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Abstract. This paper applies visualization techniques to the high-dimensional
parameter spaces of a particular type of neural network, the Multi-Layer Per-
ceptron (MLPs). MLPs are the archetypal “deep-learning” machines, digital
imitations of biological brains. MLP parameter spaces are data structures
holding the neuron interconnect-weights “learned” by these machines during
training. These structures are abstractions of biological systems and are not
generally amenable to analysis by conventional means.

The terms parameter space and (the more general) machine space will be used
here interchangeably.

There are several things we would like to know about this machine as a
solution to our problem, among them:

e Has our training algorithm converged “well”? (Is the trainer stuck, walking
a ridge, etc.).

e Did we select the proper architecture for this classifier? (Indicated by the
relative complexity of metrics in machine space).

e Did we select the proper training algorithm for this classifier? (Indicated by
the regularity of the performance in machine space).

e Have we found a global optimum? (Are other optima/paths to optima
visible?).

e How stable is our machine? (Are we sensitive to round-off, e.g., are we
balancing on a needle?).

These questions are very difficult to answer analytically and are not very
effectively addressed by sampling the feature space (e.g., blind testing). These
are questions about the machine space.

Beginning with some background for those not familiar with deep-learning
machines, we present a methodology for visualizing their parameter spaces, and
describe how visual analysis of these spaces can inform developers.

Methods are shown for creating visual representations of performance man-
ifolds, and how these representations assist in the characterization of certain
model pathologies. In particular, performance manifolds for deep-learning
machines (multi-layer perceptrons) are shown and interpreted.

© Springer Nature Switzerland AG 2019
D. D. Schmorrow and C. M. Fidopiastis (Eds.): HCII 2019, LNAI 11580, pp. 192-210, 2019.
https://doi.org/10.1007/978-3-030-22419-6_15


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22419-6_15&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22419-6_15&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22419-6_15&amp;domain=pdf
https://doi.org/10.1007/978-3-030-22419-6_15

Visualizing Parameter Spaces of Deep-Learning Machines 193

Keywords: Dual spaces - Visualization - Machine learning - Perceptron

1 Background

In what follows, vectors and vector-valued functions are indicated by underscoring,
e.g., V, A(x); the norm of a vector is denoted | V|. The set of real numbers is denoted by
R, and n-dimensional Euclidean space by R".

Parametric regression models are characterized by the specification of a model
architecture and instantiated by the assignment of values to the model parameters. The
set of all possible parameter assignments for a given model is its parameter space. For
example, the parameter space for the linear functionals L(RX) is the dual space,
L * (R¥). Another example of a parameter space is RX*' regarded as the space of
vectors of coefficients for the real polynomials of order K in the real variable
x. Parameter spaces can be defined for neural networks, kernel-based classifiers, and
other parametric models by unambiguously assigning each model parameter (weight,
coefficient, parameter, etc.) to a dimension in some Euclidean space R”.

Adaptive learning problems are often formulated as regressions whose values are
known on some training set. For these problems, an instance from a family of functions
is sought that maps each training datum to a specified target value. The development of
classifiers, estimators, and a wide range of decision support problems is a parameter
space search that constitutes an instance of machine learning.

Assessment artifacts like correlation tables on the input side, and confusion
matrices on the output side, provide secondary measures of model operation: they can
be used to assess model inputs and outputs, but not the operational processes that tie
these together. Obtaining primary measures of model operation requires analysis of the
parameters determining how model outputs are developed from feature inputs; it is the
parameters that contain information about model stability (round-off, convergence,
range problems) and model pathology (e.g., over/under parameterization, multi-co-
linearity).

However, while visualization is often used to analyze, conform, and regularize
input and output data, it is almost never applied to the model parameters developed,
owing to their high-dimensionality and general inscrutability.

The machine learning problem can be viewed as a search of some parameter space
for settings that enable a regression function to model the outputs of a decision
operation. This problem can be thought of in terms of the underlying geometry of these
spaces, suggesting the use of ray tracing as a method for visualizing aspects of machine
learning.

A family of functions selected as candidates for a parametric regression (and so
having a common domain and range) is a Model Space.

The common domain of the functions in the Model Space is called the Feature
Space; it contains the sets of features to be mapped to their respective target values. The
common range of the functions in the Model Space is the Goal Space; it contains the
target values for the regression.

A symbolic representation of an attribute is referred to as a feature (e.g., size,
quality, age, color, etc.). Features can be numbers, symbols, or complex data objects.
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Features are usually reduced to some simple form before modeling is performed; for
the sake of definiteness, we will assume here that all features are represented by real
numbers.

In the context of modeling, it is customary to identify an entity being modeled with
the totality of its features (c.f., the philosophy of “Essentialism”). Once features for
modeling have been selected (and coded as real numbers), a feature space can be
defined by assigning each feature to a specific position in an ordered “tuple”. Each
instance of an entity having the given features is then represented by a point in n-
dimensional Euclidean space: its feature vector. This Euclidean space, the feature space
for the domain, has dimension equal to the number of features.

When known, the target value for a feature vector is often referred to as its “ground
truth”, and the set of all possible target values for a regression problem is its Goal
Space. For continuous estimation problems (e.g., assigning a credit score), the Goal
Space is usually a subset of R (e.g., [350, 850]). For classifiers, the Goal Space is
usually an initial segment of the Natural Numbers (e.g., class identifiers 1, 2, ..., M).

For many problems, building a regression model requires a set of feature vectors,
each having a known target value. Machine learning methods that use such a “set
having ground truth” are referred to as supervised learning methods.

The set of all vectors of parameters which instantiate a particular function in the
Model Space is the Parameter Space.

Example I. The diagram in Fig. 1 below depicts a binary (two class) classifier in a 3-
dimensional Feature Space. As a two-class problem, the Goal Space is the two-point
set {1, 2}.

The feature vectors of the two classes have been separated by a plane. Class 1
vectors are to the left and above the plane, and Class 2 vectors are to the right and
below the plane. Such a separating structure in feature space is called a “Decision
Surface”.

All decision surfaces that are planes in this feature space are completely charac-
terized by the values of the three coefficients A, B, and C; therefore, the Parameter
Space for this parametric regression problem is R”.

Example II. An estimator is desired for tomorrow’s temperature at a particular
location as a function of time-of-day. A parametric regression for this modeling
problem might use the following:

e Feature Space (the empirical inputs to the model): [0, 24] in hours after midnight
(time-of-day)

e Goal Space (the regression outputs): real interval [—100, 130] in degrees Fahrenheit
(temperature)

e Model Space (the set of regression functions): Real polynomials of degree < 6 on
[0, 24]

e Parameter Space: R® (ordered 6-tuples of coefficients that instantiate a polynomial
regression)

Developing parametric regressions is an optimization problem, where some alge-
braic, iterative, or recursive technique is employed to find, for the set of points in
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Fig. 1. A pictorial representation of a classification problem.

Feature Space, a vector of parameters in the Parameter Space that instantiates a function

in Model Space mapping Feature Space inputs to “correct” Goal Space outputs.

Parameters are the (usually numeric) settings necessary to make model formalisms

explicit. Examples of parameters for various learning machine regressions are:

Polynomials: Coefficients (constant multipliers for powers of the variable(s))
Fourier Series: Fourier Coefficients (amount of energy in each frequency)
MLP: Interconnect weights (strengths of connections between neurons)

conclusions)

e Metric (K-means, RCE, matched filters): cluster centroids and weights

BBNs: conditional probability tables (conditional probabilities connecting facts to

Kernel-Based-classifiers (SVM, RBF): regression coefficients, base-point coordinates

To facilitate optimization, an objective function is defined on the Parameter Space.
This objective function is usually a real valued function having the property that its
extrema correspond to vectors of parameters whose model instances are solutions of the
corresponding regression problem. In the example just given, a reasonable objective
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function would be the RMS error of the polynomial model; the optimization would be
an algorithm (e.g., Gradient Descent) that searches Parameter space for model instances
that minimize the RMS regression error. For classification problems, an oft used
objective function is the percent of total instances assigned to the correct class in a
training set.

2 Performance Manifolds

This section defines performance manifolds and describes them for kernel-based
regression models.

A parametric regression on R" is a real-valued function G : R® x RN = R . This
notation is employed to make a distinction between the feature vectors at which the
instantiated regression is evaluated ({(x1,x2,...,xy)}eR"), and the regression
parameters ({(cy,ca,...,cp)}eRP) characterizing an instance of G.

Let f be a function in a Model Space, and let E be an objective function for a
parametric regression problem on a training set. Define a scalar field Q by assigning to
each vector in the Parameter Space the corresponding value of the objective function.
The restriction of Q to a manifold in the parameter space Q is called a performance
manifold for f. Each point off will generate its own performance manifold. In this paper,
performance manifolds will be affine spaces of co-dimension 1 (space-separating
hyperplanes).

Let T be a set of feature vectors in R" having known ground truth for each vector
(viz. supervised learning). When such a set is used for model construction, it is called a
training set. Let Q be an objective function. For example, Q could be the percentage of
vectors of T assigned correct regression values from this instance of G; for a continuous
regression, Q could be the RMS error of G on T.

Suppose we are given a parametric regression G, a well-posed training set T of
feature vectors, and an appropriate objective function Q. Then each vector of param-
eters p € R” has associated with it a corresponding performance score Q on that
training set. Q : R? = R is a scalar field and finding an optimum instance of G is a
search of R” for extremal values of this scalar field. Such an optimum resulting from a
training activity will here be called the “Best” machine.

To facilitate visualization of the field Q, which is almost always high-dimensional,
we might extract and display low-dimensional affine subsets of R” colorized by the
values assumed by Q. These manifolds, which are “slices” of the parameter space
colorized using the values of Q, are performance manifolds. As will be seen, visual-
ization of these manifolds gives insight into the performance of the underlying para-
metric regression models.

2.1 Performance Manifolds for Kernel-Based Regressions

Performance manifolds for kernel-based regressions are relatively simple, as the fol-
lowing analysis for G:R X R = R illustrates.

Let x;, x5, ..., Xy € R'be a training set, 7. Let the kernel functions be Fi(x), i = 1,
2, ..., D.
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Define the vector-valued function Fi= (F(x), F2(xy), ..., Fp(xi)), k=1, 2, ..., N,
and let 6= (50 51’ oo 50[)71 € RD.

Forx € R’, let Gy (x) = > i—o.p—1 a; Fi(x) be a regression model based on the kernel
functions F;, having coefficients a;. Then Gy (x) is a polynomial in x of degree D — 1.
Suppose that this regression model has error 0 (i.e., it is a “Best” machine for this
problem).

Let Gs (x) = > i—0.p—1 (a; +0i) Fi(x) be the corresponding model whose i" coeffi-
cient a; has been perturbed by ;.

The modeling error introduced by perturbing the coefficients of G at x; by can be
denoted:

Ek(é) = Go(xk)_Gé(xk)7k = 1727 N
= 2imop1 GiFi(0) = X icg pi (@i + 1) Fi(x) (1)
= = i1 9iFi(x)
= —é ' Ek

The RMS error of Gs(x;) as an approximation of Gy(x;) over the set x;, xp, ...,
xy € R is:

E@) = v/[(1/N) S (B0

2
= (8/ VNV [(1/N) Sy {17l cos* (04) }] @
where 05, is the angle between ¢ and Fy in RP. Therefore, the 2-dimensional perfor-
mance manifolds of Q = E(J) show a roughly radial symmetry, with highest perfor-
mance at {ay_a; . ap.;}, dropping off at larger distances. In Fig. 2, the error is O in the
center where | 3 | = 0, and increases with increasing | 8 |. Figure 3 shows an example of
how problem complexity can affect performance manifolds.

[] High Performance

&
\
[ Moderate Performance Performance Manifold
(Scalar Field formed by restricting
B Low Performance an objective function to a hyperplane)

B Very Low Performance

Fig. 2. The performance manifold for a kernel-based regression has radial symmetry
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Fig. 3. Simple pictorial example showing feature space and parameter space for a binary
classifier in the cartesian plane.

3 Creation of Performance Manifold Displays

In order to establish the parameter space R” for visualizing performance manifolds for
MLP’s, the model parameters can be placed in some systematic order. Here we use
input layer neuron weights, hidden layer neuron weights, finally output layer weights.
The topology (#layers, # neurons in each layer, and # inputs coming into each layer)
must also be preserved so that the MLP can be reconstituted (Fig. 4).

The MLP topology must also be saved with the interconnect weights:

# features = # inputs to each input-layer neuron = 3
# input-layer neurons = # inputs to each hidden layer neuron = 2

# hidden layers = 1
# neurons in each hidden layer = # inputs to each output layer neuron = 4
# output neurons = # classes in Goal Space = 2.

3.1 Mapping a Performance Manifold to the Computer Display

Consider the two vectors EI and E2 in R”:

E;=(1,0,1,0, ...,1,0) (here D is even; if odd, the last to values would be 0,1)
E»=(0,1,0,1, ...,0,1) (here Dis even; if odd, the last two values would be 1,0)
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Class 1 Output Class 2 Output Outputs: largest indicates
the machine's decision

[ws11[wat2|wa1s[wa1a] [wa21]wa2z2|waza|wa2a]  Output Layer (Layer 3)

|w221|w222| |w231|w232| |w241|w242| Hidden Layer (Layer 2)

|w111 |w112|w113| |w121| w122|w123 | Input Layer (Layer 1)

(X,Y,2) Input Data (Feature Vector)

The 22 interconnect weights for this MLP instance can be represented as the parameter space vector:
P = (W111,W112W113W121,W122,W123,W211,W212,W221,W222,W231,W232,W241,W242,W311,W312,W313,W314,W321,W322,W323,W324)

Fig. 4. Labeling they components of a multi-layer perceptron

Given Q in R”, we select the 2-dimensional plane that is the linear span of E; and
E,. The restriction of Q to this hyperplane is a performance manifold. Each point in this
2-manifold has an associated field value, given by the objective function. The “Best”
machine is established as the origin of a coordinates for the display and is positioned in
the center of the field of view. The line passing through the center and parallel to
Elbecomes the horizontal axis for the display; the line passing through the center and
parallel to E2 becomes the vertical axis for the display.

Motion within the manifold parallel to the vertical axis adds or subtracts a fixed
amount from all of the odd-numbered parameters of the regression (because of how E1
is defined); Motion within the manifold parallel to the horizontal axis adds or subtracts
a fixed amount from all of the even-numbered parameters of the regression (because of
how E2 is defined). By virtue of this coordinatization of the performance manifold, this
single two-dimensional manifold captures unbiased information about the effect of
every parameter, no matter how many there are, and in an intuitive way.

Motion to the left and up in this presentation causes half of the parameters to
increase, and half to decrease. These changes tend to cancel out for small changes,
giving most performance manifolds for well-conditioned regressions a upper-left to
lower-right symmetry; along such diagonals, performance is often roughly constant...
experience has shown this to be a sign of good convergence. Examples are in Sect. 5
(Fig. 5).
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An example: R3 c

Suppose our machine
space is 3-dimensional,

e.g., aplane:
Ax+By+Cz=1
Tilted great circle will be colorized by machine
perf to create p space grap
By=(10,1)
B,=(0,10)

B1 B, = (10.1)-(0,10)=0+0+0=0

Fig. 5. The slice along a “great circle” has the “best machine” at the center. This great circle disc
is rendered as the “Flat” manifold.

3.2 Interpreting Performance Manifolds

Direct mathematical analysis of MLPs is difficult, but in extensive experiments on a
variety of problems, the authors have made several empirical observations:

e Underdetermined MLPs (topology too simple to converge to a complete solution)
tend to have
Featureless performance manifolds and so, tiny gradients.
Over-determined MLPs (topology more complex than necessary for convergence to
a complete solution) tend to have highly-complex and isolated sub-optimal extrema.
e Local extrema appear in the manifold as isolated regions of locally high perfor-
mance, “foothills” at which learning methods relying on gradient techniques (such
as Back Propagation) tend to become trapped.

3.3 Streaming a Sequence of Manifolds as Movie Frames to Analyze
Parameter Space Context

Even before being mapped to a 2-dimensional display, our “flat” performance mani-
folds are informed only by a slice of the parameter space, limiting their information
content. These displays provide no information about what is happening away from the
screen hyperplane. What is really needed is a means of visualizing the “depth” of the
parameter space in a neighborhood of the “Best” machine. This requires multiple slices.
This can be achieved by arranging a sequence of “flat” manifolds as the frames of an
animation, showing how performance changes as the viewer approaches the “Best”
machine from a distance in the parameter space.



Visualizing Parameter Spaces of Deep-Learning Machines 201

The basic idea is very simple: instead of just a single N — 1 slice of parameter
space, colorized sequences of N — 1 dimensional spherical surfaces converging to the
training solution are visualized in a movie. Each frame is rendered as a ray traced
frame. The frames are then sequenced and merged an animated gif.

One vexing technical conundrum is how to hold constant the area being visualized,
since the field of view shrinks to zero as the viewer approaches the “Best” machine at
the core of the manifold. Our solution is to move the screen plane closer to the center of
the ball at the rate necessary to keep its apparent size constant (Fig. 6).

Fig. 6. Reduce the field-of-view to compensate for the decreasing image size

3.4 Animating the Approach Through Parameter Space to an “Optimal”
Machine

The following example shows the view as a series of smaller and smaller nested
spherical “shells” are penetrated on the approach to the “Best” machine at their center.
This was produced by ray tracing the performance manifold of a three-layer MLP with
nine feature inputs, five nodes in the hidden layer, and two nodes in the output layer.

The MLP was trained and the graphic was produced by processing a blind hold-
back set. The performance of the machine is determined as the classification accuracy
on the entire blind set; this value (in the range 0% to 100%) is linearly mapped to one
of four gray values for the rendering. In the gray scale version of the performance
manifold, the color gradients are in 25% increments from white to black, with light
gray being the absolute best machine.

For this example, the Performance Manifold generated 250 frames of animation in
2 h on a core 17 Intel based computer with 6 gigabytes of DDR 3600 MHz memory
with a Windows 7 64-bit Operating System.

Figure 7 below are frames from movies depicting a hyperspace approach to the
optimized machine by ray-cast animation of the hyper-spherical performance manifolds
with continuously decreasing radius.
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Fig. 7. Far-away from the “Best” machine at the center of the ball, regions of both low
performance (dark) and high performance (light) are present. The low-performance regions
shrink and are left behind as the viewer approaches the “Best” machine at the center of the ball.

4 Some Empirical Experiments for Different Classifiers
and Data Sets

For one set of experiments, four data sets were used, each having a different level of
classification difficulty (as determined by an ambiguity score).
The data sets were:

The UC Irvine Breast Cancer Data Set (Very Easy)
Synthesized clusters having moderate overlap (Moderately easy)

e Prediction of the number of valence electron of an element based upon several of its
physical properties (melting point, etc.) (Difficult)

e The parity-9 problem (Very Difficult)

Four classifiers, each using a different paradigm, were applied to each data set. The
classifiers were:

Linear Discriminant (weak)

Nearest neighbor (weak)

Maximum Likelihood (strong)
Multi-Layer Perceptron (very strong)

As expected, the performance manifolds for weaker classifiers present a less var-
iegated visual scene. More powerful classifiers present a textural complexity (indicating
complex interactions between model parameters), local extrema, etc. It is not possible
to include samples of all these investigations here.

4.1 Additional Experiments

In Fig. 8, the same MLP topology was used to train a “Best” machine for four problems
of varying complexity. The figure depicts performance manifolds at the same fixed
distance from the “Best” instance of this MLP for each problem. White represents the
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highest performance, with successively darker colors indicating lower performance. As
suggested earlier in Fig. 3, harder problems tend to have smaller regions of high
performance, other factors being equal.

Neural Net Near Performance

Ea
4
Moderate
=D
Difficult
ol

Very Difficult
fy Oificult

Fig. 8. Harder problems have smaller regions of high performance

5 Performance Manifolds and Modeling Problems

As with other regression formalisms, numerical adequacy, model stability, and model
Error for an MLP show up in the regression parameters, and so, in performance
manifolds. Certain visual artifacts in displays of performance manifold often indicate
specific pathologies. Some of these pathologies are:

e Under-parameterization: the MLP architecture used lacks sufficient representational
power to discriminate between the ground-truth classes. Either the number of layers
or number of artificial neurons should be increased.

e Over-parameterization: the MLP architecture used has more parameters than needed
to discriminate between the ground-truth classes. It is over-fitting and/or modeling
random error in addition to data. Either the number of layers or number of artificial
neurons should be decreased.

e There are multi-collinearities among the input features. That is, the features are not
linearly independent, but related by some simple rule. Because MLP’s use linear
combinations during computation, features related in this way are redundant,
introducing additional complexity without adding information.
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5.1 Visual Analysis of Performance Manifolds for Trained MLPs

Once training is complete (takes about 3 min or so), the machine generates two per-
formance manifolds: one colorized by the %-accuracy of the machines surrounding the
“BEST” one found, and the other colorized by the precision metric of the machines
surrounding the “BEST” one we found. Each pixel in the display represents an entire
neural network near the “BEST” one found during training.

It is the left-hand plot that colors machines by their “Geometric Accuracy”. The
right-hand plot colors machines by the percentage of the data they classified correctly.
The “BEST” machine is in the center of each plot.

The trained MLP is also applied to the Blind Set (data not used to train the MLP),
and the same two performance manifolds are produced. If training has been successful,
the performance manifolds for the Blind Set will be very similar to the corresponding
plots for the Training Set.

Example A. 3 layers, 4 features, 3 layer-1 neurons, 7 hidden layer neurons, 4 output
neurons.

File: AxeT_L3F4I3H7C4, four linearly independent, linearly separable clusters.

Observations: Feature data for consists of four uniform random, 25-member clumps
of radius 0.25 in 3-space positioned at the basis vectors and origin. That is, Clump 1
has GT = 1, with centroid ~(0,0,0); Clump 2 has GT = 2, with centroid ~ (1,0,0);
Clump 3 has GT = 3, with centroid ~ (0,1,0); and Clump 4 has GT = 4, with centroid
~(0,0,1). The classes can be separated using 2-dimensional planes as decision sur-
faces, and the clump centroids are virtually uncorrelated (Fig. 9).

CONFUSION MATRIX:
1| 25 0 0 0
2l 0 25 0 0
3. 0 0 25 0
4 0 0 0 25

Fig. 9. Typical symmetry, connectedness, and simplicity for a well-posed classifier
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Example B. 3 layers, 4 features, 3 layer-1 neurons, 7 hidden layer neurons, 4 output
neurons.

Feature data for SQUARE.csv is a regular 17 x 34 grid (x, y) in the unit square.
Its GT is: 1 + int(0.5 + 2 * (x + y)).

Observations: The ground truth for this is a quadratic relationship between the two
input features; this relationship can be seen in the warping of the performance manifold
for precision on the left. It is also evident in the fine structure of the %-accuracy
manifold on the right, though this is unlikely to be visible in a printed copy. Once
again, the symmetry of the display is from upper-left to lower-right (Fig. 10).

CONFUSION MATRIX (TRAINING SET):
1| 200 0 0 O

2| 0 149 0 0 O
3 0 0 2530 O
4 0 0 0 140 O
5| 0 0 0 1 15

Fig. 10. Quadratic interrelationship among features visible in the performance manifold

Example C. 3 layers, 4 features, 5 layer-1 neurons, 11 hidden layer neurons, 2 output
neurons.

File: 2x2B_L3F4I5H11C2, Multicollinearity present.

Feature data uniform random (X, y, z, w) in unit 4-cube, with x + y=z + w. GT
random binary {1, 2}.

Observations: This data set was created by intentionally introducing multi-
collinearity into the feature vectors: the sum of features 1 and 2 equals the sum of
features 3 and 4. This type of information redundancy has been observed to introduce
many linear artifacts into the performance manifold, as the linear relationship in feature
space cascades through the neurons of the MLP, showing up as lines of constant
performance, but at varying slopes. The upper-left to lower-right symmetry has been
destroyed (Fig. 11).
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CONFUSION MATRIX
(TRAINING SET):
1] 40 10
2 9 41

Fig. 11. Loss of symmetry and linear artifacts strong multicollinearity among features

Example D1. 2 layers, 4 input features, 4 layer-1 neurons, no hidden layer, 2 output
neurons.

File: rndB_L2F414HOC2, Under-Determined MLP Topology (too few layers
and/or neurons).

Observations: The two ground truth classes were assigned randomly. This was done
so that any significant patterns that might appear in the performance manifolds would
result from the machine’s topology rather than patterns in the input feature vectors.
Notice that the machine makes some headway in classifying the training data; but this
disappears in the blind test, as it must for random ground truth.

Notice also that the strongest (brightest) visual artifacts in this display run from
lower-left to upper-right, the reverse of the pattern occurring in well-conditioned
architectures (Fig. 12).

Performance on Blind Set:
Accuracy: 47%
Class1 precision: 53.1%
Class2 precision: 47.1%
Class1 recall: 46%
Class2 recall: 48%

CONFUSION MATRIX (TRAINING):
1] 38 12
2] 21 29

CONFUSION MATRIX (BLIND):
11 23 27
2| 26 24
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Fig. 12. Rigid, non-standard structure suggests MLP is under-determined

Example D2. 4 layers, 4 input features, 2 layer-1 neurons, 5 hidden layer neurons,
2 output neurons.
File: rndB_L4F412H5C2, Well-determined MLP Topology (right number of layers
and neurons).
Observations: The performance manifold indicates that this architecture is well-
conditioned for this problem. It begins to make headway on the training set, and even
for the Blind data, it manages to produce elevated recall for Class2 vectors... better
than expected for a random ground truth assignment.

Primary symmetry is upper-left to lower-right (Fig. 13).

Performance on Blind Set:
Accuracy: 46%
Class1 precision: 44.1%
Class2 precision: 47.0%
Class1 recall: 30%
Class2 recall: 62%

CONFUSION MATRIX (TRAINING):
1] 32 18
2] 7 43

CONFUSION MATRIX (BLIND):
1 15 35
2 19 31
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Fig. 13. Typical symmetry, connectedness, and simplicity for a well-posed classifier

Example D3. 5 layers, 4 input features, 6 layer-1 neurons, 13 hidden layer neurons,
2 output neurons.
File: rndB_L5F416H13C2,0ver-determined MLP Topology (too many layers and
or neurons).
Observations: Over-parameterization (too many layers, too many neurons) caused the
performance manifold to bifurcate, with the upper branch having smooth gradient, and
the lower riddled with a complex distribution of local extrema. A gradient technique
would likely not be able to traverse the lower branch... and this is the branch con-
taining the “Best” machine. As is often the case, this over-determined machine controls
the training set well; but this is misleading, because this performance does not gen-
eralize to blind data. Primary symmetry is upper-left to lower-right (Fig. 14).

CONFUSION MATRIX (TRAINING SET):
1| 48 2
2/ 2 48

CONFUSION MATRIX (BLIND SET):
1] 24 26
2] 24 26

Performance on Blind Set:
Accuracy: 50%

Class1 precision: 50%
Class2 precision: 50%
Classl recall: 48%

Class2 recall: 52%
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Fig. 14. Bifurcated into a stable band, and a chaotic band. Suggests MLP is over-determined.

6

Conclusions

All modeling involves at least three spaces: feature space, where the empirical data
resides; goal space, where the ground-truth resides; and machine space, where the
regression parameters reside.

We usually think of doing modeling in the feature space. But models themselves
can be modeled (meta-modeling) by applying modeling techniques to their machine
spaces.

Valuable information about machine architectures, training, and performance can be
gained by meta-modeling.

We usually think of modeling in the feature space. However, models themselves

can be modeled (meta-modeling) by applying modeling techniques to the parameter
spaces. Valuable information about machine architectures, training, and performance
can be gained by forensic meta-modeling. In particular, the use of ray cast animation in
N-dimensional space makes possible direct, intuitive forensic analysis of learning
machine implementations. Important phenomena can be direct observed in this way,
such as:

The presence and distribution of local extrema of the objective function used for
machine learning
Adequacy of the learning architecture.

Future Work

Build a user interface that facilitates direct interact with the parameter/machine
space. Functionality would include zooming in and out and spin the sphere to
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discover the range of solutions for the machine. Allow the user to manually “game”
the coloration: adjusting the color boundaries of the model by accuracy to see how
accurate a machine can get before it is not efficient.

e Use described visual methods not just for forensics, but for design as well. In an
interface similar to the one described above, a user could be given the ability to
select a machine by mouse click.

e Optimize the rendering process for speed to support direct user interaction.

e Additional cross-paradigm experimentation using other reasoning paradigms, such
as Self Organizing Maps.

e Use for analysis of known pathologies (such as local extrema).
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