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{roby.casadei,mirko.viroli,danilo.pianini}@unibo.it
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Abstract. Engineering distributed applications and services in emerg-
ing and open computing scenarios like the Internet of Things, cyber-
physical systems and pervasive computing, calls for identifying proper
abstractions to smoothly capture collective behaviour, adaptivity, and
dynamic injection and execution of concurrent distributed activities.
Accordingly, we introduce a notion of “aggregate process” as a concurrent
field computation whose execution and interactions are sustained by a
dynamic team of devices, and whose spatial region can opportunistically
vary over time. We formalise this notion by extending the Field Calculus
with a new primitive construct, spawn, used to instantiate a set of field
computations and regulate key aspects of their life-cycle. By virtue of an
open-source implementation in the ScaFi framework, we show basic pro-
gramming examples and benefits via two case studies of mobile ad-hoc
networks and drone swarm scenarios, evaluated by simulation.

Keywords: Aggregate processes · Computational fields ·
Distributed computing · Collective coordination · Dynamic ensembles ·
Self-*

1 Introduction

Emerging scenarios like pervasive computing, Internet of Things (IoT), cyber-
physical systems (CPS) and edge computing, are leading towards a new refer-
ence computational fabric made of dense, large-scale networks of heterogeneous
devices. New opportunities for developing software services naturally arise that
fully leverage the pervasive availability of sensing, actuation, storage, compu-
tational power and networking. To help unveiling the true potentials of such
digitally empowered ecosystems, proper abstractions and development tech-
niques are needed to smoothly express collective coordination and computation
activities that can be transparently executed on opportunistic formations of
devices [10].

This work has been partially supported by Ateneo/CSP project “AP: Aggregate Pro-
gramming” (http://ap-project.di.unito.it/).
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In such contexts, computational events might trigger multiple distributed
activities that are highly contextual and hence fundamentally related to their
space-time situation and physical environment. Openness and dynamism, then,
require such activities to be dependable, self-adaptive and self-organising in order
to maintain coherence and functionality across unpredictable and inevitable con-
text changes and adversary events, and to opportunistically activate wherever
and whenever their existence conditions hold—whether they are by-design or
emergent. For instance, for collaborative smartphone-based applications in a
smart city, such activities may include: a gossip process by which people in a
plaza share comments, a guidance process to make a group of friends gather
in a convenient point, a dispersal process for people creating bloat, a process to
advertise one’s presence to nearby users for the next minute, a process to provide
crowd-aware directions towards a point of interest, and so on [5,8,25,31,38].

According to this vision, we present the concept of aggregate process, denoting
a distributed computation sustained by a dynamic aggregation of devices—hence
using the term aggregate with the meaning of “pertaining to a collective”, i.e.,
in the sense of [5,35]. This abstraction can be useful to model transient col-
lective activities, which may concurrently span and overlap over the fabric cre-
ated by a mobile, large-scale deployment of devices; it is aimed to capture: (i)
aggregate stance, to promote pervasive adaptation, by abstracting the individual
device and seamlessly regulating the behaviour of an ensemble across scales, den-
sity, and heterogeneity; (ii) dynamicity and context-orientation, to conveniently
support the implementation of dynamic, distributed, spatio-temporal activities
where locality and context play a major role, and continuous change is the norm;
(iii) intrinsic resiliency, to specify and execute collective (inter-)actions indepen-
dently of large classes of environmental dynamics and faults. This notion, hence,
fosters a broader view of programming smart distributed environments like sorts
of distributed virtual machines for aggregate processes, supporting the dynamic
injection and execution of collective computations, their diffusion over an oppor-
tunistically selected region of space-time, and their inherent self-adaptation to
changes and faults by full abstraction over individual behaviours of devices.

To formally capture the features of aggregate processes, and experiment with
mechanisms to handle their life-cycle (process creation, disposal, logic and inter-
action), we adopt as basis framework the field calculus [4,35]—a coordination
model based on the notion of (computational) field (a time-evolving distributed
structure mapping devices to computational values) where coordination policies
are declaratively and compositionally expressed as pure functions from fields to
fields. As key contribution, aggregate processes are supported in the field calcu-
lus by a new primitive construct, spawn, yielding a field that, across space and
time, combines several independent but interacting “computational bubbles”
(process instances). Programming constructs to work with aggregate processes
are implemented in ScaFi [9,11] (https://github.com/scafi/scafi), a Scala-based
incarnation of field calculus: this is used to showcase the expressiveness of the
notion and to empirically evaluate the proposed abstraction through simulation
of two paradigmatic case studies of mobile ad-hoc networks and drone swarms.

https://github.com/scafi/scafi
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The remainder of this paper is organised as follows. Section 2 presents field
calculus and its extension to support aggregate processes. Section 3 describes
implementation in ScaFi along with examples and programming techniques.
Section 4 provides evaluation of aggregate processes through synthetic experi-
ments. Section 5 concludes the paper with discussion of related and future work.

2 Founding Aggregate Processes by the Field Calculus

Founding the notion of aggregate processes requires a coordination model with
the power to declaratively express complex spatio-temporal behaviour possi-
bly involving large sets of networked devices. Among the various frameworks
enabling such a “macro-programming” paradigm, reviewed in Sect. 5, we con-
sider the field calculus [4] (FC). This is a minimal functional language that cap-
tures the foundational mechanisms for compositionally expressing the emergent
behaviour of a collective system by a global perspective. It provides constructs
to represent and manipulate (computational) fields, i.e., distributed and time-
evolving data structures that map device identities to computational values.

Arguably, FC represents a natural basis for technically developing a notion of
aggregate process—which in fact somewhat emerged from technical issues about
field computations. Indeed, FC enables an aggregate stance to programming: field
computations target a collective of devices as a whole, and the field semantics
formally provides a bridge from global behaviour to local activity of individ-
ual devices. Dynamicity and context-orientation are also directly supported: a
system is modelled as a logical network of devices connected through a neigh-
bouring relationship; devices can sample their portion of the environment and
communicate with neighbours to infer/propagate context and react to changes
in their surroundings. Moreover, the model also provides inherent resiliency, by
abstracting from networking issues and adopting an execution model where com-
putations are “continuously” re-evaluated in order to sustain field evolution in
spite of individual failures and outages.

In this section, we briefly introduce FC (Sect. 2.1—the reader interested in
full technical details should refer to [4]); then, we motivate the need for specific
mechanisms to support a true notion of “process” (Sect. 2.2); finally, we conclude
with the formalisation of a new primitive construct spawn (Sect. 2.3), responsible
for managing (i.e., activating, executing, closing) a dynamic number of field
computations (i.e., process instances).

2.1 Overview of Field Calculus

Figure 1 (first frame) presents the syntax and device semantics of FC, where the
grey-boxed parts correspond to the new spawn construct and will be explained
in Sect. 2.3. Following [24], the overbar notation denotes metavariables over
sequences and the empty sequence is denoted by “•”: e.g., for expressions, we let
e range over sequences of expressions, written e1, e2, . . . en (n ≥ 0). A program
P consists of a sequence of function declarations and of a main expression e.
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Fig. 1. Syntax and device semantics for the field calculus (extended part in grey)

A function declaration F defines a (possibly recursive) function. It consists of
the name of the function d, of n ≥ 0 variable names x representing the formal
parameters, and of an expression e representing the body of the function. Expres-
sions e are the main entities of the calculus, and will evaluate to a whole field,
understood at the macro-level as a space/time-wide data structure, mapping
computational events (i.e., when and where a device executes a computation)
to values: the set of such computational events is called field domain. Expres-
sions include rather standard functional constructs, like: variables x, used as
function formal parameters; values v (described below); and anonymous func-
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tion expressions (x)
τ

= > e, where x are the formal parameters, e is the body
and τ is a tag1. A value can be either a neighbouring value φ or a local value
�. Technically, a neighbouring value is a mapping from device identifiers (corre-
sponding to a device’s neighbourhood including the device itself) to local values,
while a local value can be: (i) a data value c(�), consisting of a data-constructor
applied to local value arguments (true, false, 0, 1, pair(1,2) and so on); or
(ii) a function value f, consisting of either a declared function name d, a closed
anonymous function, or a built-in function name b always working locally—used
to denote usual mathematical/logical operators (e.g., +, -, or), 0-ary sensors
(e.g., temperature, pressure, sns), or functions to turn neighbouring values to
local values (e.g. minimisation of values by minHood, or minimisation excluding
the device itself by minHoodPlus).

We model the computation of a device at each event by a big-step operational
semantics where the result of evaluation is a value-tree (vtree) θ, i.e., an ordered
tree of values that tracks the results of all evaluated subexpressions. The vtrees
produced by an evaluation are made available to neighbours (including the device
itself) for their forthcoming event through a broadcast. The evaluation of an
expression at a given time in a device is thus performed “against” the recently-
received vtrees of neighbours, as collected into a vtree environment Θ, mapping
device identifiers to vtrees. The syntax of vtrees and vtree environments is given
in Fig. 1 (second frame). The operational semantics judgement is of the form
δ;Θ;σ � e ⇓ θ, to be read “expression e evaluates to vtree θ on device δ w.r.t.
the vtree environment Θ and sensor state σ”, where: (i) δ is the identifier of the
current device; (ii) Θ is the neighbouring field of the vtrees produced by the most
recent evaluation of (an expression corresponding to) e on δ’s neighbours; (iii) σ
is a data structure containing enough sensor information to allow each non-pure
built-in to be computed; (iv) e is an expression; (v) the vtree θ represents the
values computed for all the expressions encountered during the evaluation of
e—in particular ρ(θ) is the resulting value of e.

Expressions include also constructs that are tailored to field computations. A
function call ef (e) adapts the standard call notion with the fact that ef is a field
and hence could evaluate to different functions at different events, in which case it
provides an advanced branching mechanism: the domain is partitioned in regions
by the identity of such functions (determined by tag τ for anonymous functions,
and by name for other functions), function application in each region applies the
single function being there, and finally juxtaposition is applied to all regions. The
function call mechanism is used to implement conventional branching, which also
splits the domain of computation into two non-overlapping regions defined by
where e evaluates to true or false (e1 is executed in isolation in the former, e2 is
in the latter, and the juxtaposition of the two sub-fields defines the overall result).
Namely, if(e){e1}{e2} is syntactic sugar for mux(e, ()

τ1
= > e1, ()

τ2
= > e2)(), where

1 Tags τ do not appear in source programs: when the evaluation starts, each anony-
mous function expression (x) = > e occurring in the program is converted into a
tagged anonymous function expression by giving it a tag that is uniquely deter-
mined by its syntactical representation—see [4] for a detailed explanation.
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the built-in mux is simply a multiplexer (it takes three arguments, evaluates all of
them, and returns the second if the first has value true ot the third otherwise).
A rep-expression rep(e0){(x) = > e1} models fields evolving over time: the
result field is initially e0, and iteratively at each device function (x) = > e1 is
applied to obtain the value at an event based on the value at previous one—e.g.,
rep(0){(x) = > x + 1} is the field that counts the number of occurred events
at each device. Finally, a nbr-expression nbr{e} is used to model device-to-
neighbourhood interaction: at each device, it gives a local map from neighbours
to values (a so-called neighbouring value) filled with the most recent results of
evaluating e at each neighbour.

A key aspect of how the operational semantics is developed is called “align-
ment” [3,4]: to implement coherent sharing of values, an instance of operator nbr
(say it is localised in position p of the vtree), is such that it gathers values from
neighbours by retrieving them in the same position (p) of all vtrees contained in
Θ. This is the cornerstone technique to support a declarative and compositional
specification of interactions, and hence, of global level coordination.

2.2 On “Multiple Alignments”

Conceptually, and technically, FC is used to specify a “single field computation”
working on the entire available domain. As a paradigmatic example, consider
a gradient [2,25,34], namely, a field of hop-by-hop distances based on local
estimates metric (a field of neighbouring real values) from the closest node in
source (a field of boolean values):

def gradient(source, metric) {

rep(infinity)(distance =>

mux(source, 0, minHoodPlus( nbr{distance} + metric ))) }

def limitedGradient(source, metric, area) {

if (area) {gradient(source, metric)} {infinity} }

If sns is a sensor giving true only at a device s (and false everywhere else) and
nbrRange is a sensor giving local estimate distances from neighbours (as a range
detector would support), then the main expression gradient(sns,nbrRange)
gives a field stabilising to a situation where each device is mapped to its (hop-
by-hop, nearest) distance to s [2,4,16,25,34]. If multiple devices are sources,
estimated distance considers the nearest source.

There are mechanisms in FC to tweak this “single field computation”
model. First of all, one could realise two computations by a field of pairs
of values, say pair(v1,v2): e.g., expression pair(gradient(sns1,nbrRange),
gradient(sns2,nbrRange)) would actually generate two completely indepen-
dent gradient computations. The same approach is applicable to realise an arbi-
trary number of computations, but this practically works only if the number
of such computations is small, known, and uniform across space and time,
otherwise, FC has no mechanism to capture the abstraction of “aligned iteration”
over a collection of values conceptually belonging to different computations.
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A second key aspect involves the ability to restrict the domain of a com-
putation. It is true that, by branching, one can prevent evaluation of some
subexpressions—e.g., in function limitedGradient, if area is a boolean field
giving true to a small subdomain, then computation of gradient is limited
there. However, this approach has limitations as well: if one wants to limit a gra-
dient to span the ball-like area where distances from the source are smaller than
a given value, hence setting area to “gradient(source,metric) < range”,
there would be no direct way of avoiding computation of gradient outside that
limited ball, because the decision on whether an event is inside or outside the
ball has to be reconsidered everywhere and everytime.

So, technically, in FC there are no constructs to directly model, e.g., a
reusable function that turns a field of boolean sources into a collection of inde-
pendent gradients, one per source: that would require to create a field of lists of
reals, of arbitrary size across space-time, but crucially this would not correctly
support alignment. More generally, and although being universal [1], FC falls
short in expressing the situation in which a field computation is composed of
a set of subcomputations that is dynamic in the sense that has changing size
over space and time. But this is precisely what is needed to support aggregate
processes.

2.3 The spawn Construct Extension

We formalise our notion of aggregate process by extending FC with a spawn
mechanism essentially carrying on a multiple aligned execution of concurrent
computations, managing their life-cycle (i.e., activation, execution, disposal).
Syntactically (see Fig. 1), this is formed by a spawn-expression spawn(eb, ek, ei),
modelling a collection of aggregate processes. Expression eb models process
behaviour: it is a function (of informal type k → a → 〈v, bool〉) taking a process
key (i.e., an identifier) and an input argument, and returning a pair of an out-
put value and a boolean stating whether the process should be maintained alive
or not. Expression ek defines a field of process keysets to add at each location
(device); and ei is the input field to feed processes. The result of spawn is a
field of maps from process keys to values. As a result, we can precisely define an
aggregate process with key k as the projection to k of the field of maps resulting
from spawn, that is, the computational field associating each event to the value
corresponding to k at that event—as this may simply be absent at an event,
aggregate processes are to be considered partial fields over the whole domain.

The semantic details of spawn are presented in grey in Fig. 1. On the second
frame, we allow to express vtrees also as v �→ θ, i.e., as a map from keys to
vtrees. On the third frame, we define auxiliary functions ρ, πi, πk for extracting
from a vtree respectively: its root value, an ordered subtree by its index i, and
an unordered subtree by its key k. It also defines a filtering function F which
selects vtrees whose root is a pair pair(v, True), collapsing the root into v. All
of these functions can be extended to maps (see aux ), which are intended to be
unordered vtree nodes for F , and vtree environments for ρ, πi and πk.
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Finally, in fourth frame, we define the behaviour of construct spawn,
formalised by the big-step operational semantics rule [E-spawn]: the sub-
expressions e1, e2 and e3 are evaluated and their results stored in vtrees θ1,
θ2, θ3 forming the first branches of the final result. Then, a list of process keys k
is computed by adjoining (i) the keys currently present in the result ρ(θ2) of e2;
(ii) the keys that any neighbour δ′ broadcast in their last unordered sub-branch
π4(Θ(δ′)). To realise “multiple alignment”, for each key ki, the process ρ(θ1)
resulting from evaluation of e1 is applied to ki and the result ρ(θ3) of e3, pro-
ducing θi as a result. The map k �→ θ is then filtered by F , discarding evaluations
resulting in a pair(v, False), before being made available to neighbours. The
same results F (k �→ ρ(θ)) are also returned as the root of the resulting vtree.

3 Programming with Aggregate Processes

In this section, we show how the spawn construct formalised in Sect. 2.3 is imple-
mented in ScaFi [9,11], and describe, through examples, how aggregate pro-
cesses based on spawn can be programmed in practice.

Background: ScaFi—Field Calculus in Scala. ScaFi (Scala Fields) is a
development toolkit for aggregate systems in the Scala programming language. It
provides a Scala-internal domain-specific language (DSL) – i.e., an API masked
as an “embedded language”– and library of functions for programming with
fields, as well as other development tools (e.g., for simulation). In ScaFi, the
field constructs introduced in Sect. 2.1 are captured by the following interface:
trait Constructs {

def rep[A](init: => A)(fun: A => A): A

def nbr[A](expr: => A): A

def foldhood[A](init: => A)(acc: (A, A) => A)(expr: => A): A

def branch[A](cond: => Boolean)(th: => A)(el: => A)

def mid: ID

...

}

Method branch stands for field construct if (as the latter is a reserved keyword
in Scala), nbr expressions are to be used within the expr passed to foldhood
(used to aggregate over neighbours), and mid is a sensor giving the local device
identifier. By ScaFi expressions one essentially defines “scripts” that specify
whole fields at the macro-level: then, such scripts will be properly executed by
each node/actor [11], following FC’s operational semantics. A full introduction
of ScaFi is outside the scope of this paper: it is deeply covered, e.g., in [9].

3.1 Aggregate Processes in ScaFi

The spawn primitive supports our notion of aggregate processes by handling acti-
vation, propagation, merging, and disposal of process instances (for a specified
kind of process). Coherently with the formalisation in Sect. 2, it has signature:
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def spawn[K,A,R](process: K => A => (R,Boolean),

newKeys: Set[K],

args: A): Map[K,R]

It is a generic function, parametrised by three types: (i) K, the type of process
keys; (ii) A, the type of process arguments (or inputs); (iii) R, the type of process
result. The function accepts three formal parameters and works as formalised in
previous section. Note that a process key has a twofold role: it works both as a
process identifier (PID) and as initialisation or construction parameter. When
different construction parameters should result in different process instances, it is
sufficient to instantiate type K with a data structure type including both pieces
of information and with proper equality semantics. Function spawn accepts a
set of keys to allow generation of zero or more process instances in the current
round. Notice that if a new key already belongs to the set of active processes,
there will be no actual generation (or restart) but merging instead, since identity
is the same as an existing process instance. Finally, note also that the outcome of
spawn (a map from process keys to process result values) can in turn be used to
fork other process instances or as input for other processes; i.e., the basic means
for processes to interact is to connect the corresponding spawns with data.

In the following, we discuss programming and management of aggregate pro-
cesses activated through spawn.

3.2 Process Generation, Expansion/Shrinking, and Termination

Generating process instances is just a matter of creating a field of keysets that
become non-empty as soon as the proper space-time event has been recognised
(e.g., spatial conditions on sensors data and computation, or timers firing) [34].
Then, by spawn, every process instance is automatically propagated by all the
participating devices to their neighbours. However, it is possible to regulate the
shape of such “computational bubble” by dictating conditions by which a device
must return status false (i.e., meaning external to the bubble)—as mentioned,
this indicates the willingness to stop computing (i.e., participate in) the process.
That is, only devices that return status true (i.e., internal) will propagate the
process. Moreover, such a propagation happens continuously: so, a device that
exited from a process may execute it again in the future. In particular, the
border (or fence) of a process bubble is given by the set of all the devices that
are external but have at least one neighbour which is internal. As long as a
node is in the fence, it continuously re-acquires and immediately quits from
the process instance: this repeated evaluation of the border is what ultimately
enables a spatial extension of the process bubble (expansion). Conversely, a
process bubble gets restricted (shrinking) when internal nodes become external.

A process instance terminates when all the devices quit by returning status
false. Implementing process termination may not be trivial, since proper (local
or global) conditions must be defined so that the “collapsing force” can overtake
the “propagation force”; i.e., precautions should be taken so that external devices
do not re-acquire the process: the border should steadily shrink, also considering
temporary network partitions and transient recoverable failures from devices.
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Example: Time Replication. In [29], a technique based on time replication
for improving the dynamics of gossip is presented. It works by keeping k running
replicates of a gossip computation executing concurrently, each alive for a certain
amount of time. New instances are activated with interval p, staggered in time.
The whole computation always returns the result of the oldest active replicate.
This is intended to improve the dynamics of algorithms, providing an intrinsic
refresh mechanism that smoothly propagates to the output. With spawn, it is
trivial to design a replicated function that provides process replication in time.
def replicated[A,R](proc: A => R)(argument: A, p: Double, k: Int) = {

val lastPid = clock(p, dt())

spawn[Long,A,R](pid => arg => (proc(arg), pid > lastPid+k),

Set(lastPid), argument)

}

clock is a distributed time-aware counter [29] (whose synchronicity depends
on the implementation) yielding an increasing number i at each interval p that
represents the PID of the i-th replica. Notably, in this case, every device can
locally determine when it must quit a process instance; moreover, the exit
condition based on PID numbering (pid > lastPid+k) prevents process reen-
trance. Section 4.2 provides an empirical evaluation of the behaviour of function
replicated.

Fig. 2. Graphical example of the evolution of a system of processes and the role of
statuses in statusSpawn. The green bubble springs into existence; the blue bubble dis-
solves after termination is initiated by a node; the orange bubble expands. Only output
nodes will yield a value. Bubbles may of course overlap (i.e., a node may participate,
with different statuses, to multiple processes) and the dynamics can be arbitrarily
complex (because of mobility, failures, and local decisions) (Color figure online)
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3.3 More Expressive Process Definitions

Managing processes upon spawn revolves around specifying the logic for
input/output, creation, evolution, and termination of processes instances. One
approach to make such code more declarative consists of programming process
behaviour so as to specify additional information w.r.t. just a boolean status/flag:
more expressive Statuses can be mapped to the flag and can be used to acti-
vate advanced behaviours. To do so, a higher-level function statusSpawn can be
considered, based on a Status value that indicates the “stance” of the current
device w.r.t. the process instances at hand (see Fig. 2): Output corresponds to
flag true in spawn; External corresponds to flag false in spawn; Bubble means
the device participates to the process but is not interested in the output (i.e.,
the process entry can be discarded); and Terminated means the device is willing
to close the process instance (i.e., it triggers a shutdown behaviour).

Example: Multi-gradient. The problem described in Sect. 2.2 of activating a
spatially-limited gradient computation for each device where sensor isSrc gives
true, and deactivating it when it stops doing so, can be solved as follows:
statusSpawn[ID,Double,Double](src => limit =>

gradient(src==mid,nbrRange) match { // consider the usual gradient

case g if src==mid && !isSrc => (g, Terminated) // close if src quits

case g if g>limit => (g, External) // out of bubble

case g => (g, Output) // in bubble

},

newKeys = if(isSrc) Set(mid) else Set.empty,

args = maxExtension)

4 Case Studies

In this section, we exercise the constructs previously introduced by presenting
two application examples. One goal is to demonstrate the soundness of our imple-
mentation. Moreover, our empirical evaluation will also show that, orderly: (i)
in certain cases, aggregate processes can greatly limit the consumption of com-
putational resources while retaining a reasonable quality of service (QoS); (ii)
in certain cases, powerful meta-algorithms enabled by aggregate processes can
improve the dynamics of distributed computations. We implemented both sce-
narios with the Alchemist simulator [30], which already provides ScaFi support
[9]; the results are the average over 101 runs. For the sake of reproducibility,
the source code and instructions for running experiments are publicly available
(https://bitbucket.org/metaphori/experiment-spawn).

4.1 Opportunistic Instant Messaging

Motivation. The possibility of communicating by delivering messages regard-
less the presence of a conventional Internet access has recently gained attention

https://bitbucket.org/metaphori/experiment-spawn
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as a mean to work around censorship (http://archive.is/C3niO) as well as in sit-
uations with limited access to the global network—e.g., in rural areas, or during
urban events when the network capability is overtaken. We here consider a sim-
ple messaging application where a source device (aka sender) wants to deliver a
payload to a peer device (aka recipient, target, or destination) in a hop-by-hop
fashion by exploiting nearby devices as relays. The source device only knows the
identifier of its recipient: it is not aware of its physical location, nor of viable
routes. Our goal is to show how aggregate processes can support this kind of
application (with multiple concurrent messages) while limiting the number of
devices involved in message delivery, leading to bandwidth savings (and energy
savings in turn).

Setup. We compare two aggregate implementations of such messaging system.
The first implementation, called flood chat, simply broadcasts the payload to all
neighbours. In spite of an in-place garbage collection system, however, this strat-
egy may end up dispatching the message towards directions far-off the optimal
path, burdening the network. The second implementation, spawn chat, leverages
spawn in order to reduce the impact on the network infrastructure by electing a
node as coordinator, then creating an aggregate process connecting the source
and the coordinator and the coordinator and the destination, and finally deliver-
ing the message along such support. In this experiment, we naively choose a coor-
dinator randomly, but better strategies could be deployed to improve over this
configuration. The experiment is simulated on a mesh network of one thousand
devices randomly deployed in the urban area of Cesena, in Italy. We simulate
the creation and delivery of messages among randomly chosen nodes, with one
message per second generated on average by the whole network in time window
[0, 250]; devices execute rounds asynchronously at an average of 1 Hz. We gather
a measure of QoS and a measure of resource usage. We use the probability of
delivering a message with time as a QoS measure, and we measure the number
of payloads sent by each node as a measure of impact on performance. In doing
so, we suppose payload makes up for the largest part of the communication (as
is typically the case when multimedia data are exchanged).

Results. Figure 3 shows experimental results. The two implementations achieve
a very similar QoS, with the flood implementation being faster on average. This
is expected, as flooding the whole network also implies sending through the
fastest path. The difference, however, is relatively small and, on the contrary, we
see the spawn chat affords a dramatic decrease in bandwidth usage (by properly
constraining the expansion of message delivery bubbles), despite the simplistic
selection of the coordinating device.

4.2 Reconnaissance with a Drone Swarm

Motivation. Performing reconnaissance of areas with hindrances to access and
movement such as forests, steep climbs, or dangerous conditions (e.g. extreme
weather and fire) can be a very difficult task for ground-based teams. In those

http://archive.is/C3niO
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Fig. 3. Evaluation of the opportunistic chat algorithms. The figure on top shows similar
performance for the two algorithms, with the flood chat featuring a slightly better deliv-
ery time for the payloads (as it intercepts the optimal path among others). However,
as the bottom figure depicts, spawn chat requires orders of magnitude less resources
due to the algorithm executing on a bounded area (i.e., by involving only a subset of
system devices for each message delivery process).

Fig. 4. Code of the gossip algorithms used in the reconnaissance case study

cases, swarms of unmanned airborne vehicles (UAVs) could be deployed to
quickly gather information [6]. One scenario in which such systems are par-
ticularly interesting is fire monitoring [12]. With this case study, we show how
aggregate processes enable easy programming of a form of gossip that supports
a precise collective estimation of risk in dynamic scenarios.

Setup. We simulate a swarm of 200 UAVs in charge of monitoring the area of
Mount Vesuvius in Italy, which has been heavily hit by wildfires in 2017 (http://
archive.is/j3lsm). UAVs follow a simple exploration strategy: they all start from
the same base station on the southern side of the volcano, they visit a randomly
generated sequence of ten waypoints, and once done they come back to the
station for refuelling and maintenance. UAVs sense their surroundings once per

http://archive.is/j3lsm
http://archive.is/j3lsm
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Fig. 5. Snapshot of the UAV swarm surveying the Vesuvius area as simulated in
Alchemist. Yellow dots are UAVs. Grey lines depict direct drone-to-drone commu-
nication. Drones travel at an average speed of 130 km

h
, in line with the cruise speed

performance of existing military-grade UAVs (see http://archive.is/8zar5), and com-
municate with other drones within 1 km distance in line-of-sight. Forming a dynamic
mesh network using UAV-to-UAV communication is feasible [19], although challenging
[22] (Color figure online)

second and assess the local situation by measuring the risk of fire. The goal
of the swarm is to agree on the area with the highest risk of fire and report
the information back to the station for deployment of ground intervention. A
snapshot of the drones performing the reconnaissance is provided in Fig. 5. In
this paper, we are not concerned with realistic modelling of fire dynamics: we
designed the risk of fire to be maximum in a random point of the surveyed area
for 20 min; the risk then drops (e.g. due to a successful fire-fighting operation),
with the new maximum (lower than the previous) being in another randomly
generated coordinate; after further 20 min the risk sharply increases again to
on a third random coordinate. We compare three approaches: (i) naive gossip,
a simple implementation of a gossip protocol; (ii) S+C+G, a more elaborated
algorithm – based on self-stabilising building blocks [34] – that elects a leader,
aggregates the information towards it, then spreads it to the whole network
by broadcast; (iii) replicated gossip, which replicates the first algorithm over
time (as per [29]) and whose implementation, shown in Fig. 4, uses function
replicated (defined in Sect. 3 upon spawn).

Results. Results are shown in Fig. 6. The naive gossip algorithm quickly con-
verges to the correct value, but then fails at detecting the conclusion of the dan-
gerous situation: it is bound to the highest peak detected, and so it is unsuitable
for evolving scenarios. S+C+G can adapt to changes, but it is very sensitive to
changes in the network structure: data gets aggregated along a spanning tree
generated from the dynamically chosen coordinator, but in a network of fast-
moving airborne drones such structure gets continuously disrupted. Here the
spawn-based replicated gossip performs best, as it conjugates the stability of the

http://archive.is/8zar5
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Fig. 6. Evaluation of the gossip algorithms in the UAV reconnaissance scenario. The
figure on top shows expected values and measures performed by the competing algo-

rithms. The bottom figure measures the error as root mean square:

√∑
n (vn−a)2

n
where

n device count, a actual value, and vn value at the n-th device. The naive gossip cannot
cope with danger reduction, S+C+G cannot cope with the volatility of the network,
while replicated gossip provides a good estimate while being to cope with changes.

naive gossip algorithm with the ability to cope with reductions in the sensed val-
ues. The algorithm in this case provides underestimates, as it reports the highest
peak sensed in the time span of validity of a replicate, and drones rarely explore
the exact spot where the problem is located, but rather get in its proximity.

5 Conclusions, Related and Future Work

In this paper, we have proposed and implemented a notion of aggregate processes
to model dynamic, concurrent collective adaptive behaviours carried out by
dynamic formations of devices—hence extending over field calculus and ScaFi.

Various spacetime- and macro-programming models have been developed
across a wide variety of applications, which can potentially support mecha-
nisms of aggregate processes. The survey [35] describes the historical evolu-
tion of “aggregate computing” from research in distributed systems, coordi-
nation languages, and spatial computing. In particular, four main clusters of
approaches can be identified: (i) “bottom-up” approaches, such as TOTA [26],
and Hood [37], that abstract individual networked devices; (ii) languages for
expressing spatial and geometric patterns, such as GPL [14] and OSL [27]; (iii)
languages for streaming and summarising information over space-time regions,
such as Regiment [28] and TinyLime [15] and (iv) general purpose space-time



Aggregate Processes in Field Calculus 215

computing models, such as MGS [20], the field calculus [4], and the Soft Mu-
calculus for Computational fields (SMuC) [25]. Other works, often more generic
and less operational, include models and languages for programming ensembles,
such as SCEL [17], and process algebras (cf., the SAPERE approach [39]).

Multi-agent systems can bring agents together according to multiple organi-
sational paradigms [23]. With aggregate processes, it is possible to program the
logic of group formation so as to implement various grouping strategies. In the
messaging case study, e.g., a dynamic, goal-directed team of devices is formed
just to to connect senders with recipients, dissolving when the task is completed.

Related to the specifics of process execution, there are different models which
aims at simplifying programming of multiple computing nodes as well as analy-
sis of resulting programs. For instance, in the Bulk Synchronous Parallel (BSP)
model [33], computations are structured as sequences of rounds followed by
synchronisation steps; large-scale graph processing frameworks such as Apache
Giraph [13] are inspired by BSP. Modern distributed data processing models
(e.g., MapReduce [18] and derived ones) also abstract away network structure
and trade performance for constrained programming schemas. By another per-
spective, works on service computing [7] tailored to dynamic ad-hoc environ-
ments [21] are also relevant but usually neglect the collective dimension and
rarely consider open-ended situated activities. The service perspective connects
also to utility computing and related efforts for abstracting and automatically
managing networking and hardware infrastructure [32]—aggregate processes, by
admitting diverse computation partitioning schemas [36], foster this vision.

In future work, we would like to use processes for advanced distributed coor-
dination scenarios and implement a support for dynamic relocation of aggregate
processes across a full IoT/Edge/Fog/Cloud stack. Further experimentation will
be key to fully develop a theory of aggregate processes (e.g. in the style of π-
calculus and its derivatives) as well as fully-fledged API and platform support.
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