xj is the j-th word representation
vector belonging to the words set of attribute a ∈ Ac. In this paper, xj can be
obtained by Word2Vec. ca will be used to minimize FA. The encoder framework
is illustrated in Fig. 1.

Fig. 1. The CBOW encoder

Training. Now we introduce how to learning category embeddings with our
proposed models. Given a training set S ⊆ T of triple facts (hc, r, tc), we adopt
a margin-based ranking criterion as objective:

L =
∑

(hc,r,tc)∈S

∑

(h′
c,r

′ ,t′
c)∈T ′

max(0, γ + F (hc, r, tc) − F (h
′
c, r

′
, t

′
c)) (4)

where γ denotes a margin hyperparameter, γ > 0; F (hc, r, tc) denote the dis-
similarity score function between hc + r and tc, which we take to be either the
L1-norm or the L2-norm; S

′
is the negative sampling set, generated according

to Eq. 5. As we define two representation types for categories, hc and tc in the
Eq. 4 could be either of these two types representations.

S
′
= {(h

′
c, r, tc)|h

′
c ∈ C} ∪ {(hc, r, t

′
c)|t

′
c ∈ C} (5)
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More specifically, during constructing corrupted triples, we follow the method
described in [17], which sets different probabilities for replacing the head or tail
entity for corrupting the golden triple. The loss function (Eq. 4) favors lower
values for similar triples than for dissimilar triples. The input of the CBOW
Encoders is the category attributes words, and its output is category represen-
tation vectors. The categories and relations are initialized by the random proce-
dure proposed in [3]. We take stochastic gradient descent in minibatch mode to
optimize the objective function.

4.2 Taxonomy Matching Generation

In this section, we will describe the process of our method to obtain a most
suitable one-to-one equivalent categories matchings with highest confidence for
a pair of taxonomies based on the categories embeddings.

Bipartite Graph Creation. In order to efficiently encode the complicated
relationships between the categories C of T and the categories C

′
of T

′
, we

choose the bipartite graph model as our representation model, because that
the bipartite graph can encode categories from taxonomies as the vertices, and
encode the candidate matching relationships between these vertices explicitly.

Before we begin to construct a bipartite graph to model the candidate match-
ing relationships of categories between two taxonomies, we firstly introduce the
score function which measure the suitability of a matching between categories.
Given a pair of categories c, c

′
, their corresponding embeddings are c, c

′
, the

relevance score between c, c
′
is defined as:

w(c, c
′
) = cos(c, c

′
) =

c · c′

‖c‖‖c′‖ (6)

We build a weighted bipartite graph G = (V,E,W ) exploiting the score
function, where V denotes the vertices set, consisting of |C| left vertices and |C ′ |
right vertices; E denotes the edges set, including all the candidate links between
categories from C and C

′
; W : E → R is the weight function. The graph G is

defined as an undirected graph and its generation algorithm can be described in
Algorithm 1, where V,E,W is initialized as a zero set, respectively.

Specifically, Algorithm 1 works in two steps as follows:

– Candidate matching categories selection. In this step, for each category c from
taxonomy T , we pair it with each category c

′
contained in T

′
. All categories

c
′ ∈ C

′
likely matching to the category c are selected (see Lines 2–6).

– Vertex connection. In this step, we assign the matching edge to the bipartite
graph. For each category vertex c from taxonomy T in the graph, we add an
edge between it and each of its candidate matching category c

′
from taxonomy

T
′
; the weight w of the edge (c, c

′
) is set according to Eq. (6) (see Lines 7–12).

After those two steps, a weighted bipartite graph has been generated (see Line
13).
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Algorithm 1. The algorithm for bipartite graph creation

Input: T = {(hc, r, tc)}, T
′
= {(h′

c, r
′
, t

′
c)}, G = (V, E, W ) and the embeddings of all

the categories of T and T
′
.

Output: G = (V, E, W ).
1: Initialize graph G = (V, E, W ): V = ∅, E = ∅, W = ∅.
2: for all c ∈ C in T do
3: for all c

′ ∈ C
′
in T

′
do

4: Compute the likelihood w that c is equivalent matching to c
′
based on the

embeddings of those two categories via Equation (6).
5: if w > 0 then
6: Add class c and c

′
to V .

7: Add weight function W (c, c
′
) = w to W .

8: Add edge (c, c
′
) to E.

9: Assign weight to edge (c, c
′
) with w.

10: end if
11: end for
12: end for
13: return G = (V, E, W ).

Maximum Weight Matching in Bipartite Graph. In this section, we will
introduce how to find an optimal one-to-one equivalent categories matching M
for a pair of taxonomies. The goal of taxonomy matching is to find a most
suitable one-to-one equivalent categories matching M for a pair of taxonomies
with highest confidence, and the goal of maximum weight matching is to find
a set of vertex-disjoint edges with maximum weight. Therefore, the taxonomy
matching problem can be converted to a maximum weight matching problem.

Specifically, given a weighted bipartite graph G = (V,E,W ), we can use
integer linear program (ILP) to model the matching problem:

max
∑

e∈E

w(e)x(e)

s.t.
∑

e=(v,v′ )

x(e) ≤ 1 ∀v ∈ V

0 ≤ x(e) ≤ 1 ∀e ∈ E

x(e) is an integer ∀e ∈ E,

(7)

where x is the matching’s incidence vector; w represents the likelihood of the
categories matching as specified in Eq. 6. The dual of the Problem (7) is vertex
cover problem. The dual problem is defined as:
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min
∑

v∈V

y(v)

s.t.
y(e) ≥ w(e) ∀e ∈ E

y(v) ≥ 0 ∀v ∈ V,

(8)

where we define y(v, v
′
)

def
= y(v)+y(v

′
). According to complementary relaxation

condition, the matching M and y are optimal iff ∀e ∈ M,y(e) = w(e) and for
all free vertices v, y(v) = 0.

The essential idea of acquiring maximum weight matching is to repeatedly
find an augmenting path in the bipartite graph and augment over it, until there
are no augmenting paths left. The maximum weight matching problem has been
extensively studied (e.g., [8,10]). The most efficient general algorithm for this
problem is Hungarian algorithm [8]. Since the weights in the bipartite graph we
constructed are real numbers, so we adjust the Hungarian algorithm improved
by Lawler [10], to our taxonomy matching problem. In what follows, we describe
our algorithm in details.

Maximum Weight Matching Algorithm. Given a weighted bipartite graph
G = (V,E,W ) constructed from taxonomies T and T

′
, we repeatedly find aug-

menting paths and augment over it, to find a set of vertex-disjoint edges with
maximum weight. Our algorithm consists of four steps. It firstly initializes the
dual variables in Problem (8). Secondly, it finds an augmenting path and aug-
ments over it. Thirdly, it computes the dual variable augmentation value and
updates the dual variables in the fourth step. Repeating steps 2–4, we can finally
obtain a matching with maximum weight according to the bipartite graph. In
this paper, we model taxonomy matching problem as maximum weight match-
ing problem. Therefore, we can guarantee to generate an optimal matching with
highest confidence for two taxonomies in a global manner.

Here, we use VL = C and VR = C
′
to represent the left vertices set and right

vertices set in G, respectively. Let LF and RF denote the left and right free
vertices (not matched vertex) in G, respectively, which is initialized as LF = VL

and RF = VR. Let y(v) denote the dual variable value for each vertex v ∈
V , δ denote the dual variable augmentation value, whose initial value is δ0 =
max{W (e)|e ∈ E}. Let τ denote the current iteration times. Let M denote
the set of vertex-disjoint edges with maximum weight, which is initialized as a
zero set, i.e., M = ∅. The maximum weight matching algorithm can thus be
described in Algorithm 2.

Algorithm 3 is to find an augmenting path by performing a bread-first-search
(BFS) on a modified graph. Specifically, the algorithm firstly judges whether it
has an augmenting path or not, using the left and right free vertices sets in G
(see Lines 1–2). Secondly, the algorithm directs all edges in G (see Lines 4) and
performs BFS algorithm to find an augmenting path (see Lines 5–6). Thirdly,
augments the free vertices sets (see Lines 8). Finally, we acquire an augmenting
path (see Lines 9–10).
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Algorithm 2. The algorithm for maximum weight matching
Input: G =< V, E, W >, VL, VR, LF, RF, δ0, M .
Output: M = {(v, v

′
)|v ∈ VL, v

′ ∈ VR}.
1: for all v ∈ V do
2: if v is a left vertex in G then
3: y(v) = δ0.
4: else
5: y(v) = 0.
6: end if
7: end for
8: Set τ = 0.
9: repeat
10: Find an augmenting path AP , using the method described in Algorithm 3.
11: Augment the matchings M : M = M ⊕ AP .
12: τ = τ + 1.
13: For all edge (v, v

′
) ∈ E, get minimum left vertex dual variable value

l y(v) = min{y(v)} and minimum right vertex dual variable minus value

r y(v
′
) = min{y(v) + y(v

′
) − W (v, v

′
)}.

14: if l y(v) < r y(v
′
) then

15: halt.
16: else
17: Set dual variable augmentation value δτ = l y(v).
18: end if
19: for all v ∈ V do
20: if v is a left vertex in G then
21: y(v) = y(v) − δτ .
22: else
23: y(v) = y(v) + δτ .
24: end if
25: end for
26: until (AP = ∅)
27: return M .

5 Experiments

In this section, we test the performance of our method TransC on two benchmark
datasets. We will compare the accuracy of our method with the baseline methods.

5.1 Experimental Settings

In this paper, we employ LogMap, AML, YAM-BIO, XMap and SiGMa as the
baseline methods. We compared the accuracy of the final category matchings in
terms of precision, recall and F1-measure on the number of categories correctly
matched. We used two datasets from OAEI 20171.

1 http://oaei.ontologymatching.org/2017/.

http://oaei.ontologymatching.org/2017/
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Algorithm 3. The augmenting path searching algorithm
Input: G =< V, E, W >, M, {y(v)|v ∈ V }, VL, VR, LF, RF .
Output: AP .
1: if LF = ∅ or RF = ∅ then
2: AP = ∅.
3: else
4: Direct unmatched edges from VL → VR, matched edges VR → VL.
5: Add vertices s, t and connect them to free vertices in LF and RF , respectively.
6: Run BFS algorithm on G to find an augmenting path AP containing only edges

{(v, v
′
)|v ∈ LF, v

′ ∈ RF} for which y(v) + y(v
′
) = W (v, v

′
).

7: end if
8: Augment the free vertices set LF and RF based on the augmenting path AP ,

respectively.
9: AP = AP \ {s, t}.
10: return AP .

The first dataset was derived from the large BioMed track (denoted as
DSbio). The dataset contains three biomedical ontologies: FMA, SNOMED-CT
and NCI. These ontologies are semantically rich and contain tens of thousands
of categories. Large BioMed track contains three matching problem: FMA-NCI,
FMA-SNOMED and NCI-SNOMED, and each matching problem contains two
tasks involving “small” largebio dataset (denoted as DSbio s) and “whole” large-
bio dataset (denoted as DSbio w). The dataset DSbio is used to find matchings
between large ontologies with rich semantics.

The second dataset was derived from the conference track (denoted as
DSconf ), The DSconf dataset contains 16 different ontologies, which aims at
finding all category matchings in ontology set describing the domain of organising
conferences [13]. The DSconf dataset contains 867 categories and 534 attributes
in total.

For experiments of TransC, the parameters we used to measure the match-
ing likelihood between two categories is experimentally set to λ = 0.01, γ = 2,
k = 50, d = L1, which yields the best accuracy, where λ is the learning rate for
stochastic gradient descent (SGD), γ is the margin, k is the dimensions of cate-
gory and relation embedding, d is the dissimilarity measure. We found reasonable
values for the parameters by exploring its accuracy on the DSconf dataset align-
ments, and then kept them fixed for all the experimental comparisons over the
DSbio and DSconf datasets.

5.2 Experimental Analysis

In the following, we will test the performance of TransC and the baseline methods
on taxonomies with different size and domains. Firstly, we tested the accuracy
of all the methods on the DSbio datasets, then tested the accuracy of all the
methods on the DSconf dataset.

In order to see how the accuracies of all the methods change with the increase
of the size of ontologies, we test all the methods on the DSbio s dataset and
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DSbio w dataset. Tables 1 and 2 show the results for the DSbio s dataset and
DSbio w dataset, respectively. From the results, it can be seen that our method
TransC achieves the best precision, recall and F1 measure on the datasets. In
addition, we averaged the precision, recall and F1 measure of each method over
the DSbio s and DSbio w datasets in Tables 1 and 2, respectively. The average
results for these methods are shown in Table 3. From Table 3, we can notice
that TransC achieves the best accuracy among all the methods. In summary,
the experimental results show that TransC can obtain better accuracy over the
baseline methods on the DSbio dataset.

In the following, we test how the accuracies of all the methods change across
ontologies from different domains. Firstly, we conducted experiments on the
DSbio dataset. Secondly, we conducted experiments on the DSconf dataset. In
order to test the performance of our method and the baseline methods on the
DSbio dataset, we averaged the accuracy on the DSbio s and DSbio w datasets
(Table 3). The results is shown in Table 4. From Table 4, we can see that TransC
achieves the best performance on the DSbio dataset.

In the following, we conducted experiments on the DSconf dataset. The
results on the DSconf dataset is presented in Table 5. From Table 5, it can be
seen that TransC performs better than any of the baseline methods.

Table 1. Comparison over the DSbio s dataset

Method Task

FMA-NCI FMA-SNOMED NCI-SNOMED

Precision Recall F1 Precision Recall F1 Precision Recall F1

SiGMa 0.841 0.654 0.735 0.959 0.692 0.804 0.896 0.647 0.751

XMap 0.977 0.901 0.937 0.974 0.847 0.906 0.894 0.566 0.693

YAM-BIO 0.969 0.896 0.931 0.966 0.733 0.834 0.899 0.677 0.772

AML 0.958 0.910 0.930 0.923 0.762 0.835 0.871 0.746 0.804

LogMap 0.944 0.897 0.920 0.947 0.690 0.798 0.947 0.690 0.798

TransC 0.981 0.928 0.954 0.979 0.854 0.912 0.961 0.749 0.842

Table 2. Comparison over the DSbio w dataset

Method Task

FMA-NCI FMA-SNOMED NCI-SNOMED

Precision Recall F1 Precision Recall F1 Precision Recall F1

SiGMa 0.826 0.628 0.714 0.945 0.625 0.752 0.873 0.466 0.608

XMap 0.884 0.847 0.865 0.774 0.843 0.807 0.819 0.553 0.66

YAM-BIO 0.818 0.888 0.852 0.887 0.728 0.800 0.827 0.698 0.757

AML 0.838 0.872 0.855 0.882 0.687 0.772 0.904 0.668 0.768

LogMap 0.856 0.808 0.831 0.840 0.645 0.730 0.868 0.597 0.707

TransC 0.896 0.892 0.894 0.948 0.849 0.896 0.911 0.708 0.797
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Table 3. Average comparison over the DSbio dataset

Tasks Approaches Precision Recall F1

DSbio s SiGMa 0.899 0.664 0.763

XMap 0.948 0.770 0.851

YAM-BIO 0.945 0.770 0.848

AML 0.917 0.810 0.858

LogMap 0.946 0.760 0.842

TransC 0.974 0.844 0.904

DSbio w SiGMa 0.881 0.573 0.691

XMap 0.826 0.750 0.785

YAM-BIO 0.844 0.770 0.806

AML 0.875 0.740 0.803

LogMap 0.855 0.680 0.759

TransC 0.918 0.816 0.864

Table 4. Comparison over the DSbio datasets

Approaches Precision Recall F1

SiGMa 0.890 0.619 0.727

XMap 0.887 0.760 0.818

YAM-BIO 0.894 0.770 0.828

AML 0.896 0.770 0.831

LogMap 0.900 0.720 0.801

TransC 0.946 0.830 0.884

Overall, from Tables 4 and 5, we can see that TransC can obtain the best
performance both on the DSbio dataset and the DSconf dataset. The results
show that our method TransC can performs well on taxonomies from different
domains. Based on the experimental results and analysis, we can see that TransC
can performs well on taxonomies regardless of their scales and domains. This
shows that TransC has good adaptability.

Table 5. Comparison over the DSconf dataset

Approaches Precision Recall F1

SiGMa 0.512 0.334 0.404

XMap 0.840 0.570 0.680

AML 0.840 0.660 0.740

LogMap 0.820 0.590 0.690

TransC 0.862 0.690 0.766
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6 Conclusion

This paper presents a representation learning method for taxonomy matching. As
our method models the taxonomy matching problem as an optimization problem
on bipartite graphs, with the global nature of maximum weight matching, our
method can obtain a global optimal matching for two taxonomies. Currently, our
method mainly focuses on one-to-one equivalent category matchings between two
taxonomies and runs in polynomial time. For future work, we plan to address
the subclass and superclass matchings at the same time.

References

1. Achichi, M., Cheatham, M., Dragisic, Z., et al.: Results for the ontology alignment
evaluation initiative 2017. In: Proceedings of the 12th International Workshop on
Ontology Matching (2017)

2. Asprino, L., Presutti, V., Gangemi, A., Ciancarini, P.: Frame-based ontology align-
ment. In: Proceedings of 31st AAAI Conference on Artificial Intelligence, pp. 4905–
4906 (2017)
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