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Abstract. Complex problems often require coordinated actions from
stakeholders. Agreeing on a course of action can be challenging as stake-
holders have different views or ‘mental models’ of how a problem is
shaped by many interacting causes. Participatory modeling allows to
externalize mental models in forms such as causal maps. Participants
can be guided by a trained facilitator (with limitations of costs and avail-
ability) or use a free software (with limited guidance). Neither solution
easily copes with large causal maps, for instance by preventing redundant
concepts. In this paper, we leveraged voice-activated virtual assistants
to create causal models at any time, without costs, and by avoiding
redundant concepts. Our three case studies demonstrated that our arti-
ficial facilitator could create causal maps similar to previous studies.
However, it is limited by current technologies to identify concepts when
the user speaks (i.e. entities), and its design had to follow pre-specified
rules in the absence of sufficient data to generate rules by discriminative
machine-learned methods.

Keywords: Amazon Alexa · Causal maps · Mental models ·
Participatory modeling · Virtual assistant

1 Introduction

Problems as diverse as ecological management or obesity are often called com-
plex, or ‘wicked’. While the complexity sciences provide many definitions and
tools to measure complexity1, complex problems often share at least two traits
which are central to this paper. First, they are multifactorial. The traditional
reductionist approach trying to fix the ‘root’ cause does not lend itself well to
a complex problem [1], and may even cause harm through unintended conse-
quences [2]. Rather, the emphasis is often on mapping [3] and navigating [4] the
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complex system of interactions between factors that contribute to, and/or are
impacted by, a problem of interest. Second, dissemination and implementation
research emphasizes that solutions to complex problems often require coordinated
actions between stakeholders from multiple sectors (i.e., a multiactor view [5]).
For instance, actions regarding population obesity involve sectors as varied as
food production, the built environment (e.g., to promote walkable cities and
access to fresh food), mental and physical well-being [6]. Coordinated actions
should produce a coherent policy, which implies that stakeholders work together
at least by sharing a mission [7].

It can be challenging to assess whether stakeholders share a mission when
operating in a complex system of interactions. They may have different views
or ‘mental models’ on how the factors interact, which may lead to very different
takes on interventions. In the case of ecological management, one stakeholder
may ignore the pressure of fishing and instead focus on the environment (e.g.,
enough nutrition for the fish, not too many predatory birds) while another may
acknowledge that fishing reduces the fish population but downplay its impor-
tance [8]. Stakeholders may also have the same views but express them differ-
ently, for example by naming factors in different ways depending on their fields,
which can create a communication gap [9,10]. Consequently, complex problems
involving multiple stakeholders often involve participatory modeling, which allows
to externalize [11] and hence compare [8] the mental models of stakeholders.
There are various approaches to participatory modeling, depending on whether
the objective is to be able to simulate a system [12,13] (e.g., to quantitatively
assess how much effect an intervention would have) or only capture its struc-
ture [14] (e.g., to qualitatively assess what an intervention would affect). In the
example of obesity, qualitative approaches may be realized by systems dynamics
or agent-based modelling [15] while qualitative approaches may generate ‘sys-
tems maps’ or ‘diagrams’ [16]. The creation of systems maps is particularly
important either as an endpoint (for qualitative analysis of stakeholders’ men-
tal models), or as a step toward the creation of quantitative models [14] (e.g.,
starting with a Causal Loop Diagram to produce a Systems Dynamics model).
Causal maps are a widely used form of systems maps, in which concepts are
represented as nodes and their causal connections are captured through directed
edges (Fig. 1).

Fig. 1. Sample causal map where “over-eating” is the problem of interest [17].



The Artificial Facilitator: Guiding Participants 113

Participants interested in developing causal models have often done it with
the support of a trained facilitator, who elicits concepts and causal relations [18–
22]. Alternatively, tech-savvy participants may receive training and indepen-
dently develop causal models using software such as cMap (common in education
research), MentalModeler (most used in socio-ecological systems), or Vensim
(typical in health and systems engineering). However, both approaches have
limitations. A trained facilitator can provide ample guidance, but may be costly
or unavailable. A software may be free and available anytime, but it does not
guide the participant through the process of building a causal map. In addition,
both approaches rely on a visual inspection of the map as it is built, which does
not easily scale as participants start to have many concepts and/or interrelation-
ships. For example, a participant may add a concept that is actually a synonym
of a concept already present. To notice this redundant concept, the facilitator
and/or participant would need to manually look at all other concepts, which
becomes prohibitive as the number of concepts increases.

There is thus a need for an approach to causal model building that can
be available at any time, without costs, and scales easily. In this paper, we
address this need by leveraging voice-activated virtual assistants (Amazon Alexa)
to design and implement a virtual facilitator. Our solution guides participants
in developing a model through a conversation (like a human facilitator), but is
available at anytime without cost (as a software) and continuously examines the
map to avoid typical issues such as synonymy of concepts.

The remainder of this paper is organized as follows. In Sect. 2, we provide
background information on the process to create a causal map, and we briefly
discuss recent uses of conversational agents built on Amazon Alexa, Microsoft’s
Cortana, and Apple Siri. In Sect. 3, we present the process that our artificial
facilitator follows, and we cover its implementation in Sect. 4. Several examples
are offered in Sect. 5, where a participant interacts with our technology to develop
a model. Videos of the interaction are provided as supplementary online material.
Finally, Sect. 5 contextualizes the implications of this work for the development
of causal models and participatory modeling in general.

2 Background

2.1 Why Do We Create Causal Maps?

A causal map is a conceptual model. In Modeling and Simulation (M&S), con-
ceptual models are the first stage of model development before quantifying
nodes and relationships (mathematical model [23]) and possibly implementing
the model as code (computational model). Conceptual models serve multiple
objectives such as identifying key elements and aspects (thus delineating the
boundaries of a system) or externalizing hypotheses through a transparent list
of expected relations [14]. These objectives may be sufficient to warrant the
development of a conceptual model as a final product. In this case, the concep-
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tual map is often analyzed using network theory2. A common type of analysis
is the identification of clusters or communities to divide a complex system into
broad themes, as exemplified by the Foresight Obesity Map [25,26], maps for
the Provincial Health Services Authority [27], or the recent work of Allender,
McGlashan and colleagues [28,29]. Other analyses may include the centrality, to
identify leverage points in a system [30,31]; an inventory of loops, to better char-
acterize and possibly change the dynamics of the system [32–34]; an exploration
of disjoint paths between factors, to capture how a policy impacts an outcome
in multiple ways [4,33]; or a comparison of maps, to understand how different
are the mental models of participants [10,35].

Map-liked artifacts may be constructed solely from data, for instance as
Structured Equation Models (SEM) or Fuzzy Cognitive Maps (FCMs) [36].
Alternatively, traces produced by an analyst in exploring the data can be struc-
tured in a map [37,38], or the literature on a topic can be synthesized into a
map [39]. It would be overly reductive to categorize such data-driven maps as
‘objective’ compared to participant-driven maps being deemed ‘subjective’. Data
can also have “biases, ambiguities, and inaccuracies” [40] and the inference pro-
cess to build a map may not be perfect. Our focus is on participatory modeling
(PM), in which participants drive the development of causal maps. Participatory
modeling serves a different (and sometimes complementary) purpose than data-
driven modeling. As detailed elsewhere [17], data-driven modeling may strive for
accuracy with respect to the data whereas PM aims to be transparent and repre-
sentative of the participants’ mental models. PM can thus be employed in ‘soft’
situations that lack data and rely on human expertise [41], to support decision-
making processes [42], or to understand what actions would be acceptable to
various stakeholders [43].

The elicitation process consists of externalizing the mental model of a par-
ticipant or group into a map. The elicitation process is first and foremost a
facilitation process: we want to support participants in expressing their per-
spectives, rather than judge whether what they think is ‘right’ given our own
ideas. Research in cognitive sciences has long been concerned with how humans
store mental models, or their “conceptualization of the world” [44]. This storage
takes place in semantic memory, which provides functional relationships between
objects. As we previously summarized, “if mental models are published and
shared in the form of maps, it owes to the fact that we seek to capture seman-
tic memory whose structure is network-based” [8]. On one extreme, freeform
approaches such as Rich Pictures pose no constraints on the creation of maps [45],
which simplifies the process for participants but limits the analytical possibili-
ties. At the other extremes, concept maps and mind maps have a very structured
process that lists concepts (e.g., via brainstorming), group them, link them, and

2 A conceptual model is an aggregate model in which factors or concepts are connected.
This is different from a ‘social network’, which is an individual model in which nodes
represent individuals rather than factors. Although the methods are often similar
(e.g., centrality, community detection), the application of network science to social
networks is often presented as ‘social network analysis’ [24].
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label the links. However, this process precludes the presence of some structures
(e.g., mind maps are trees so they cannot contain cycles) which are important
to characterize the dynamics of a system. Causal maps occupy an intermedi-
ate position: the development process is more guided than rich pictures, less
restricted than concept maps and mind maps, and any network structure can be
produced by participants3.

2.2 How Do We Create Good Causal Maps?

The process to produce a map as shown in Fig. 1 is relatively simple: participants
create concept nodes, and link them by indicating the causal relationship to be
an increase (‘+’) or a decrease (‘−’) [48,49]. However, at least three issues may
arise if the facilitator does not provide further guidance4. First, participants
need to choose node labels that have an unambiguous quantification: having
‘more’ or ‘less’ of this concept should be a straightforward notion. For instance,
labeling a concept as ‘weather’ does not work, since having more or less weather
is undefined. However, having more or less rain would be defined. A facilitator
thus regularly ensures that labels are quantifiable, or prompts for clarifications
that would change the label. Second, users may forget about concepts that they
already have, and add one with a similar name. Facilitators thus continuously
monitor the maps to either avoid creating a redundant concept, or merge them
once they are discovered. Given the tremendous potential for (subtle) variations
in language, discovering equivalent concepts is a difficult problem, particularly
as the number of concepts increases [9,10]. Third, case studies have shown that
cognitive limitations make it difficult for participants to think of structures such
as loops and disjoint paths [50,51]. In particular, Ross observed how peculiar it
was that “those who set policy think only acyclically, especially since the cyclical
nature of causal chains in the real world has been amply demonstrated” [52].
Without paying particular attention to loops, participants may produce star dia-
grams with the one central problem at the core, and every other factor directly
connecting to it. Facilitators may thus prompt participants extensively for rela-
tionships, to minimize the risk of missing loops or additional paths [27,33].

3 There are at least two limitations to this representation. First, networks or graphs
only represent binary relationships. However, participants may think of non-binary
relationships, for instance when three concepts are directly involved together. While
we have long been aware that cognitive structures could generally be represented
by relations between any number of concept (e.g. using a hypergraph), it has been
common practice to limit the structure to a graph [46]. Second, the network is only
used to represent what is true (i.e. the existence of a causal connection between two
factors) rather than what is false. As noted by Johnson-Laird, mental models also
include counterexamples, which are important in decision-making processes [47].

4 Some of these issues are also addressed in our tutorials at https://www.youtube.com/
watch?v=OdKJW8tNDcM and https://www.youtube.com/watch?v=D-2Q2IHclo4.

https://www.youtube.com/watch?v=OdKJW8tNDcM
https://www.youtube.com/watch?v=OdKJW8tNDcM
https://www.youtube.com/watch?v=D-2Q2IHclo4
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2.3 Smart Conversational Agents

The term ‘conversational agent’ may be used loosely for any system that can
carry on a conversation with a human. However, there are significant differences
across systems. Unlike chatbots, smart conversational agents are not limited to
performing simple conversations. And unlike embodied conversational agents,
they do not provide computer-generated characters to mimic the movements or
facial expressions of a virtual interlocutor. Smart conversational agents are at the
confluence of speech processing, natural language processing (NLP), and artifi-
cial intelligence (AI). As detailed by Williams and colleagues [53], voice-activated
devices such as Amazon Alexa or Apple Siri start by converting what a user said
(i.e., an audio utterance) into text using automatic speech recognition. Words
are then processed through spoken language understanding (SLU) and passed
onto a dialog state tracker (DST), which results in identifying an appropriate
response. The words in the response are prepared by natural language generation
(NLG), and turned into audio by text-to-speech (TTS).

Smart conversational agents can be designed in many ways, as shown in
the recent review by Laranjo et al. applied to healthcare [54]. A conversation
may not be oriented toward the completion of a specific task, but takes place
for its own sake. The flow of the discussion may be controlled by the system
and/or the user. Interactions can be via spoken language and/or written lan-
guage. Finally, the dialogue management may take the user through a sequence
of pre-determined steps (i.e., a finite-state system), elicit an input and parse it
using a template to decide the dialogue-flow (i.e., a frame-based system), or take
an agent-based approach to focus on beliefs and desires. In the specific healthcare
context reviewed by Laranjo et al., agent-based approaches were uncommon (1
study) while finite (6 studies) and frame-based systems (7 studies) were equally
common [54]. However, when interactions rely on voice and a task has to be
accomplished, then the frame-based design is so common that the system may
be presented as a slot-based dialog system [55].

3 Process in an Artificial Facilitation

As described in Sect. 2.2, the process needs to (i) obtain concept labels that
are quantifiable and distinct from labels already used, and (ii) help participants
provide relationships to minimize the risk of missing essential structures such as
loops. To help participants track relationships, a map building process can be
conceptualized as a graph traversal : we want to elicit/visit all of the concepts
(i.e. nodes) that pertain to the user’s mental model, and we move from a concept
to another using a relationship. Unlike a graph exploration in which we typically
come back to the first node, the map building process ends on an arbitrary node.
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Fig. 2. Process to start a model and provide the first causes.
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Fig. 3. Continuation of the process, showing how to get additional causes, get another
layer of causes, or removing a causal edge.
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Box 1. Sample conversation between a user and our facilitator using a
depth-first search.

“Let’s discuss obesity. What is one cause of obesity?
- Obesity is caused by unhealthy foods.
- What do you think would be one reason for having unhealthy foods?
- They’re cheaper than healthy ones.
- And why are they cheaper?
- Because of government subsidies for food production.
- What’s one driver of agricultural subsidies?
- I think that’s going off topic.
- Ok. Let’s go back. You said unhealthy foods are cheaper than healthy
ones, because of agricultural subsidies. Any other reason?
- Not that I can think of.
- That’s fine. Let’s go back. You said people have unhealthy foods because
of prices. Any other cause?”

Two typical approaches to a graph traversal are a depth-first search (DFS)
and a breadth-first search (BFS). Starting from a root, a DFS follows one unex-
plored node, and from there visits another unexplored node, thus going as far
as possible. When it cannot go further, it backtracks until it can branch in a
new direction. This approach potentially undesirable in a facilitated process for
at least three reasons. First, it can take participants on tangents, quickly going
away from the main topic until they realize that factors are no longer relevant
to the problem space. As a result, the map may be imbalanced, and a high
cognitive load is placed on the individual who needs to frequently think of the
problem’s boundaries. Second, often going back to a node may feel less natural
than going forward, possibly coming across as ‘jumping’ between ideas. Third,
a DFS requires that the user only provides one new concept each time, and
may thus ask many times about the same node. This is more cumbersome than
providing all known concepts at once, at moving on. These points are illustrated
through an example of a DFS-based conversation in Box 1.

Starting from a root, a BFS asks for all connected nodes. Intuitively, it
acquires the complete layer of connected concepts at distance 1 from the starting
one. Then, it goes through all of these concepts and acquires all of their neigh-
bors, thus completing the layer at distance 2. By going through entire layers at a
time, it avoids taking participants on tangents. By asking whether participants
want to continue when an entire layer is done, it asks for a conscious monitoring
of the problem boundary at specific moments instead of offloading this respon-
sibility onto the user at every question. By going through layers, it only goes
forward (i.e. uses a queue) instead of backward (i.e. using a stack in the DFS).
Finally, by asking for all connected concepts at once, users have the natural
opportunity to share all of their thoughts instead of restricting themselves to a
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single new concept. For these reasons, our artificial facilitator uses a breadth-first
search. The functioning of a BFS is illustrated via a conversation in Box 2.

Box 2. Sample conversation between a user and our facilitator using a
breadth-first search.

“Let’s discuss obesity. Can you share all of the contributors to obesity?
- Eating unhealthy foods, lack of physical activity.
- Alright, these are the direct drivers. Do you want to go further and share
what do you think drives these?
- Sure.
- What do you think would be the reasons for eating unhealthy foods?
- Could be a coping mechanism for stress or depression, an affordability issue
because they’re cheap, or a personal taste preference.
- And what about physical activity?
- Could be obesity itself, because it creates some barriers. Or a lack of access
to facilities, or a fear of engaging in physical activity.
- So we’ve now looked at indirect drivers. Do you think it’d be relevant to
discuss their causes?”

Note that, while the BFS is meant to cover more concepts, the appearance
of previous concepts can create loops. As illustrated in Box 2, we have a loop
from obesity to a lack of physical activity, which itself contributes to obesity.

As shown in Figs. 2 and 3, our process utilizes the layer-by-layer approach of
the BFS. It also closely monitors the names of concepts, as shown in Fig. 2 (inset
A). We actively prevent the creation of similar concepts, informing the user that
they are already present in the map under a possibly different name. We also
attempt to avoid the use of concepts that cannot be quantified, thus promoting
more operational definitions of concepts. The technology used to realize these
objectives is detailed in the next section.

4 Implementation of Our Artificial Facilitator

Our implementation is task-oriented as we seek to guide a participant in exter-
nalizing their mental model. The virtual facilitator controls the flow of the con-
versation by asking questions. Interactions in the deployed version are exclusively
vocal, but developers in Amazon Alexa also have access to a console that takes
written input (for testing only). Dialogue-management uses a frame-based sys-
tem. All of these technical choices were briefly discussed in Sect. 2.3.

Our code is provided at https://github.com/datalab-science/causalMapBui
lder. Our implementation involves several technologies, shown in a high-level
view in Fig. 4 and detailed in Table 1. We use Amazon Alexa as it provides auto-
matic speech recognition and text-to-speech, in addition to working on three out
of four smart speakers [56]. We interact with the Alexa Skills Kit (ASK) through

https://github.com/datalab-science/causalMapBuilder
https://github.com/datalab-science/causalMapBuilder
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Table 1. List of technologies and versions.

Technology Version

Amazon web services Accessed october 2018

Alexa skills kit (ASK)

Dynamo DB

Amazon S3

Google natural language API 1.2 GA release

Python 3.6

NetworkX 2.2

NLTK 3.3

Ubuntu 18.04.1 LTS

Fig. 4. High-level view of the prototype.

a program written in the Python language, stored on Amazon S3 (Amazon Sim-
ple Storage Service), which is invoked by Amazon lambda functions when objects
are created or when intents are triggered through user interactions. The com-
plete conversation log generated during a session with a user is stored in Amazon
Dynamo DB, which is Amazon’s fully-managed solution for NoSQL databases.
The NetworkX library for Python serves to store and visualize the map. When
the discussion ends, the visualization is emailed to the user together with a file
containing a list of edges.

Google Natural Language API is queried extensively to find entities. Consider
that the artificial facilitator asks “what causes obesity?” and the user responds
“I believe that obesity is caused by an excess in eating and not enough exercise”.
Google Natural Language API will extract the entities ‘obesity’, ‘excess’, ‘eating’,
and ‘exercise’. Since an answer often includes a repetition of the subject, we
automatically ignore user-provided entities that were part of the question. In
this example, ‘obesity’ would be ignored, thus there are only three new concepts:
‘eating’, ‘excess’, and ‘exercise’. As detailed in Sect. 3, we must ensure that the
concepts are not already used. When a new concept node is created, we use
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WordNet (accessed via the NLTK library in Python) to retrieve all cognitive
synonyms (i.e., synsets). If the user later mentions an entity that belongs to
these synsets, the artificial facilitator points out that it already exists under a
different name.

A causal map is not supposed to have unquantifiable concepts, but users
may lose track of this requirement. If Google Natural Language API identifies
an entity which is unquantifiable, then our application can use it in nonsensi-
cal questions. For instance, ‘excess’ was identified as an entity although it is
unquantifiable. The application may continue by asking “what causes excess?”.
We tested the application with 8 subjects over two months to identify such prob-
lematic entities. Since we cannot manually identify all such entities, we use the
ones we identified as seeds to automatically fetch all similar entities, thus con-
stituting a large dictionary of entities to ignore. The creation of this dictionary
takes three steps performed using WordNet:

(1) We have a set of entities, identified during testing as both (i) fetched by the
Google Natural Language API and (ii) unquantifiable. For instance, consider
{lack, bunch}.

(2) For each word, we retrieve all its hypernyms, which are words with a broader
meaning (e.g., color is a hypernym of red). Here, {lack, bunch} is trans-
formed into {need, agglomeration, collection, cluster, gathering}.

(3) For each hypernym, we retrieve all its hyponyms, which are more specific
words (e.g., hyponyms of color would include red, blue, and green). In this
example, {need, agglomeration, collection, cluster} would be expanded into
a large set including {lack, necessity, urge, . . ., bunch, pair, trio, hive, crowd,
agglomeration, batch, block, ensemble, . . ., population}.

Amazon Alexa development features were altered during the development
of the artificial facilitator. Our initial implementation relied extensively on an
intent (i.e., a template) known as AMAZON.LITERAL, which allowed for free-
form speech input instead of a defined list of possible values. This slot was
deprecated on October 22, 2018. Consequently, the implementation presented
here relies on custom slots.

5 Case Study: Creating Obesity-Related Maps

We used three case studies to test our system. In the first two case studies,
we verified whether a participant could (re)create a previously developed causal
map when using our artificial facilitator (Fig. 5). Leveraging the broad vari-
ety of languages and accents supported by Alexa, we set the device to Indian
English for these two cases, as it is the language spoken by our participant. In
the third case, the device was set to American English, and we tested addi-
tional features such as detecting redundant concepts or allowing the user to
correct the map. All case studies were performed using an Amazon Echo Dot
Device version 618571720. We recorded the discussion and the resulting map
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Fig. 5. Two previously published causal maps from health behaviors research [17].
Each map is centered on a different problem or ‘focal factor’. The original study added
an intervention to these maps as part of a virtual trial.

that our artificial facilitator emailed to the participant. To provide full disclo-
sure, our three recordings can be viewed at https://www.youtube.com/playlist?
list=PL7UTR3EL44zrkwrcDkiSwV-7kL0Nv6fQ5

Our first two case studies demonstrated that the structure of the maps could
correctly be created using our artificial facilitator. We observed three issues due
to the automatic detection of entities. First, it can lead to significantly shorter
concept labels (https://www.youtube.com/watch?v=57tq0w4OEPw&t=324s).
The original map stated that weight discrimination was driven by excess weight,
fatness perceived as negative, and a belief in personal responsibility. Our auto-
matic process resulted in weight discrimination being driven by weight, fatness,
and responsibility. This loses some nuances: it is not fatness in itself that leads
to discrimination, but the societal belief that fatness is an undesirable trait.
The problem is aggravated when concepts that should be different are shortened
such that they are indistinguishable. For instance, ‘cardiovascular diseases’ and
‘metabolic diseases’ are very different medical situations. However, entity recog-
nition sees both as ‘diseases’ and thus conflates them, which results in structural
errors for the map. Second, entity recognition is a bottleneck of the application
in terms of time: users can have to silently wait for several seconds before entities
have been processed. These awkward silences disrupt the flow of the discussion.
Finally, accents can lead to very different performances in terms of entity recog-
nition. Results are not only different between Indian and American participants,
but also among Americans (e.g., from the South or the Midwest). As noted
by Rachael Tatman, the training dataset for smart speakers results in working
“best for white, highly educated, upper-middle-class Americans, probably from
the West Coast, because that’s the group that’s had access to the technology
from the very beginning” [57].

The third case study demonstrated that additional features of our artificial
facilitator worked as specified. For instance, the participant stated that over-
eating was caused by over-indulgence, but these two concepts are considered
interchangeable per WordNet. Consequently, the artificial facilitator informed

https://www.youtube.com/playlist?list=PL7UTR3EL44zrkwrcDkiSwV-7kL0Nv6fQ5
https://www.youtube.com/playlist?list=PL7UTR3EL44zrkwrcDkiSwV-7kL0Nv6fQ5
https://www.youtube.com/watch?v=57tq0w4OEPw&t=324s
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the user (https://www.youtube.com/watch?v=U2mYkSLE9NE&t=40s). We
also confirmed that users were able to remove causes when they have been
incorrectly captured (https://www.youtube.com/watch?v=U2mYkSLE9NE&
t=213s). Finally, we verified that the virtual facilitator did repeat questions when
prompted by the user (https://www.youtube.com/watch?v=U2mYkSLE9NE&
t=95s).

6 Discussion

In collaborative modeling, participants externalize their mental models into vari-
ous artifacts such as causal maps. This externalization can be guided by a trained
facilitator, but there may be associated costs, and availability is limited. Alter-
natively, free software can be used at any time to create causal maps but they do
not guide participants. In addition, neither facilitators nor current software can
easily cope with larger causal maps, for instance, to avoid the creation of redun-
dant concepts. To address these limitations, we designed an artificial facilitator
that leverages voice-activated technologies. We implemented the prototype via
Amazon Alexa, and demonstrated its features through three case studies.

As our system constitutes the first use of voice-activated technologies to
build causal maps in participatory modeling, we are at the early stage of a
multi-year process. There are several opportunities to improve the system or
address additional research questions in the short- and medium-term. In the
short-term, our prototype faces two limitations. First, we used hand-crafted
rules, which is more in line with early spoken dialog systems than with current
ones. Other approaches use generative methods (e.g., Bayesian networks) which
often involve hand-crafted parameters, or discriminative methods where param-
eters are inferred by machine learning from the data. As stated by Henderson,
“discriminative machine-learned methods are now the state-of-the-art in dia-
log state tracking” [55]. However, machine learning requires data to learn from.
There is currently no corpus of model building involving a facilitator and one
participant. Such sessions are often conducted with many participants, and the
recordings are not released as the consent forms generally include an anonymity
clause. Designing a better artificial facilitator will thus start by assembling a
large set of recordings between a facilitator and a participant, for instance by
modeling a system in which participants would be comfortable in publicly shar-
ing their perspectives.

Second, our approach extensively relies on Alexa followed by Google Natural
Language API to identify entities. Our prototype struggled with creating causal
maps with specialized terms (e.g., from the medical domain) as Alexa could
not identify them in speech and/or the API would not see them as relevant
entities. The API may improve over time, and it may also be assisted with
ontologies to identify (i) which specialized terms may be used, and (ii) which
term is likely to be used following another one. Similarly, improvements in the
API would reduce the processing time which currently results in many awkward
seconds of silence. We note that improvements in the API or in Alexa Skill Kit

https://www.youtube.com/watch?v=U2mYkSLE9NE&t=40s
https://www.youtube.com/watch?v=U2mYkSLE9NE&t=213s
https://www.youtube.com/watch?v=U2mYkSLE9NE&t=213s
https://www.youtube.com/watch?v=U2mYkSLE9NE&t=95s
https://www.youtube.com/watch?v=U2mYkSLE9NE&t=95s
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will automatically benefit the quality of our application, without changes in our
design or implementation.

In the medium-term, research may explore how an artificial facilitator can
provide guidance in aspects that are necessary yet challenging for trained facil-
itators. The structure of causal maps is normally analyzed after they have been
built, for instance by identifying leverage points via centrality [30,31] or inven-
torying loops that drive the dynamics of the map [32–34]. However, a large
map of a complex system that contains no loops may already be identified as
problematic, suggesting that some causal edges are potentially missing. Con-
sequently, the artificial facilitator can leverage network algorithms to analyze
the structure of the map as it is built, thus informing participants of potential
issues and approaches to address them. The artificial facilitator can also build
on natural language processing in many ways that go beyond the identifica-
tion of entities. Causal maps sometimes start with a brainstorming process, in
which many concepts are generated and then grouped. Our artificial facilitator
can use the semantic relatedness of concepts to inform the user about potential
themes, which may result in combining several overly-detailed concepts into a
more abstract category.

7 Conclusion

We successfully used Alexa to develop a voice-activated assistant that guides a
user in creating a causal map. We addressed the challenge of finding appropriate
concept names. In future work, we will automatically inform the user when
concepts related to a theme may be used instead of narrowly defined concepts,
and we will monitor the structure of the map as it is being built to support users
in identifying loops.

Supplementary Material

Our code is available at https://github.com/datalab-science/causalMapBuilder.
Our three case studies (Sect. 5) as well as a video overview can be accessed
at https://www.youtube.com/playlist?list=PL7UTR3EL44zrkwrcDkiSwV-7kL
0Nv6fQ5
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