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Abstract. This paper introduces an approach formonitoring cycleway conditions
by collecting crowdsourced data from mobile devices. To collect the data, an
application was developed and optimized to be used by many cyclists. The
application uses acceleration and gyroscopic sensors to collect and upload road
roughness data into a classification platform. A classification model classifies the
monitored routes into three quality classes and synchronizes the results with the
application. The methodology shows how to collect and classify road surface
conditions of cycleways. By using the K-Nearest Neighbor machine learning
algorithm as a classifier, wewere able to achieve a forecast accuracy above 90%on
average.We report on our experienceswith classification accuracy offour different
classifiers as well as the experimental evaluations of the system. The results
support the potential development of a community portal that provides detected
cycleway conditions from the up-to-date mobile crowdsensing application.
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1 Introduction

Mobility and transportation are essential to the daily lives of people, spending on
average more than 45 min on roads and in traffic [1]. Therefore, monitoring road
conditions has received a significant amount of attention. However, since roads in
urban regions are still mainly used by motorized means of traffic [2], highly automated
sensor vehicles conduct pavement condition assessments. To boost non-motorized and
thus emission-free means of transport, three major improvement tasks were recognized:
first the motivation for non-motorized transport [3], second the increase in safety [4]
and third the increase in traveling comfort [5].

While politicians and municipalities have found success in increasing motivation and
safety for non-motorized means of traffic, little work has been done to evaluate the
traveling comfort. In the current study, we examine the possibility of using a smartphone
crowdsensing approach to monitor the conditions of cycle path surfaces capture the
aspect of travel comfort of cyclists. Compared to the traditional way of collecting
pavement data, assessing andmonitoring road conditions by deploying the crowdsensing
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approach results in five major benefits. First, the quantity of participants collecting data.
Second, the frequency of road conditions being monitored. Third, the almost unlimited
mobility of cyclists’ use of cycle path networks, consisting of many narrow routes.
Fourth, the reduction of costs for municipalities. Fifth, the crowdsensing approach
promotes civic engagement, unity and identity of their participants.

2 Related Work

During the preparation of this project, few examples could be located describing the
determination and classification of road surface conditions for non-motorized traffic
routes utilizing mobile devices. Much more work has been done either describing the
classification for routes mainly used by motorized means of traffic or utilizing specially
build sensor boxes to evaluate the quality of road surfaces. Nevertheless, some elab-
orations on related topics have been compiled and presented below. Some previous
studies have focused weather conditions and seasonal variation to evaluate cycling
comfort [6]. These rather temporal influencing factors should not be the focus of this
study. Instead, spatially differentiated influencing factors should be considered. A study
conducted in 2008 estimates the influence of local factors like: the routing and the
shape of cycleways on cycling at about 70% [7].

According to the General German Bicycle Club e.V., (ADFC) studies have shown
that most people would use the bicycle more often if they were to experience cycling
more positively such as road space and routes more suited to cycling [8]. The rec-
ommendations for cycling facilities in Germany (ERA) include enabling fast and direct
routes, the consideration of individual user groups like racing, - and electro bikes [9].

A study carried out at the University of Maryland confirmed the assumption that
commuters can be encouraged to use the bike by taking off-road journeys [10]. This
study conducted an online survey of students who live within a five-mile radius of the
campus. One of the biggest motivations for cycling owners was a separate bike lane,
other considerations were better lighting and a good map with local bike paths. When
asked what prevented students from biking, the majority responded with concerns of
safety on the road and poor cycleway conditions.

Through studying the related work for determining and monitoring road surface
conditions for cycling paths, two different approaches stand out. Monitoring cycling
paths conditions using dedicated sensor boxes, and monitoring cycling paths using
sensors built in to modern smartphones.

2.1 Classification of Road Surface Conditions Using Sensor Boxes

An approach to detect potholes using GPS and accelerometer data from dedicated
hardware devices mounted in taxi cabs has already been successfully explored.
A system called the Pothole Patrol gathers data from vibration and GPS sensors which
then processes the data to assess the road surface conditions. The sensor devices have
been deployed on seven taxis running around the Boston Metro area. Using a simple
machine-learning approach, the authors could show the ability of the system to identify
potholes and other severe road surface anomalies from accelerometer data. Data from
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thousands of kilometers of taxi drives demonstrated that over 90% contained road
anomalies needing repair [11].

Another study investigates road conditions by using customized embedded devices
with microphone and accelerometer sensors. Unfortunately, the study does not explain
how the collected microphone data is used for monitoring road surface conditions [12].

A further study is focused on detecting bad road surface quality, such as cracks,
potholes, and obstacles to prevent accidents, particularly of cyclists. Low-cost ultra-
sonic sensors were used to periodically measure the distance from the system to the
road to estimate the road surface condition. Through experimental evaluations, the
study showed that the monitoring system can detect obstacles and holes in the front
area of a bicycle [13].

2.2 Classification of Road Surface Conditions Using Smartphones

Monitoring and classifying cycleway road conditions using bike-mounted smartphones
has been a rising topic in the last few years. The reason for the rise is the availability
and user acceptance of mobile devices, and general market penetration. Modern
smartphones are equipped with many highly sensitive sensors and have a high com-
puting capability. These factors make it possible to use these mobile devices for many
mobile applications such as monitoring cycleway road conditions.

The next study discussed an embedded surface road classifier for smartphones used
to track and classify routes on bikes. The authors address the problem of the quantity of
accelerometer data that would have to be uploaded along with GPS tracks for server
classification. Their approach is to classify cycling paths online with an embedded
classifier, that has been trained off-line, which makes the data upload unnecessary. This
way the accelerometer data of a bicycle-mounted smartphone is collected, labeled, and
a classification model is learned, which then again is deployed on the smartphone. The
results indicate the requirement of moderately fast smartphones to conduct the clas-
sification on mobile devices. However, the system was able to detect larger uneven-
ness’, bumps and classify only short segments of tracks as satisfying. Also, the power
consumption of the learning algorithm running on the smartphone is still questionable,
mostly ruling out every crowdsensing approach [14].

Another study examines the suitability of smartphone sensor data for road condition
determination. Two android devices with different sensors and computing capacities
are evaluated in terms of data quality and data density. The approach of the study is to
capture the acceleration data of a smartphone attached to a vehicle and upload the data
on to a classification server for real time road classification. The results indicate a
relatively high unreliability of mobile data connection. The authors suggest using a
time shifted upload method instead relying on the availability of suitable mobile data
connection. Furthermore, the measurement results are distorted by shock absorbers and
vibration generated by the vehicle. Nevertheless, the basic use of smartphones to
determine the quality of roads is confirmed [15].

A further study investigates the monitoring of motorized road and traffic conditions
in cities using mobile devices. Data from location sensors, accelerometer and micro-
phone is collected to evaluate whether and how road conditions have a negative impact
on traffic management. The focus of the work is first the detection of potholes and
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bumps on traffic routes and second the estimation of the resulting effects such as
dodging, strong braking and honking of the vehicles [4].

The context of the rapid growth of networked mobile sensors that record data in
everyday life and share it via the internet is described in the next study. The term
“mobile crowdsensing” is introduced and the benefits and challenges of such a
development explained. Finally, the challenges and the lack of a single data infras-
tructure are identified [16].

2.3 Summary

Comparing both approaches to monitor cycleway road conditions using smartphones
instead of sensor boxes promises to be a widely accepted approach. While sensor boxes
have the ability to collect data that mobile devices cannot, such as particulate matter,
temperature and humidity, the advantages of mobile devices make it an attractive
platform to use for monitoring cycleway conditions. The benefits of mobile devices are
listed below:

• The ability to collect data on light incidence, curviness, decelerations, changes in
altitude and the roughness of surface conditions by applying different sensors

• High user acceptance and thus high market penetration of smartphones
• No additional costs and power supplement for sensor infrastructure
• High potential for participating in crowdsensing projects to enforce civic

engagement

To ensure data quality using a smartphone it is necessary for the mobile devices to
be completely rigid of the bike handlebars. Out of these considerations our approach is
presented in the next chapter.

3 Monitoring Cycleway Conditions Using Crowdsourced
Data from Mobile Devices

To implement our full-scale crowdsensing approach for monitoring road conditions of
cycleways, the system must be transparent and intelligible for the user. Beyond
intelligibility the user interaction with the system for the execution of a service must
have a low-threshold for being executed regularly [16]. Furthermore, the execution of a
service must be reliable and not perceived as an impedance. A major disruptive factor
for users of mobile devices is the power consumption of an executed service, e.g.
running a machine learning classification algorithm on the smartphone [14]. In most
cases, energy draining applications are often viewed as more disruptive then mobile
data draining applications [23, 24]. In the best case, the execution of a crowdsensing
service is not even noticeable or embedded into another beneficial service.

All above listed considerations flowed into the conception of the project presented
here. We are aiming to create a community portal to evaluate the comfort for bicyclists
based on crowdsourced data. Generally, there are two approaches to monitor cycleway
road conditions: event-based, which only detects locations with surface irregularities
such as potholes; and continuous road classification. In the current work, the second

Monitoring Road Surface Conditions for Bicycles 343



approach was chosen to provide a wide overview of cycleway road conditions because
this method collects continuous data through the entirety of the recording process.
More specifically, we introduce a crowdsensing approach for monitoring road surface
conditions of cycleways. Thereby we use the smartphone as a sensor platform and
derive data from different sensors build in the most modern mobile devices.

A two-stage condition recording and evaluation procedure was developed for
monitoring purposes. Furthermore, an Android data collection application called
GyroTracker was designed, implemented and evaluated. In the first stage, data is
collected via mounting the smartphone on the bike’s handlebar using a bicycle navi-
gation mount. Once the app is started, the location service of the device will run in the
background. Upon completion, user’s own location will be displayed on a google
map. Due to the high spatial relevance of the measurement data, the data recording can
only begin after the device’s location is available. Once located, users can start
recording of both location and sensor data. During the bike ride, GyroTracker reads the
four sensors: location, gyroscope, acceleration, and linear acceleration and stores the
data into the smartphones database (Fig. 1). More details and purposes of each used
sensor type is provided in Sect. 4.

After the completion of a recording, the measurement-id is incremented in the
background, ensuring the identification of each recording. After finalizing the
recording, the data is uploaded to the classification server (Fig. 2). On the server, the
data is cleaned and further processed. To ensure the assignability of sensor data with
the location data, the location data must be interpolated.

In the second stage, the uploaded data is classified by a machine-learning algorithm
into three quality classes (Fig. 3). More information about the classification algorithms
is provided in Sect. 5. After classification, the classified tracks are synchronized with
the application GyroTracker to visualize the classification results (Fig. 4).

Based on the described approach, measurements are repeatedly evaluated and
changes in infrastructure become immediately visible. The conditions of bike paths are
displayed on the community portal for cyclists, aiming to promote the non-motorized
means of individual traffic.

Fig. 1. Collecting data via GyroTracker. Fig. 2. Uploading data after collection.
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4 Implementation of the GyroTracker Application

Due to many sensors, high computing power, high global market share of over 75%,
relatively low cost and the easy accessibility of the programming API, Android
smartphones are well suited for being used as sensor platforms. It is possible to realize
first measurement results after a short time of implementation. For the determination of
cycleway road quality, the crowdsensing data collection application GyroTracker was
developed. To address the widest possible user group, the support level has been set to
API level 17, allowing 97–98.4% of android smartphone users to use this application
on their smartphone [25, 26].

4.1 Functionality

To achieve a greater chance of usage and to correspond with the guideline imposed in
the concept, the data collection was embedded into a navigation layout as the beneficial
service for users. Therefore, the central element of the application, is a map view of a
user’s location. Google Maps was chosen as the map provider for GyroTracker, for its
up-to-date maps, accuracy and the relatively simple implementation in an Android
environment.

In the next step the map layout is created. The map is automatically centered on the
last known location and enlarged to zoom level 15. As soon as the system has pre-
vailing coordinates, the view is updated to the new location. This way, only the
required map tiles are downloaded which reduces the mobile data consumption. Fur-
thermore, a separate location button has been created, allowing the user to manually
move the view to the current location at any time.

While recording a track, the current position of the smartphone is focused, and
automatically updated to a new map section at any new location. Zooming in or out of
the map is still possible during a measurement. Furthermore, all coordinate pairs are
stored in an array list during the measurement. These are used to mark the path covered
on the map with a polyline. The polyline is still available after completion of the
measurement ride and is automatically removed from the map at the beginning of a

Fig. 3. Classification of the data on the
server.

Fig. 4. Synchronization of the classified
data.
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new measurement. This allows the recorded track to be traced after the measurement is
stored in the smartphone database.

4.2 Operational Sensors

During the measurement, different sensors are used. The sensor technology built into
the smartphone can be divided into two categories: hardware- and software-based [17].
In the following, the individual sensors and their functions during a measurement are
presented in more detail.

The location sensors locate the mobile device during the data acquisition phase
(Fig. 5). Thus, in the evaluation phase, the recorded sensor data can be uniquely
assigned to their coordinates. To determine the location of a smartphone, a combination
of satellite-based global navigation system (GNSS) data, Wi-Fi and mobile data is used
[18]. However, the methods of the recipients used to determine the location are dif-
ferent. While the accuracy of a Wi-Fi location is 2–3 m, the accuracy of the GNSS
location is officially stated as 10 m, but usually more accurate in open terrain [19].

In accordancewith Fig. 6, the hardware-based gyroscopemeasures the rate of rotation
of the smartphone in three dimensions to capture the relative change in position [20].
Thus, potholes and other bumps in the road surface can be detected.

The hardware-based accelerometer measures the acceleration forces in three axes
including gravitational force (Fig. 7). The individual measured values are combined
into a 3-dimensional vector, which indicates the direction and strength of the currently
acting force [21]. The main task of this sensor is to detect uneven road surfaces such as
potholes, transverse and longitudinal bumps, curbs and dropped curbs. Additionally,
the measured values are used during the evaluation phase to validate the linear
acceleration data.

The software-based linear accelerometer measures the instantaneous linear accel-
eration acting on the mobile device (Fig. 8). The peculiarity of this sensor is that the
gravitational force g � 9.81 m/s2 prevailing on the earth is mathematically eliminated.
The measured values are recorded by the previously presented accelerometer and
internally reduced to linear acceleration by using the Kalman high-pass filter [22]. The
acceleration sensors behave as follows:

acceleration ¼ linear acceleration þ gravity ð1Þ

Fig. 5. Location
sensors.

Fig. 6. Gyroscope. Fig. 7. Acceleration.

g ≈ 9.81 m/s2

Fig. 8. Linear
acceleration.
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During a measurement, both accelerometers are recorded to be able to validate the
results against each other in the evaluation phase. However, the evaluation phase
revealed different sample rates. Since the sensors used are streaming sensors, android’s
sensor manager framework does not offer an opportunity to set a specific sampling rate
for all three sensors, so each sensor has its own sampling rate [17]. While the gyro-
scope has a sampling frequency of approximately 150 Hz (six times a second), the
accelerometer is 50 Hz (50 times per second) and the linear accelerometer is as low as
20 Hz (100 times per second). This challenge could be solved successfully by corre-
lating the values using their timestamps. For this purpose, in addition to the sensor
values, the associated timestamps were prompted and stored in the database. The
additional saving of a timestamp ensures the subsequent assignment of the measured
values with their associated geolocation.

Due to limited space on a smartphone screen, only the values of two out of the three
used sensors are displayed on screen. The gyroscope and the linear accelerometer were
selected as the most meaningful due to the already eliminated gravitational force. To
display the most recent sensor values, text fields were created at the bottom of the
screen. These text fields are overwritten each time the sensor values changed, so the
most recent value of the sensor is always visible.

During the recording of a route, the sensor values with their accuracy specifications
and the timestamp are written to the SQLite database. The individual measurements can
be distinguished from one another on the database by the variable measurement-id.

4.3 User Interface

To increase the convenience of crowd users, the layout of GyroTracker was inten-
tionally left uncomplicated. After opening the application, the user is situated in the
main view, from which a quick start of the measurement is possible. As previously
mentioned, the central element is the Google Map, which simultaneously displays a
user’s current location. Above the map is the application name. Below the map, the
current sensor values are displayed. While the values of the 3-dimensional gyroscope
are shown on the left side, the values of the linear accelerometer are on the right side.
Furthermore, the ‘My Location’ button, the button for starting the recording as well as
the upload button are located on the map view.

For a better overview of which processes are currently running in the background
of the application, the respective buttons are highlighted. Thus, the button to start and
stop the measurements during a measurement is highlighted in red (Fig. 9a). The
upload button is also highlighted in red while the data upload takes place (Fig. 9b). The
same red color, used for highlighting background tasks, is used to mark the path during
a measurement ride (Fig. 9c). Thus, the user encounters only two colors in the
application so a learning effect of the processes can occur.
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5 Classification of the Collected Acceleration Data

Machine learning describes an artificial generation of knowledge from experience.
Thus, an artificial system, after completion of the learning phase, can generalize the
learned examples and apply them independently. In the present case, patterns and laws
are recognized in the recorded training data, and these are later applied to the real
measurement data. However, before being classified by a machine learning algorithm
the algorithm is trained by a training data set with a distribution of 70/30.

5.1 Trainings Dataset

To create a trainings dataset to teach our classification algorithm, a definition of the
perceived cycleways quality was needed. Therefore, a two-step approach was chosen.
First, tracks of cycleways with different pavements and different roughness’ were
recorded. Second, the cyclists and in-line skaters were questioned on site to classify the
pavements into three quality classes, as they are most effected by the rough roads. In
this experimental study we gained information about the actual perceptions of the bike
road users. The survey took place in Karlsruhe, the city with the second largest German
biking community [27]. The results of the survey indicate a flat concrete superstructure
road and a smooth paved road as ideal for cyclists and in-line skaters (Fig. 10a).
A conditionally suitable road is defined as a road covered with coarse asphalt with
partially used tar patches, a coarse asphalt surface and rarely to regularly occurring

Fig. 9. a. Active measurement in the background. b. Active upload in the background. c.
Polyline displays recorded track. (Color figure online)

348 W. Titov and T. Schlegel



potholes (Fig. 10b). An unsuitable cycleway is defined as an unpaved gravel road or
pebble path as well as an uneven track with many transverse and longitudinal bumps
(Fig. 10c). The results gained out of this experiment were used to label the recorded
data in the training data set prior to the model training process.

In Fig. 11a, an illustration visualizes the evaluation of the x-variable from the
gyroscope sensor for one representative track from each class. Figure 11b and 11
contrast the y- and z-variables of the linear accelerometer with one representative track
from each class, while Table 1 shows the numerical evaluation of the measured data for
one representative track from each class.

Fig. 10. a. Image and corresponding graph of rotation speeds occurred cycling a cycleway with
quality class 1. b. Image and corresponding graph of rotation speeds occurred cycling a cycleway
with quality class 2. c. Image and corresponding graph of rotation speeds occurred cycling a
cycleway with quality class 3.
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5.2 Selection of a Suitable Classification Method

In preparation for the algorithmic classification, the data in the training dataset were
labeled according to their classes and made available to the model for training. The
training of the model using the trainings dataset was carried out offline using Rapid-
Miner, an open source system for data mining. The uploaded files from the Gyro-
Tracker application were directly imported into RapidMiner and further processed.
RapidMiner supports classification algorithms such as Naive Bayes, Decision Tree and
Neural Net, allowing for efficient evaluation of collected sensor data. To ensure model
correctness, the resulting model was validated ten times, which means that the input
data are divided into ten parts in the first step. In the next step, a model is trained on
nine of the ten sub-data and applied to the tenth remaining part. This process iterates
ten times through the entire data set and averages the model accuracy determined for
each iteration. These averaged values can be found in Table 2 for each classification
algorithm.

As Table 2 demonstrates, each classification algorithm has its advantages and
disadvantages. While tracks labeled class 1 has been satisfactorily recognized only by
Naive Bayes and K-Nearest Neighbors (K-NN), data labeled class 2 has been well
recognized by all but Naive Bayes. Meanwhile, tracks labeled as class 3 roads have
only been successfully identified by K-NN. The reason for such a high instability of the
accuracies is the high instability of the sensor values. The extremely sensitive

Fig. 11. a. Amplitude of x-variables gyroscope. b. Amplitude of y-variables linear acceleration.
c. Amplitude of z-variables linear acceleration.

Table 1. Measured acceleration data of the 3 different classes.

Sensors Class 1 Class 2 Class 3

Gyroscope x- variable Min: –0.32
Max: 0.48
Avg: –0.01

Min: –0.59
Max: 0.99
Avg: 0.02

Min: –7.58
Max: 2.50
Avg: –0.03

Linear acceleration y- variable Min: –5.02
Max: 6.98
Avg: 0.11

Min: –6.59
Max: 12.14
Avg: 0.04

Min: –15.45
Max: 19.74
Avg: 0.16

Linear acceleration z- variable Min: –10.60
Max: 10.03
Avg: –0.11

Min: –20.09
Max: 23.50
Avg: –0.88

Min: –46.32
Max: 35.56
Avg: 1.33
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gyroscope and the accelerometer provide values in all areas. Often, the road class
changes several times within one second, which only corresponds to reality in a few
cases. In view of this, the validation result of the method K-Nearest Neighbor with
91.12% and a standard deviation of ±0.78% were found an acceptable value and
therefore implemented as the standard classification method on our classification
server.

6 Experimental Evaluation and Results

To evaluate the developed cycleway road surface classification, an experimental
evaluation on and around campus of the Karlsruhe University of Applied Science was
performed. Students and volunteers were asked to participate in the data collection
process. Study participants could participate in two different ways. First, while com-
muting from home to university by mounting their smartphones on the bike’s han-
dlebar. And second, by taking the Segway Personal Transporter (PT) for a ride.
Figures 12 and 13 show participants riding a bicycle on separated cycleways as well as
bike lane collecting data with the GyroTracker application.

Figures 14 and 15 a, b and c show participants adjusting and riding a Segway PT
on cycleways and shared paths collecting data with the GyroTracker application.

Table 2. Forecast accuracy of the cycleway classification of four selected methods.

Method Accuracy Class 3 Class 2 Class1

Naive Bayes 39.42 ± 0.53 69.56 5.57 90.48
Neural Net 52.28 ± 1.35 20.87 87.24 0.10
Decision Tree 66.21 ± 1.27 51.87 94.73 0.41
K-NN 91.12 ± 0.78 90.38 92.68 87.42

Fig. 12. Participant cycling a cycleway collect-
ing data for cycleway road classification.

Fig. 13. Participant cycling a bike line collect-
ing data for cycleway road classification.
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During the evaluation, all participants were equipped with Samsung Galaxy S6
Edge with the android version 6.0.1 and 4 � 2.1 GHz processor devices. Deviating
from [15], our evaluation focus is on the method used for classification of collected
data, therefore the collection of measurement data by further devices was omitted.

In the short period of the experimental evaluation, a total of 21 measurements of
different cycleway road qualities was carried out. The result was a dataset with over
510,000 individual measuring points. Afterwards, the twelve pavements most fre-
quently used on cycle paths were selected and classified with our pre-trained model.

The results show that our trained model with the K-NN as the classification
algorithm has stable results in all three classification classes. The accuracy of the
selected classification method proves reasonable results at 90.33%. According to
Table 3 only 3,308 of the 34,574 data points were detected incorrectly.

Fig. 14. Probands preparing data collection
application for a measurement ride.

Fig. 15. a. proband collecting data on a two-
way cycleway. b and c. two probands collect-
ing data simultaneously.
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To increase the accuracy of the models and to find out what pattern were recog-
nized in the dataset, the input data was varied several times during model creation.
When the data collection is conducted with a bicycle, the forces acting in the direction
of travel are given the highest value, while the forces acting crosswise to the direction
of travel can be seen more in connection with steering and pedaling (Fig. 16a). To
eliminate these influencing factors in the validation phase, the y-and z-variables of the
gyroscope and the x-variable of the accelerometer were excluded from the modeling.
However, with this manipulation no improvement could be achieved, on the contrary,
the accuracy of the models deteriorated rapidly. The model deterioration indicates that
the 3-dimensional data appears in a certain pattern, which was recognized by the model
and applied while classifying the tracks. A different pattern of the data was found when
a Segway PT was used collecting the data. The forces acting transverse to the direction
of travel would play a more significant role because the wheels are parallel and next to
each other instead of behind each other like in the case of a bike (Fig. 16b).

Table 3. Result of the modeling of the classification method K-Nearest Neighbor.

Accuracy: 90.33 ± 0.78% (micro: 90.33%)
True bad True okay True good Class precision

Prediction bad 8,936 712 161 91.10%
Prediction okay 692 16,738 716 92.24%
Prediction good 353 674 5,592 84.48%
Class recall 89.53% 92.35% 86.44%

Fig. 16. a. Rotation forces on longitudinal axed bike captured by gyroscope. b. Rotation forces
on cross-wise axed Segway captured by gyroscope.
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The International Roughness Index (IRI) is a standard global index of road
roughness [28, 29]. The results of our study show that the IRI and the vertical com-
ponent of the linear acceleration values have a high correlation. Thereby the vertical
component of linear acceleration is calculated as the sum of modulus of y-values and
modulus of z-values of the linear acceleration data (Formula 2).

X
y� valuesj j þ z� valuesj j ð2Þ

7 Conclusion and Future Work

This paper introduces an approach for cycleway road classification using crowdsourced
data derived from on bicycles mounted smartphones. The data collection and contri-
bution to the system is done by GyroTracker, an application specially developed for the
purposes of volunteers crowdsensing the road surface. The classification of the col-
lected data is done by a machine learning algorithm in the cloud, where the data is
uploaded after collection. After the data is classified the track sequences are syn-
chronized from the cloud to the user’s smartphone.

The evaluation of the system showed that variations of speed during the mea-
surement process have a large influence on the recorded sensor data, which has been
observed in previous research [27]. This factor can be minimized by additionally
considering users’ current speed in the model. Further improvement of the classifica-
tion results can be achieved by filtering out data noise caused by users when pedaling
and steering. In particular, pedaling can be recognized in the data by machine learning
algorithm because of its periodic nature. In related works, other authors rely only on
acceleration data for classifying road conditions. Our approach is using additional
rotation speeds gained from the gyroscope data for recognizing such unwanted events,
like pedaling. From our adoption, the bump and pothole detection can be improved by
analyzing acceleration and rotation data, due to their certain regularity, depending on
the used vehicle. Therefore, we introduced an approach using a combination of
acceleration data and gyroscope data to improve the bump and pothole detection.

In the future, the system is going to be expanded to not only be useful for those
contributing to the system but also for all interested and affected users, creating an
online community portal. The benefit of such an online system could be a route
planning tool, where users can adjust what kind of cycleway roughness they prefer to
cycle. Finally, municipalities and cycling-friendly cities can monitor the quality of their
cycleway route network for detecting damage and initiating road repair, free of cost.
The saved funds can be invested in the actual implementation of the measures instead
of the monitoring of the conditions.
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