q 97

Check for
updates

Introduction to MATLAB

Image Analysis and Brownian Motion

Simon F. Norrelykke

5.1 Tools - 99

5.1.1 MATLAB - 99

5.1.2 Image Processing Toolbox — 99

5.1.3 Statistics and Machine Learning Toolbox,
Curve Fitting Toolbox — 99

5.2 Getting Started with MATLAB - 99
5.2.1 Baby Steps - 99

522 Plot Something - 101

523 Make it Pretty — 104

5.2.4 Getting Help - 104

5.3 Automating It: Creating Your Own Programs - 104
5.3.1 Create, Save, and Run Scripts — 105

5.3.2 Code Folding and Block-Wise Execution — 106

533 Scripts, Programs, Functions: Nomenclature — 106

5.4 Working with Images - 107

5.4.1 Reading and Displaying an Image — 108

5.4.2 Extracting Meta-Data from an Image - 108
543 Reading and Displaying an Image-Stack - 110
544 Smoothing, Thresholding and All That - 113

5.5 Time-Series Analysis - 116

5.5.1 Simulating a Time-Series of Brownian Motion
(Random Walk) - 117

5.5.2 Plotting a Time-Series — 118

5.5.3 Histograms — 119

5.5.4 Sub-Sampling a Time-Series
(Slicing and Accessing Data) - 119

© The Author(s) 2020
K. Miura, N. Sladoje (eds.), Bioimage Data Analysis Workflows, Learning Materials in Biosciences,
https://doi.org/10.1007/978-3-030-22386-1_5

https://doi.org/10.1007/978-3-030-22386-1_5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22386-1_5&domain=pdf

555
5.5.6
5.5.7
5.5.8

5.5.9
5.5.10

5.6

5.6.1
5.6.2
5.6.3
5.6.4
5.6.5

Investigating How “Speed” Depends on At - 120
Investigating How “Speed” Depends on Subsampling — 121
Simulating Confined Brownian Motion — 122

Simulating Directed Motion with Random

Tracking Error — 122

Loading Tracking Data from a File — 123

Smoothing (Filtering) a Time-Series — 124

MSD: Mean Square Displacement - 124
Creating a Function That Calculates MSDs — 125
MSD: Linear Motion — 127

MSD: Brownian Motion — 127

MSD: Averaged Over Several 2-Dim Tracks — 129
Further Reading About Diffusion, the MSD,

and Fitting Power-Laws — 129

Appendix: MATLAB Fundamental Data Classes - 130
MATLAB Documentation Keywords for Data Classes — 131

Appendix: Do | Have That Toolbox? - 131

Appendix: HTML and Live Scripts — 133
Publish Your Script to HTML — 133
Working with Live Scripts — 133

Appendix: Getting File and Folder Names
Automatically - 133

Read from a Folder - 133

Path and File Names — 135

Appendix: Codehygiene - 137
Appendix: MATLAB Cheat Sheet - 138

Bibliography - 141

99
Introduction to MATLAB

What You Learn from This Chapter

You will be introduced to some of the powerful and flexible image-analysis methods native
to MATLAB. You will also learn to use MATLAB to simulate a time-series of Brownian motion
(diffusion), to analyse time-series data, and to plot and export the results as pretty figures
ready for publication. If this is the first time you code, except from writing Macros in ImageJ,
then this will also serve as a crash course in programming for you.

5.1 Tools

We shall be using the commercial software package MATLAB as well as some of its prob-
lem specific toolboxes, of which there are currently more than 30.

5.1.1 MATLAB

Don’t panic! MATLAB is easy to learn and easy to use. But you do still have to learn it.
MATLARB is short for matrix laboratory, hinting at why MATLAB is so popular in the
imaging community—remember that an image is just a matrix of numbers. MATLAB is
commercial software for numerical, as opposed to symbolic, computing. This material was
developed and tested using versions R2015b, R2016a, R2017a, and R2018a of MATLAB.

5.1.2 Image Processing Toolbox

Absolutely required if you want to use MATLAB for image analysis.

5.1.3 Statistics and Machine Learning Toolbox,
Curve Fitting Toolbox

Somewhat necessary for data-analysis, though we can get quite far with the core function-
alities alone.

5.2 Getting Started with MATLAB

That is what we are doing here! However, if you have to leave now and still want an interac-
tive first experience: Head over here, sign up, and take a free, two hour, interactive tutorial
that runs in your web-browser and does not require a MATLAB license (they also have paid
in-depth courses).

5.2.1 Baby Steps

Start MATLAB and lets get going! When first starting, you should see something similar
to @ Fig. 5.1

https://matlabacademy.mathworks.com
https://matlabacademy.mathworks.com

100

S.F. Norrelykke

¥ B - il T R I 3 AL e
G e Come e T ot 3 i Tool-strip
S e P PR N P | WPy g e) -
— c— = — — .
4 % 03 [% Users » simon » Documents + MATLAZ » -
Current Folder = [& tanor I,‘L:\ln.nlmoﬂ.l work Teaching (201606 [MBL_BIAS/BAS2016_MATLAR/mFiles/functicns fun_mad af s ® X %
w ean TrackMareTracks. m furs_rdd_at_taum lead_data_slot_midm Cell_01_Tracks wol + s
- QT —

o Script-editor Variables
j priscdodn W — IMITIALIZE —
Smawpm - M= lengthl %); wster of postions deterained
D, W === CALCULATE THE MSD AT A SINGLE TIMELA
irectory b=

=Lyl toetow b -yl t)DL

1
3
3
¥
3
.
7
®
3
"
1
12
13- -drd = ozecos(3, M-t)y % initiali
1
3
1%
17
18
1
™

drzl £) = dx2 « oyl store the souared x-y-displacesent for each postio

Tan Tarup.m f1le, located in /Users/simon/Documents/MATLAE

Acadesic Licenss

o
o || | Command-line
SUsers/ s 1mon /Document s MATLAE
s s
Apgs coursera.m figurePretty.n printipdf.n
Mattworks Matlsb R20030 cp.m keratocyte.m results
dicty.n marathon_pace.s startup.m
rE

B Fig. 5.1 The full MATLAB window with default layout of the windows. Some preset layouts are
accessible in the tool-strip, under the HOME tab, in the Layout pull-down menu. Double-click on the
top-bar of any sub-window to maximize it, double-click again to revert

First we are just going to get familiar with the command line interface. To reduce clutter,
double-click on the bar (grey or blue) saying Command Window. This will, reversibly,
maximize that window.

Now, let us add two numbers by typing 5+7, followed by return. The result should

look like in @ Fig. 5.2
Next, let us define two variables a and b and add them to define a third variable ¢

>> a=b

17 12

Introduction to MATLAB

@ Fig.5.2 The command
window in MATLAB after
entering 5+7 and hitting the
return key. The result, 12, is
displayed and stored in the
variable ans

101

[Command Window

== 547
ans =

12

This time, we notice that the result of our operation are no longer stored in the variable
ans but in the variable with the name we gave it, i.e., a, b, and c.
Finally, let us change one of the variables and see how the other two change in response

to this.

>> a=10

13 >> c=a+b

17 17

Here, you should notice that the value of ¢ does not change until we have evaluated it
again—computers are fast, but they cannot not read our minds (most of the time), so we
have to tell them exactly what we want them to do.

Ok, that might have been somewhat underwhelming. Let us move on to something
slightly more interesting and that you can probably not so easily do on your phone.

5.2.2 Plot Something

Here are the steps we will take:

Plot y against x

Gk e =

Create a vector x of numbers
Create a function y of those numbers, e.g. the cosine or similar

Label the axes and give the plot a title
Save the figure as a pdf file

102 S.F. Norrelykke

First we define the peak-amplitude (half of the peak-to-peak amplitude)

10

Then we define a number of discrete time-points
1 > x =0 : 0.0l : 5*pi;

Notice how the input we gave first, the A, was again confirmed by printing (echoing) the
variable name and its value to the screen. To suppress this, simply end the input with a
semicolon, like we just did when defining x. The variable x is a vector of numbers, or
time-points, between 0 and 5z in steps of 0.01. Next, we calculate a function y(x) at each
value of x

1 > y=2A* cos(x);
Finally, we plot y versus x!
1 >> figure;plot(x,y)

To make the figure a bit more interesting we now add one more plot as well as legend,
labels, and a title. The result is shown in B Fig. 5.3.

>> y2 =y .* x;

>> hold on

>> plot(x, y2, V==l)

>> legend(’cos (x)’, 'x * cos(x)")

>> xlabel (' Time (AU)’)

>> ylabel (' Position (AU)’)

>> title (’Plots of various sinusoidal functions’)

~N o 0w N

Here, hold on ensures that the plots already in the figure are “held”, i.e., not erased,
when the next function is plotted in the same figure window. We specify the use of a
dashed red line, for the new plot, by the ——r’ argument in the plot function. You

1 By now, you have probably noticed that some words are typeset like this.Those are words
that MATLAB recognize as commands (excluding commands that are specific to toolboxes).

103
Introduction to MATLAB

Plots of various sinusoidal functions
80 T T T T T T T

cos(x)

s X * cos(x)

Position (AU)

-60 | % :
\\
-80 + ' 4
_‘I OO 1 1 1 1 1 1 1 1 1 B
0 1 2 3 4 5 6 7 8 9 10
Time (AU)

B Fig. 5.3 Two sinusoidal plots with legend, axes labels, and title

will also have noticed that we multiplied using . and not just *—this is known as
element-wise multiplication, as opposed to matrix or vector multiplication (more on
that in a little while).

After having created a figure and adjusted it to your liking, you may want to export it
for use in a paper or presentation. This can be done either via the pull-down menus, if you
only need to do it once, or via the command line if it is a recurrent job:

1 >> print(’-dpdf’, ’/Users/simon/Desktop/cosineFigure.pdf’)

Here, the first argument, —~dpdf’, specifies the output file format; whereas the second
argument specifies where (/Users/simon/Desktop/) the output file should be
saved and with what name (cosineFigure.pdf). The print function is not con-
fined to the pdf format but can also export to png, tiff, jpeg, etc. On a Windows machine,
the path to the desktop is something like ¢ : UsersSusername) Desktop, though it
will depend on the version of Windows you run.

104

S.F. Norrelykke

5.2.3 Make it Pretty

We have a large degree of control over how things are rendered in MATLAB. It is possible
to set the typeface, font, colors, line-thickness, plot symbols, etc. Don’t overdo this! The
main objective is to communicate your message, and that message is rarely “look how
many colors I have”—if you only have two graphs in the same figure, gray-scale will likely
suffice. Strive for clarity!

5.2.4 Getting Help

At this point you might want to know how to get help for a specific command. That is easy,
simply type help and then the name of the command you need help on. Example, for the
xlabel command we just used:

1 >> help xlabel

2 xlabel X-axis label.

3 xlabel (' text’) adds text beside the X-axis on the current axis.
4

5 xlabel (' text’, " Propertyl’,PropertyValuel, " Property2’,

PropertyValue2 ,...)

6 sets the values of the specified properties of the xlabel.

7

8 xlabel (AX, ...) adds the xlabel to the specified axes.

9

10 H = xlabel(...) returns the handle to the text object
used as the label.

11

12 See also ylabel, zlabel, title, text.

13

14 Reference page for xlabel

If you click the link on the last line it will open a separate window with more information
and graphical illustrations. Alternatively, simply go directly to that page this way

1 >> doc xlabel

Expect to spend substantial time reading once you start using more of the options avail-
able. MATLAB is a rich language and most functions have many properties that you can
tune to your needs, when these differ from the default.

5.3 Automating It: Creating Your Own Programs

The command-line is a wonderful place to quickly try out new ideas—just type it in and
hit return. Once these ideas become more complex we need to somehow record them in
one place so that we can repeat them later without having to type everything again. You
know what we are getting to: The creation of computer programs.

105
Introduction to MATLAB

In the simplest of cases we can take a series of commands, that were executed in the com-
mand line, and save them to a file. We could then, at a later stage, open that file and copy these
lines into the command line, one after the other, and press return. This is actually a pretty
accurate description of what takes place when MATLAB runs a script: It goes through each
line of the script and tries to execute it, one after the other, starting at the top of the file.

5.3.1 Create, Save, and Run Scripts

You can use any editor you want for writing down your collection of MATLAB statements.
For ease of use, proximity, uniformity, and because it comes with many powerful extra fea-
tures, we shall use the editor that comes with MATLAB. It will look something like in
B Fig. 5.4 for a properly typeset and documented program. You will recognize most of the

06006 MATLAB R2017a - academic use

:ﬁﬁa’ial Q Search Documentation m

< # [& B/ » Users » simon » Desktop » -0
wﬂ_Edito: = (Users/simon/_work/Teaching/2017_ZIDAS/ZIDAS_MATLAB_module/sharedWithStudents/mFiles/... ® H x
myFirstScript.m +

1 % myFirstScript.m w
2

3 % This script demonstrates documentation and sections

4

5 % 2016-06-02, sfn: created

6 % 2017-10-12, sfn: modified maxX

7

8 %% === INITIALIZE ---

9 - clear variables

18 - close all

i = clc

12

13 = A = 18; % The peak-amplitude

14 - stepsize = 9.01; % the granularity of the the x-vector -
5= maxX = 5%pi; % the maximum value x can take

16 - % = @ : stepsize : maxX; % creating the x-vector -
aly

18 %% —=—— FUNCTIONS OF X —-—-

19 = y =A=*xcos{ x); % a simple cosine

20= Y2 =¥ .k X; % a cosine with linearly growing amplitude
21

22 %% === PLOTS ---

23 - figure, hold on, box on

24- | plot(x, y)

25 - plot{ x, y2, '--r'

26 - legend('cos(x)', 'x * cos(x)"')

27 - xlabel{ 'Time (AU)')

28 - ylabel('Position (AU)')

28 ~ title('Plots of various sinusoidal functions')

30

3 %% ——- save to file ——-

32 = cd ~/Desktop

33 - print('-dpdf', 'cosineFigure.pdf') % save as pdf

34

script Ln 14 Col 4

B Fig.5.4 The editor window. The script is structured for easy human interpretation with clear blocks
of code and sufficient documentation. Starting from the percent sign all text to the right of it is
“outcommented” and appears green, i.e., MATLAB does not try to execute it. A double percent-sign
followed by space indicates the beginning of a code-block that can be folded (command-.), un-folded
(shift-command-.)and executed (command-enter) independently. The currently active code-
block is yellow. The line with the cursor in it is pale-green. Notice the little green square in the upper
right corner, indicating that MATLAB is happy with the script and has no errors, warnings, or suggestions

106

S.F. Norrelykke

commands from when we plotted the sinusoidsal functions earlier. But now we have also
added some text to explain what we are doing.

A script like the one in B Fig. 5.4 can be run in several ways: (1) You can click on the
big green triangle called “run” in Editor tab; (2) Your can hit F'5 when your cursor is in the
editor window; or (3) You can call the script by name from the command line, in this case
simply type myFirstScript and hit return. The first two options will first save any
changes to your script, then execute it. The third option will execute the version that is
saved to disk when you call it. If a script has unsaved changes an asterisk appears next to
its name in the tab.

When you save a script, please give it a meaningful name—“untitled.m” or “script5.m”
are not good names even if you intend to never use them again (if it is temporary call it
“scratch5.m” or “deleteMe5.m” so that if you forget to delete it now, you will not be in
doubt when you rediscover it weeks from now). Make it descriptive and use underscores
or camel-back notation as in “my_first_script.m” or “myFirstScript.m”. The same goes for
variable names.

5.3.2 Code Folding and Block-Wise Execution

As you will have noticed, in the screenshot of the editor, the lines of codes are split into para-
graphs separated by lines that start with two percent signs and a blank space. All the code
between two such lines is called a code-block. These code-blocks can be folded by clicking on
the little square with a minus in it on the left (or use the keyboard shortcut command-., to
unfold do shift-command-.). This is very useful when your code grows.

You can quickly navigate between code-blocks with command-arrow-up/down
and once your cursor is in a code-block you are interested in you can execute that entire
block with command-enter. Alternatively, you can select (double-click or click-drag)
code and execute it with shift-F7. For all of these actions you will see the code appear-
ing and attempting to execute in the command window.

A list of keyboard shortcuts as well as settings for code-folding can be found in the
preference settings (can you find the button?), via the command-, shortcut, as always, on
amac. What is it on a PC?

5.3.3 Scripts, Programs, Functions: Nomenclature

Is it a script or a program? It depends! Traditionally, only compiled languages like C, C++,
Fortran, and Java are referred to as programming languages and you write programs.
Languages such as JavaScript and Perl, that are not compiled, were called scripting lan-
guages and you write scripts. Then there is Python, sitting somewhere in between.
MATLAB also is in between, here is what MathWorks have to say about it;

)» When you have a sequence of commands to perform repeatedly or that you want to
save for future reference, store them in a program file. The simplest type of MATLAB
program is a script, which contains a set of commands exactly as you would type them
at the command line.

Ok, so when we save our creations to an m-file (a file with extension .m) we call it a program
file (it is a file and it is being used by the program MATLAB). But the thing we saved could

https://ch.mathworks.com/help/matlab/programming-and-data-types.html

107
Introduction to MATLAB

be either a script or a function, or perhaps a new class definition. We shall use the word
“program” to refer to both scripts and functions, basically whatever we have in the editor,
but may occasionally specify which of the two we have in mind if it makes things clearer.

5.4 Working with Images

Because MATLAB was designed to work with matrices of numbers it is particularly well-

suited to operate on images. Recently, Mathworks have also made efforts to become more

user-friendly. Let’s demonstrate (8 Figs. 5.5 and 5.6):

1. Save an image to your desktop, e.g. “Blobs (25K)” from Image]J as “blobs.tif” (also
provided with material)

|[cseare ‘=me-

FAVORITES

B & B [B ® @ 68 & =

| Curve Fiting Optimization MuPAD FID Tuner System Signal Image Instrument SamBiology MATLAB Application
Notebook Idemiification Anabysis Acquisiion Control Coder Compiler

| IMACE PROCESSING AND COMPUTER VISION

® O® B a & 2| B 6 ® = @

Camera Calar Image Image Batch Image Region Image Image Viewsr | Map Viewsr Steren Training Video Viewsr
Callbrater Thresholder Acquisiklan Processor Anahyzer Camera Call... Image Labeler

|
|
!E
I
|

B Fig. 5.5 Access to various apps in the tool-strip of MATLAB. The apps accessible will depend on the
tool-boxes you have installed

@0 @ Figure 2
File Edit View Insert Tools Desktop Window Help kLl

DEde B SROPEA- 3 08 D

® © @ Figure1 ’ I . .
FEVIn Tc De Wit H >

Uaug B- -

@ Fig.5.6 The"blobs”from ImageJ displayed without (left) and with (right) scaling of intensity and size

108

S.F. Norrelykke

2. Open the MATLAB app Image Viewer either from the tool-strip or by typing

imtool

From the Image ViewergotoFile > Open ... and selectanimage

4. Adjust the contrast, inspect the pixels, measure a distance, etc, using the tool-strip
shortcuts

@

5.4.1 Reading and Displaying an Image

This, however, is not much different from what we can do in Image]. The real difference
comes when we start working from the command-line and making scripts—while this is
also possible in Image], it is a lot easier in MATLAB. Assuming you have an image named
“blobs.tif” on your desktop, try this

>> ed /Users/simon/Desktop

>> myBlobs = imread(’blobs.tif’);

>> figure(1l); clf

>> imshow (myBlobs)

>> figure (2); clf

>> imshow (myBlobs, ’displayrange’, [10 200],
finitialmagnification’, Tfit’)

~N oy U W N

Here is what we just did: (1) We navigated to the directory holding our image; (2) Read the
image into the variable myB1lobs using the imread command; (3) Selected figure num-
ber 1 (or created it if it didn't exist yet) and cleared it; (4) Displayed the content of our
variable myBlobs in figure 1; (5) Selected, or created, figure number 2 and cleared it; (6)
Again displayed the content of myB1obs but now with the displayed gray-scale confined
(especially relevant for 16bit images that otherwise appear black), and the displayed image
fitted to the size of the window.

5.4.2 Extracting Meta-Data from an Image

Because we are becoming serious image-analysts we also take a look at the meta-data that
came with the image.

>> blobInfo = imfinfo (’blobs.tif’);

>> whos blobInfo
Name Size Bytes Class Attributes
blobInfo 1x1 5908 struct

>> blobInfo

blobInfo =

H O 0w J o O W N

109
Introduction to MATLAB

11 Filename: ' /Users/simon/Desktop/blobs.tif’
12 FileModDate: ’05-Jun-2016 09:45:04"
13 FileSize: 65172

14 Format: ’tif’

15 FormatVersion: []

16 Width: 256

17 Height: 254

18 BitDepth: 8

19 ColorType: ’'grayscale’

20 FormatSignature: [77 77 0 42]
21 ByteOrder: ’"big-endian’
22 NewSubFileType: O

23 BitsPerSample: 8

24 Compression: ’'Uncompressed’
25 PhotometricInterpretation: 'WhitelIsZero’
26 StripOffsets: 148

27 SamplesPerPixel: 1

28 RowsPerStrip: 254

29 StripByteCounts: 65024

30 XResolution: []

31 YResolution: []

32 ResolutionUnit: ’'Inch’

33 Colormap: []

34 PlanarConfiguration: ’Chunky’

35 TileWidth: []

36 TileLength: []

37 TileOffsets: []

38 TileByteCounts: []

39 Orientation: 1

40 FillOrder: 1

41 GrayResponseUnit: 0.0100

42 MaxSampleValue: 255

43 MinSampleValue: 0

44 Thresholding: 1

45 Offset: 8

46 ImageDescription: ’Imaged=1.50b..."

After your experience with Image] you should have no problems understanding this
information. What is new here, is that the variable blobInfo that we just created is of
the type struct. Elements in such variables can be addressed by name, like this:

>> blobInfo.Offset

ans =

>> blobInfo.Filename
ans =
0
1 /Users/simon/Desktop/blobs.tif

110

S.F. Norrelykke
If you want to add a field, or modify one, it is done like this:

1 >> blobInfo.TodaysWeather = ’rainy, sunny, whatever’
2
3 DblobInfo =
4
5

TodaysWeather: ’rainy, sunny, whatever’

Note, that we are modifying the content of the variable inside of MATLAB—the informa-
tion in the “blobs.tif” file sitting on your hard-drive was not changed. If you want to save
the changes you have made to an image (not including the metadata) you need the com-
mand imwrite. If you want to also save the metadata, and generally want more detailed
control of your tif-image, you need the Ti £ £ command.

When addressing an element by name, you can reduce typing by hitting the TAB-key
after entering blobInfo . —this will display all the field-names in the structure.

It is important to realize that imread will behave different for different image for-
mats. For example, the tiff format used here supports the reading of specific images from
a stack via the ’ index’ input argument (illustrated below) and extraction of pixel
regions via the " pixelregion’ input argument. The latter is very useful when images
are large or many as it can speed up processing not having to read the entire image image
into memory. On the other hand, jpeg2000 supports ' pixelregion’ and ' reduc-
tionlevel’,butnot’ index’.

5.4.3 Reading and Displaying an Image-Stack

Taking one step up in complexity we will now work with a stack of tiff-files instead. These

are the steps we will go through

1. Open “MRI Stack (528K)” in Image] (File > Open Samples)—or use the copy
provided

2. Save the stack to your desktop, or some other place where you can find it

(File > Save)

Load a single image from the stack into a two-dimensional variable

Load multiple images from the stack into a three-dimensional variable

Browse through the stack using the implay command

Create a montage of all the images using the montage command

S

After performing the first two steps in Image], we switch to MATLAB to load a single
image-plane (we will work in the editor, use Live Script ifyou feel like it) and display
it (see. result in B Fig. 5.7):

%% —-—-- INITIALIZE ---

clear variables % clear all variables in the workspace
close all % close all figure windows

clec % clear the command window

cd(’ ~/Desktop’) % change directory to desktop

gD W N

1

Introduction to MATLAB

@ Fig. 5.7 Slice number 7 from
mri-stack.tif

6

7 %% --- load single image and display it ---

8 mriImage = imread('mri-stack.tif’, ’index’, 7);
9 imshow (mrilImage)

To build a stack in MATLAB we need the extra argument ’ index’ to specify which
single image to read and where in the stack to write it, here we chose image number 7:

1 mriStack(: , : , 7) = imread('mri-stack.tif’, ’‘index’,7);

Next, we load the entire mri-stack one image at a time. This is done by writing into the
three-dimensional array (data-cube) mriStack using a for-loop (this concept should
already be familiar to you from the Image] macro sections). We use the colon-notation to
let MATLAB know that it should assign as many rows and columns as necessary to fit the
images. We also take advantage of already knowing that there are 27 images.

1 for imageNumber = 1 : 27

2 mriStack(: , : , imageNumber) = imread(’'mri-stack.tif’,
’index’, imageNumber) ;

3 end

112

S. F. Norrelykke

We can use the whos command to inspect our variables and the implay command to
loop through the stack (command line):

1 >> whos

2 Name Size Bytes Class Attributes
3

4 imageNumber 1x1 8 double

5 mriImage 226x186 42036 uint8

6 mriStack 226x186x27 1134972 uint8

7 >> implay (mriStack)

Finally, we want to create a montage. This requires one additional step because we are
working on 3-dimensional single-channel data as opposed to 4-dimensional RGB images
(the fourth dimension is color)—the montage command assumes/requires 4D data (that
is just how it is):

1 mriStack?2 = reshape (mriStack, [226 186 1 27]);
2 map = colormap (' copper’) ; % or: bone, summer, hot
3 montage (mriStack2, map, "size’, [3 9])

The reshape command is used to, well, reshape data arrays and here we used it to simply
add one more (empty) dimension so that montage will read the data. The result is shown
in @ Fig. 5.8.

We can again inspect the dimensions and data-types using the whos command,
this time with an argument that restricts the result to any variable beginning with
mriStack

O Fig. 5.8 A montage of the 27 images in the MRI stack, arranged as 3 x9 and displayed with the
colormap “copper”

113
Introduction to MATLAB

1 >> whos mriStack*

2 Name Size Bytes Class Attributes
3

4 mriStack 226x186x27 1134972 uint8

5 mriStack?2 4-D 1134972 uint8

To get the dimensions of the 4D mristack?2 variable we use the command size

1 > size(mriStack?2)

2

3 ans =

4

5 226 186 1 27

Here, the third dimension is the color channel.

5.4.4 Smoothing, Thresholding and All That

Yes, of course we can perform all these operations and here is a small taste of how it is
done. We are going to

Load an image and invert it

Create a copy of it that has been smoothed with a Gaussian kernel

Determine the Otsu threshold for this copy

Create a binary image based on the smoothed copy

Display the mask on the original

Apply this mask (binary image) to the original and make measurements through it
Display measurements directly on the original (inverted) image

NI

In the editor, we first initialize, then load, invert, and display the result:

%% ——-— INITIALIZE —---
clear variables

close all

clc

tfs = 16; %Stitle font size

%% —--- load image ---

cd ~/Desktop

blobs = imread(’blobs.tif’); $ read tif
blobs inv = 255 - blobs; S$invert 8bit image

0 J o U w N

= B w0
N P O
oo

o°

————— display the inverted image ---

figure (1)

imshow (blobs inv, finitialmagnification’, rfit’)
title (' Inverted’, "fontsize’, tfs)

= e
oo W

114 S.F. Norrelykke

Next, we smooth the inverted image with a Gaussian kernel, detect the Otsu threshold,
apply it, and display the result:

BSw N

O O ~J o U

%% —--- Gaussian smooth and Otsu threshold ---

blobs inv_gauss = imgaussfilt (blobs_inv, 2); % sigma = 2 pixels
Otsulevel = graythresh(blobs inv gauss); % find threshold
blobs bw = imbinarize (blobs inv gauss, OtsulLevel); % apply
threshold

%% —--- display the thresholded image ---

figure (2)

imshow (blobs bw, initialmagnification’, rfit’)
title (' Inverted, Smoothed, Thresholded’, ' fontsize’, tfs)

To illustrate, on the grayscale image, what we have determined as foreground, we mask it
with the binary image blobs bw by multiplying pixel-by-pixel:

W J o) U W

%% —--- mask the inverted image with the thresholded image ---
blobs bw uint8 = uint8(blobs bw); % convert logical to integer
blobs masked = blobs_inv .* blobs_bw_uint8; $% mask image

%% —--- display the masked image ---

figure (3)

imshow (blobs masked, ’initialmagnification’, rfit’)
title (' Inverted and Masked’, ’fontsize’, tfs)

As an alternative to showing the masked image we can choose to show the outlines of the
connected components (the detected blobs):

@O ~J o U1

%% --- find perimeter of connected components ---

blobs perimeter = bwperim(blobs bw) ; % perimeter of white con-
nected components

blobs summed = Dblobs inv + 255 * uint8 (blobs perimeter); % convert,

scale, and overlay perimeter on image

%% --- display image with perimeter overlaid ---
figure (4)
imshow (blobs summed, ’initialmagnification’, rfit’)

title (' Inverted, Masked, Outlines’, ' fontsize’, tfs)

In step two we convert the logical variableblobs perimeter toan 8-bit unsigned
integer on the fly (and multiplied it by 255 to increase the intensity), before adding it to the
image. If you wonder why we do this conversion, just try to omit it and read the error-
message from MATLAB.

115

Introduction to MATLAB

O Fig.5.9 “Blobs”shown with Inverted, Masked, Outlines, Centroids
outlines of threshold-based e ! :
segmentation overlaid. The
centroid of each connected
component is marked with a red
asterisk

Now, let's make some measurements on the b/w image and display them on the blobs
summed image from above:

1 %% --- measure areas etc on b/w image ---

2 stats = regionprops(blobs bw, ’'area’, ’'perimeter’, 'centroid’);
% extract features from thresholded image

3 centroids = cat(l, stats.Centroid); % reformat the centroid data
to array

4

5 %% --- display centroid positions overlaid on grayscale with out-
lines ---

6 figure(4) % this figure already exists, we are now adding to it

7 hold on % tell MATLAB too keep what is already in the figure

8 plot(centroids(:, 1), centroids(:, 2), "*r’) % use red asteriks

9 title(’Inverted, Masked, Outlines, Centroids’, ’'fontsize’, tfs)

The result of this step is shown in 8 Fig. 5.9.
Finally, we measure the gray-scale image using the masks—this should remind you of
the “Redirect to:” option in ImageJ (Analyze > Set Measurements ...):

1 %% —-—-- measure grayscale values ---
2 labels = bwlabel (blobs bw); % get identifier for each blob
3 statsGrayscale = regionprops(labels, blobs inv, "meanInten-

sity’); % measure pixel-mean for each blob

116

S. F. Norrelykke

O Fig.5.10 Masked version of Inverted, Masked, mean intensity displayed
“blobs” with the measured mean ’

intensity for each connected
component shown

4 meanIntensity = cat(l, statsGrayscale.MeanIntensity); % reformat
the extracted date

5

6 %% —--- display measurements on image ---

7 % again, we add to an already existing image

8 figure (3); hold on

9 xOffset = 10; % number of pixels to shift the text to the left

10 text(centroids(:, 1) = xOffset, centroids (:, 2),

num2str (meanIntensity, 4), "color’, "blue’, "fontsize’, 10)

Here, we subtracted 10 from the x-coordinate to shift the text ten pixels to the left and
thereby centering it a bit better on the detected blobs. We also indicate that we want at
most four digits displayed.

The result is shown in 8 Fig. 5.10.

Exercise: Do this and understand each step! The code shown above is available in
blobAnalysis.m.

5.5 Time-Series Analysis

MATLAB has a dedicated data type called simply t imeseries. We shall not be using this
class here as it is too specialized for what we want to do. At a later stage in your research you
might find it useful, but be warned that is was developed probably more with the financial
sector in mind and may not support quite the kind of analysis you need to perform.
Whether or not you actually have a time-series or simply an ordered list of data often
does not matter. Many of the tools are the same but were indeed developed by people doing
signal-processing for, e.g., telephone companies, i.e., they worked on actual time-series data.

117
Introduction to MATLAB

5.5.1 Simulating a Time-Series of Brownian Motion
(Random Walk)

Physical example: Diffusing molecule or bead. A particle undergoing Brownian motion
(read Brown’s paper Brown et al. (1828), it is delightful!) is essentially performing a
random walk: In one dimension, each step is equally likely to be to the right or left. If,
in addition, we make the size of the step follow a Gaussian distribution, we essentially
have Brownian motion in one dimension, also known as diffusion. Here, we will sim-
plify a bit and set a number of physically relevant constants to one, just to keep the code
simpler.

The code for generating the random numbers goes something like this (see entire
script of name simulateAndPlotBrownianMotion.m):

1 %% —-—-- INITIALIZE ---

2 clear variables

3 close all

4 clc

5

6 % --- simulation settings ---

7 dt = 1; % time between recordings

8 t = (0 : 1000) * dt; % time

9

10 %% --- GENERATE RANDOM STEPS ---

11 stepNumber = numel (t); % number of steps to take

12 seed = 42; % "seed" for the random number generator
13 rng(seed); % reset generator to postion "seed"

14 xSteps = randn(l, stepNumber) * sqrt(dt); % Gaussian dis-

tributed steps of zero mean

At this stage you do not have to understand the function of the sqrt (dt) command—
with dt = 1 itis one anyway—it is here because this is how Brownian motion actually
scales with time. The seed variable and the rng command together control the state in
which the (pseudo-)random number generator is started—with a fixed value for seed we
will always produce the same random numbers (take a moment to ponder the meaning of
randomness when combined with a computer).

After this, we calculate the positions of the particle and the experimentally determined
speeds (we will return to these in detail below):

1 %% --- CALCULATE POSITIONS AND SPEEDS ---

2 xPos = cumsum (xSteps); % positions of particle

3 varSteps = var (xSteps); % variance of step-distribution
4

5 xVelocity = diff (xPos) / dt; % "velocities"

6 xSpeed = abs (xVelocity); % "speeds"

.

8 meanSpeed = mean (xSpeed) ;

9 stdSpeed = std(xSpeed);

10

118

S.F. Norrelykke

11 %% —--- DISPLAY NUMBERS ---

12 disp([’VAR steps = ' num2str (varSteps)])

13 disp([’Average speed = ’ num2str (meanSpeed)])
14 disp([’STD speed = ' num2str (stdSpeed)])

In the last three lines we used the command disp that displays its argument in the com-
mand window. It takes as argument variables of many different formats, incl. numerical
and strings. Here, we gave it a string variable that was concatenated from two parts, using
the [and] operators (other options are to use the commands cat, strcat, or horz-
cat). The first part is an ordinary string of text in single quotes, the second part is also a
string but created from a numeric variable using the command num2str.

The other MATLAB commands cumsum, diff, mean, and std do what they say
and calculate the cumulative sum, the difference, the mean, and the standard deviation,
respectively. Look up their documentation, using the doc command, for details and addi-
tional input arguments.

5.5.2 Plotting a Time-Series

Ok, now let us plot some of these results:

%% —-—-- PLOT STEPS VERSUS TIME ---

figure; hold on; clf

plot(t, xSteps, ’'-', "color’, [0.2 0.4 0.8])
xlabel (' Time [AU]’)

ylabel (' Step [AU]')

title (' Steps versus time’)

o U W N

The output of these lines, and a similar pair for the positions, is shown in B Fig. 5.11. See
the script simulateAndPlotBrownianMotion.m to learn how to tweak plot
parameters.

Steps versus time Position versus time (Trajectory)

4, 30
31 20 'i'lll'i
L Fl ,
2 il by M il 2o et
— = 1 1 i
a0 (“w | 1 l ‘l | L’ |i| S O'F'f"'-‘ ‘r-r""uTl‘. \d:a'l" " |
LBY "" 8-10 "*H W
Y a '{TN Wi II'
— |
vy - - - -30 :
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (AU) Time (AU)

O Fig.5.11 Steps (left) and positions (right) as a function of time for a one-dimensional random walk

119
Introduction to MATLAB

5.5.3 Histograms

Let us now examine the distribution of step-sizes. We do that by plotting a histogram:

%% —--—- PLOT HISTOGRAM OF STEPS ---
figure; hold on

binNumber = floor (sqrt (stepNumber)) ;
histHandle = histogram(xSteps, binNumber)
xlabel (' Steps [AU]’)

ylabel (' Count’)

title(’'Histogram of step-sizes’)

~ o 0w N

O Figure 5.12 show the resulting plot. The command histogram was introduced in
MATLAB R2014b and replaces the previous command hist—they are largely similar
but the new command makes it easier to create pretty figures and uses the color-scheme
introduced in MATLAB R2014b: Since version R2014b, MATLAB’s new default colormap
is called “parula” and replaces the previous default of “jet”.

5.5.4 Sub-Sampling a Time-Series (Slicing and Accessing Data)

Sometimes we can get useful information about our time-series by sub-sampling it. An
example could be a signal x, that is corrupted by nearest-neighbor correlations: To remove
this, simply remove every second data-point, like this:

1 x=02: 0.1 : 30;
2 xSubsampled = x(1 : 2 : end);

Histogram of step-sizes
100 T y T

80 | b

60 |-] B

Count

40+ -

20 b

-4 -2 0 2 4
Step [AU]

O Fig.5.12 Histogram of step sizes for a random walk. The steps were generated with the command
randn that creates pseudo-random numbers from a Gaussian distribution

120

S.F. Norrelykke

Or, if you wanted only every third data-point from the first 200 entries:

1 xSubsampled = x(1 : 3 : 200);

What we just illustrated, was how to read only selected entries from a vector; in the first
example we read every second entry from the beginning (the first element in a vector in
MATLAB has index 1, not 0), in steps of 2, until the end. The same idea holds for arrays of
arbitrary dimension in MATLAB; each dimension is treated independently.

If we wanted, we could also have given a list of indices to read, like this:

1 readThese = [2 5 7 88 212]; % data-points to read
2 xSubsampled = x(readThese) ;

Alternatively, if we only wanted to replace a single element, say in entry 7, with the num-
ber 3; or find all entries larger than 0.94, then set them to 1:

1 % —--- replace single element ---

2 x(7) = 3; % overwrite/add the 7th element with "3"
3

4 % —--- replace several elements ---

5 xIndex = find(x > 0.94);

6 x(xIndex) = 1; % write "1" in positions from xIndex

The find command is very useful for data-wrangling and thresholding. Combined with
the query command 1sNaN (asking if something “is not-a-number”) you will certainly
find yourself applying it once working with real-world data.

5.5.5 Investigating How “Speed” Depends on At

After having carefully examined the steps and trajectories we may get the idea of also
looking into the velocities and their sizes (speeds). Velocities can be calculated from posi-
tions by differentiation wrt. time. Since we have a discrete time-series, we do that by form-
ing the difference and dividing by the time-interval Az—this is what we did above with the
help of the diff command.

And this is where it gets interesting: When we vary At, our estimate of the speed also
changes! Does this make sense? Take a minute to think about it: What we are finding is
that, depending on how often we determine the position of a diffusive particle, the esti-
mated speed varies. Would you expect the same behavior for a car or a plane? Ok, if this
has you a little confused you actually used to be in good company, that is, until Einstein
explained what is really going on, back in 1905—you might know the story.

121
Introduction to MATLAB

The take-home message is that speed is ill-defined as a measure for Brownian motion.
This is because Brownian motion is a fractal, so, just like when you try to measure the
length of Norway’s coast-line, the answer you get depends on how you measure. If you are
wondering what we can use instead, read on, the next section, on the mean-squared-dis-
placement, has you covered.

5.5.6 Investigating How “Speed” Depends on Subsampling

Another way of investigating the fractal nature of Brownian motion is to directly sub-
sample the already recorded (simulated) time-series of positions. That is, we create a new
time-series from the existing one by only reading every second, or third, or fourth etc.
time and position data, and then calculate the speed for this new time-series:

xPos subsampled 8 = xPos(l : 8 : end);
0 meanSpeed8 = mean (abs (diff (xPos subsampled 8)/dt/8));

1 %% --- SUBSAMPLE THE POSITIONS ---

2 % --- Re-sample at every fourth time-point ---

3 t subsampled 4 = t(l : 4 : end);

4 xPos subsampled 4 = xPos(l : 4 : end);

5 meanSpeed4 = mean (abs (diff (xPos subsampled 4)/dt/4));
6

7 % —--- Re-sample at every eighth time-point ---

8 t subsampled 8 = t(l : 8 : end);

9

1

Notice how we used, hard to read, compact notation by chaining several commands to
calculate the mean speed in a single line—this is possible to do, but usually makes the code
harder to read.

Let us now plot these new time-series on top of the original

1l %% —-—-— ZOOMED PLOT SUBSAMPLED POSITION VERSUS TIME ---

2 figure; hold on;

3 plot(t, xPos, Velko”, "markersize’, 16)

4 plot(t subsampled 4, xPos subsampled 4, ’'--or’, ’'markersize’, 6)

5 plot(t subsampled 8, xPos subsampled 8, ’:sb’, "markersize’, 10)

6 legend(’'Every position’, 'Every fourth position’, "Every eighth
position’)

7 set(gca, "x1lim’, [128 152])

8

9 xlabel (’'Time [AU]’)
10 ylabel ('Position [AU]’)
11 title(’Position versus time’)

This code, where we added a few extras such as control of the size of markers, should
generate a plot like the one shown in @ Fig. 5.13

122 S.F. Norrelykke

Position versus time

_5 T T T T T
—— Every position
6l -~ Every fourth position | |
& Every eighth position

Position [AU]
&

-11 1 1 1 1 1
130 135 140 145 150

Time [AU]

O Fig.5.13 Position as a function of time for a one-dimensional random walk. Black dots show the
original time-series. If we had only recorded this trajectory at 1/4 or 1/8 the sampling frequency we would
have found the positions indicated by red circles and blue squares, respectively. If we were to estimate the
speed for each of these three time-series we would find that the red trace has half (1/ \/Z) the speed of
the black, and the blue has 1/J§ =~ (.35 that of the black. Conclusion: The “speed” depends on how often
we measure and is therefore clearly an ill-defined parameter for Brownian motion

5.5.7 Simulating Confined Brownian Motion

Brownian motion doesn’t have to be free. The observed particle could be trapped in a
small volume or elastically tethered to a fixed point. To be specific, let us choose as physi-
cal example a sub-micron sized bead in an optical trap, in water. This turns out to be just
as easy to simulate as pure Brownian motion. Writing down the equations of motion and
solving them (or using intuition) we see that the observed positions are simply given by
random numbers from a Gaussian distribution. The width of the distribution is deter-
mined by the strength of the trap (size of the confinement, stiffness of tether). Importantly,
we are not sampling the position of this bead very often, only every millisecond or so,
rarely enough that it has time to “relax” in the trap between each determination.

1 sampleNumber = 1001; % number of position determinations
2 xTrapped = randn (1, sampleNumber); % position of bead in trap

What do we get if we repeat the above analysis? Try it.

5.5.8 Simulating Directed Motion with Random Tracking Error

We may also want to create a time-series that is a hybrid: We have a particle that moves
with constant speed in one direction, but the position determination is contaminated with
random tracking errors. The simulation, again, is simple:

123

Introduction to MATLAB

~ o U W N

S
S

xP

% ——— INITIALIZE --—-

= 1; % time between recordings

=0 : dt : 1000 * dt; % time

= 7; % constant translation speed

% —-—-— GENERATE POSITIONS ---

os = v*t + randn(l, sampleNumber); % position of bead in trap

Repeat the above analysis for this new time-series. How does the speed determination
depend on the degree of smoothing, sub-sampling, or A#? Here, the concept of speed does
make sense, and averaging over time (smoothing) should give a better determination, see
» Sect. 5.5.10.

5.5.9 Loading Tracking Data from a File

Instead of analyzing simulated data we often want to work on actual experimental data. If
your data was generated in Image] with the TrackMate plugin, the output (when
exporting tracks) would be an XML file and we would need a parser (reader) for it called
importtrackmatetracks.m in order to get the data into MATLAB. See introduc-
tion here and code here. This function will return a cell-array of tracks consisting of time,
X, ¥, and z positions (the concept of a function is explained below in » Sect.5.6.1.1):

10
11
12
13
14

15

16

function [tracks, metadatal = importTrackMateTracks
(file, clipz, scalet)

o

o0 oo

o°

oe

o°

o° o° o° de de oe

3% IMPORTTRACKMATETRACKS Import linear tracks from TrackMate

This function reads a XML file that contains linear tracks gen-
erated by

TrackMate (http://fiji.sc/TrackMate). Careful: it does not open
the XML

TrackMate session file, but the track file exported in Track-
Mate using

the action ’Export tracks to XML file’. This file format con-
tains less

information than the whole session file, but is enough for lin-
ear tracks

(tracks that do not branch nor fuse).

SYNTAX

tracks = IMPORTTRACKMATETRACKS (file) opens the track file "file’ and
returns the tracks in the wvariable ’tracks’. ’tracks’ 1is a
cell array,

one cell per track. Each <cell 1is made of 4xN double
array, where N is the

number of spots in the track. The double array is organized
as follow:

https://imagej.net/Analyzing_TrackMate_results_with_MATLAB
https://imagej.net/Analyzing_TrackMate_results_with_MATLAB
https://github.com/fiji/TrackMate/blob/master/scripts/importTrackMateTracks.m

124

S.F. Norrelykke

17 % [Ti, Xi, Yi, Zi ; ...] where T is the index of the frame the s
pot has been

18 % detected in. T is always an integer. X, Y, Z are the spot spatial

19 % coordinates in physical units.

20

21

22

To get a feeling for the data: Pick a few individual tracks and submit them to the same
analysis as above. Try a few from the different experimental conditions (try both long and
short tracks). Do you notice any difference?

5.5.10 Smoothing (Filtering) a Time-Series

If you suspect that some of the jitter in your signal is simply noise, you can smooth the
signal. This is very much the same procedure as when smoothing an image. The relevant
command is smooth (requires the Curve Fitting Toolbox) and it has several options for
adaptation to your needs:

1 % --- simple smoothing ---

2 xPosSmoothed = smooth (xPos) ; % defaults to moving average over 5
data points

3

4 % --- sophisticated smoothing ---

5 span = 7; % number of data points to average over

6 method = ’sgolay’ ; % Savitsky-Golay filter

7 degree = 3; % the order of the s-g filter

8

9

xPosSmoothed = smooth (xPos, span, method, degree);

5.6 MSD: Mean Square Displacement

Motivated by the shortcomings of the speed as a measure for motion, we try our hands at
another measure. This measure, while a bit more involved, does not suffer the same prob-
lems as the speed but takes a little getting used to. Without further ado:

The mean square displacement for a one-dimensional time-series x(t), sampled con-
tinuously, is defined as

msd(r) = (x(t+7) - x()]), (5.1)
where (-) is the expectation value of the content, either in the ensemble sense or with respect

to t (same thing if the system is ergodic)—think of it as the average over all time-points. It
measures how far a particle has moved, in an average sense, in a time-interval of size 7.

125
Introduction to MATLAB

1000

100 |

® EB, simulation
® OT, simulation
® OU, simulation
 EB, theory
e OT, theory

OU, theory
— Continuous recording, theory
‘I 1 1

0.1 1 10

Time lag (ms)

Mean-squared displacement (nm?)

B Fig.5.14 Mean-squared displacement for the Ornstein-Uhlenbeck process (persistent random
motion), Brownian motion in an optical trap (confined diffusion), and Brownian-motion proper (free
diffusion). Straight lines show slopes of one (green) and two (blue), for comparison to the cases of
Brownian motion and linear motion. Green points: Freely diffusing massless particle (Einstein’s Brownian
motion); red points: trapped massless particle (OT limit, or OU velocity process); and blue points: freely
diffusing massive particles (time integral of OU process). This is @ Fig. 8 in Ngrrelykke and Flyvbjerg
(2011)

In practice, we need to replace the expectation-value-operation (-), with something we
can calculate based on our data. There are several ways of doing this, see Qian et al. (1991),
and the following is one of the more popular and meaningful ones, for time-lag 7=k At:

msd, = — z X —x,], k=12,..M-1 (5.2)
k M—k [+k]

where M is the number of postion-determinations of x. Please note, that we are averaging
over the track itself using a sliding window: This means that our estimates for the MSD are
not independent for consecutive values of the time-lag z—this is the price we pay for
reducing noise and using all the data.

O Figure 5.14 shows theoretical and simulated results for the MSD for three different
types of motion: (1) Brownian motion (free diftusion); (2) Brownian motion in an optical
trap (confined diffusion); and (3) Random motion with finite persistence (Ornstein-
Uhlenbeck process)

5.6.1 Creating a Function That Calculates MSDs

One of the great thing about the MSD is that there are no approximations when moving
from continuous to discrete time: There are no sampling artifacts. For a fixed time-lag, the
MSD can be calculate in MATLAB by defining a function like this:

126 S.F. Norrelykke

1 function msd tau = fun msd at tau ldim(x, tau)

2

3 % fun msd at tau ldim FUNCTION

4 % GIVEN INPUT DATA ’X’ THIS FUNCTION RETURNS THE

5 % MEAN-SQUARED-DISPLACEMENT CALCULALTED IN OVERLAPPING WINDOWS

6 % FOR THE FIXED TIMELAG VALUE ’tau’

7 % NB: THIS IS FOR A SINGLE TIMELAG ONLY BUT AVERAGED OVER
THE ENTIRE TRACK

8

9 % 2016-06-03, sfn, created

10 % 2016-06-10, sfn, modified for one dimension

11 % 2017-05-15, sfn, nomenclature changes

12

13 %% --- INITIALIZE ---

14 M = length (x); % number of postions determined

15 dr2 = zeros(l, M - tau); % initialize and speed up procedure

16

17 %% —--- CALCULATE THE MSD AT A SINGLE TIMELAG ---

18 for k =1 : M - tau

19 dx2 = (x(k + tau) - x(k)).”2; % squared x-displacement

20

21 dr2 (k) = dx2; % store the squared x-displacement for each pos-

tion of the sliding window

22 end

23

24 msd_tau = mean (dr2) ; % The mean of the squared displace-

ments calculated in sliding windows

In this code-example you should notice that we declared a function, used the com-
mand zeros to pre-allocate memory hence speed up the procedure, and squared each
element in a vector with the . = operator which should not be confused with the ~ opera-
tor that would have attempted to form the inner product of the vector with itself (and fail).
If your function-call fails, you might have to tell MATLAB where to find the function
using the addpath command or by clicking on “set path” in the HOME tab and then
pointing to the folder that holds the function.

5.6.1.1 About Functions and How to Call Them

A function is much like a normal script except that it is blind and mute: I doesn’t see the
variables in your workspace and whatever variables are defined inside of the function are
not visible from the workspace either. One way to get data into the function is to feed it
explicitly as input, here as x and tau. The only data that gets out is that explicitly stated as
output, heremsd_tau. This is how you call the function msd_tau, ask it to calculate the
mean square displacement for the time-series with coordinates (x, y), for a single time-lag
of 7=13 and return the result in the variable dummy:

1 >> dummy = fun msd at tau ldim(x, 13);

127
Introduction to MATLAB

Having learnt how to do this for a single time-lag, we can now calculate the MSD for a
range of time-lags using a for loop:

1 for tau =1 : 10
2 msd (tau) = fun msd at tau ldim(x, tau);
3 end

After which we will have a vector of length ten holding the MSD for time-lags one through
ten. If the physical time-units are non-integers you simply plot MSD against these, do not
try to address non-integer positions in a vector or matrix, they do not exist. This will
become clear the first time you try it.

To build some further intuition for how the MSD behaves, let us calculate it analyti-
cally for a couple of typical motion patterns.

5.6.2 MSD: Linear Motion

By linear motion we mean
x(t)=vt, (5.3)

where v is a constant velocity and ¢ is time. That is, the particle was at position zero at time
zero, x(t=0) =0, and moves to the right with constant speed. The MSD then becomes

msd(7) = ([vt +vr —vt]z) =77, (5.4)

i.e., the MSD grows with the square of the time-lag 7. In a double-logarithmic (log-log)
plot, the MSD would show as a straight line of slope 2 when plotted against the time-lag z:

logmsd(t) = logv? +2logT (5.5)

5.6.3 MSD: Brownian Motion

By Brownian motion we mean
(1) = an(0), (5.6)

where * means differentiation wrt. time, a =+/2D , D is the diffusion coefficient and 7 is
a normalised, Gaussian distributed, white noise

m@®)=0, m@On@)=06(@~1), (5.7)

where 6 is Dirac’s delta function. See Wikipedia for an animation of Brownian motion:
> https://en.wikipedia.org/wiki/Brownian_motion

https://en.wikipedia.org/wiki/Brownian_motion

128

S.F. Norrelykke

With this equation of motion we can again directly calculate the MSD:

msd@) = ([dri) I, dri)) (5.8)

= a*r=2Dr, (5.9)

a result that should be familiar to some of you.

Apart from prefactors, that we do not care about here, the crucial difference is that the
MSD now grows linearly with the time-lag 7, and in a log-log plot it would hence be a
straight line with slope one when plotted against .

We are much more interested in the mathematical properties of this motion than in
the actual thermal self-diffusion coefficient D: The temporal dynamics of this equation
can be used to model systems that move randomly, even if not driven by thermal agitation.
So, when we say Brownian motion, from now on, we mean the mathematical definition,
not the physical phenomenon.

For those interested in some mathematical details, Brownian motion can be described
via the Wiener process W, with the white noise being the time-derivative of the Wiener
process 1 = W. The Wiener process is a continuous-time stochastic process and is one of
the best known examples of the broader class of Levy processes that can have some very
interesting characteristics such as infinite variance and power-law distributed step-sizes.
These processes come up naturally in the study of the field of distributions, something you
can think of as being a generalization of ordinary mathematical functions, and also
requires an extension of normal calculus to what is known as Itd calculus. If you are into
mathematical finance or stochastic differential equations you will know all of this already.

5.6.3.1 MSD: Simulated Random Walk

We can also calculate the MSD for the discrete random walk that we simulated earlier.
There, we simplified our notation by setting 2D =1 but otherwise the random walk was a
mathematically exact representation of one-dimensional free diffusion. Here is the calcu-
lation, for a time-lag of 7=k At and explicitly including the 2D prefactor; you should
already have all the ingredients to understand each step:

msd, = ([x,,-x,]) (5.10)
i=1 i=1 2 i=l+n 2
= ({ ZkAxi—ZAxi} >=<[Zk Ax,}) (5.11)
i=l+n 2 i=l+n j=l+n
= { Zk ¢i2D At})=2D At([Zk C,-jZk C,} (5.12)

i=l+n

= 2DAt Y ({})=2DkAt=2Dt (5.13)
n+k

129
Introduction to MATLAB

here we used that the position at time n At is the sum of the steps before then:
i=1
x, =2 Ax;, Ax;=¢\2D At (5.14)

where { are Gaussian distributed random numbers of zero mean, unit variance, and
uncorrelated:

(€i€;)=06;;, £»)=0 (5.15)
with 5;; Kronecker’s delta: Zero for i and j different, unity if they are the same. These

{-values are the ones we created with the randn command in MATLAB. Again, we see
that the MSD is linear in the time-lag r=k At.

5.6.4 MSD: Averaged Over Several 2-Dim Tracks

To start quantifying the motion of multiple tracks, in two spatial dimensions, we first
calculate the mean-squared-displacement for an individual track m

1 i=1
msd, ,, = M —k M;_k((xwk =)+ (Vi _yi)z)’ (5.16)

where k=1, 2, ..., M, —1is the time-lag in units of At and M, is the number of positions
determined for track m. Notice, that we use a sliding window so that the M, — k determi-
nations of the MSDs at time-lag k At are not independent; this introduces strong correla-
tions between the MSD calculated at neighboring time-lags by trading independence for
smaller error-bars Wang et al. (2007).

One way to calculate the sample-averaged MSD is to weigh each MSD by the number
of data-points used to calculated it

MSD, = - (M, —k)msd (5.17)

>, (M, —k)m fom?

where the sums extend over all time-series with M >k. Here, the weights are chosen as
equal to the number of intervals that was used to calculate the MSD for a given time-lag
and track.

5.6.5 Further Reading About Diffusion, the MSD, and Fitting
Power-Laws

Papers dealing with calculation of the MSD: Qian et al. (1991) and under conditions with
noise: Michalet (2010). Analytically exact expressions for several generic dynamics cases
(free diftusion, confined diffusion, persistent motion both free and confined): Norrelykke
and Flyvbjerg (2011). Determining diffusion coefficients when this or that moves or not,
this is an entire PhD thesis compressed to one long paper: Vestergaard et al. (2014). How
to fit a power-law correctly and what can happen if you do it wrong like most people
do—an absolute must-read: Clauset et al. (2009).

130

S.F. Norrelykke

— Take Home Message

Ok, good, you made it to here. Congratulations!

If this was your first encounter with coding, MATLAB, or numerical simulations you
may feel a bit overwhelmed at this point—don’t worry, coding isn't mastered in one
day; put in the hours and you will learn to master MATLAB, like many have before you.
If you already knew MATLAB you probably skipped this chapter.

Here is what you just learned how to do in MATLAB:

Create a plot and save it to a file in pdf, png, or other formats

Load an image and process it (smoothing, thresholding)

Perform measurements on an image and overlay those measurements on the

image

Read and modify the meta-data in an image file

Simulate a random walk as a model for free diffusion (Brownian motion),

confined/tethered motion, and directed motion with tracking error

== (Calculate and display the mean square displacement (MSD)—a robust measure
of motion

= Spot when “speed”is a flawed measure for motion (the mean will depend on

the sampling interval)—when there is a random component, it is always a

flawed measure
== Structure and document your code, keeping good code hygiene

Acknowledgements We thank Ulrike Schulze (Wolfson Imaging Centre-MRC Weatherall
Institute of Molecular Medicine, Micron Oxford Advanced Bioimaging Unit, University of
Oxford) for reviewing this chapter.

Appendix: MATLAB Fundamental Data Classes

All data stored in MATLAB has an associated class. Some of these classes have obvious
names and meanings while others are more involved, e.g. the number 12 is an integer,
whereas the number 12 . 345 isnot (itisa double),and the data-set {12, 'Einstein',
7+61i, [1 2 ; 3 4]} isoftheclass cell. A shortvideo (5min) about MATLAB funda-
mental classes and data types.

Here are some of the classes that we will be using, sometimes without needing to know
it, and some that we won't:

single, double - 32 and 64 bit floating number, e.g. 17 234.567 or -0.000001234 . The default is
double.

int8/16/32/64, uint8/16/32/64 - (unsigned-)integers of 8/16/32/64 bit size, e.g. -2 or 127
logical - Boolean/binary values. Possible values are TRUE, FALSE shownas1,0

char - characters and strings (largely the same thing), e.g. " hello world!’.Character arrays are
possible (all rows must be of equal length) and are different from cell arrays of characters.

cell - cell arrays. For storing heterogeneous data of varying types and sizes. Very flexible. Great potential
for confusion. You can have cells nested within cells, nested within cells ...

struct - structure arrays. Like cell arrays but with names and more structure; almost like a spreadsheet.

https://ch.mathworks.com/videos/introducing-matlab-fundamental-classes-data-types-101503.html
https://ch.mathworks.com/videos/introducing-matlab-fundamental-classes-data-types-101503.html

131
Introduction to MATLAB

table - tables of heterogeneous but tabular data: Columns must have the same number of rows. Think
“spreadsheet”. Supports useful commands such as summary. New data format from 2013b.

categorical - categorical data such as " Good’ , "Bad’, ’Horrible’,i.e,datathattakeona
discrete set of possible values. Plays well with table. New data format from 2013b.

MATLAB Documentation Keywords for Data Classes

The following is a list of search terms related to the cell, struct, and table data
classes. They are titles of individual help-documents and are provided here because the
documentation of MATLAB is vast and it can take some time to find the relevant pages.
Simply copy and paste the lines into MATLAB's help browser in the program or on the web

Access Data in a Cell Array

Cell Arrays of Character Vectors

Multilevel Indexing to Access Parts of Cells
Access Data in a Structure Array

Cell vs. Struct Arrays

Create and Work with Tables

Access Data in a Table

Here is a link to a video about tables and categorical arrays.

Appendix: Do | Have That Toolbox?

To find out which toolbox a particular command requires simply search for it in the docu-
mentation and notice the path. Alternatively, use the which command:

1 >> which(’graythresh’)
2 /Applications/MATLAB R2015b.app/toolbox/images/images/
graythresh.m

Any path to a function, as found with the which command, that includes . . . /tool-
box/matlab/. .. does not require a specific toolbox as it is part of the core MATLAB
distribution. It is also possible to use the matlab.codetools.requiredFile-
sAndProducts command:

1 >> [fileList,productList] = matlab.codetools.requiredFilesAndProd-
ucts ("graythresh’);
>> productList.Name

ans =
MATLAB

ans =
Image Processing Toolbox

0 J o U Ww N

https://ch.mathworks.com/videos/tables-and-categorical-arrays-in-release-2013b-101607.html

132 S.F. Norrelykke

@ % O Jr- # | MATLABDocumentation

Documentation

— CONTENTS

Close

All Products
Installation
Release Notes

Other Releases

Help

Search Docui

MATLAB

Simulink

Aerospace Blockset

Aerospace Toolbox

Bioinformatics Toolbox

Communications System Toolbox

Computer Vision System Toolbox

Control System Toolbox

Curve Fitting Toolbox

DO Fig.5.15 Truncated view of Help window showing “All Products” which includes all the toolboxes
you have installed—if it doesn’t say “toolbox” it is something else

To find out which toolboxes you have installed, say doc to start the help-browser and

click “All Products”, see B Fig. 5.15.

Alternatively, navigate to the folder where MATLAB is installed, via command line or
MATLAB or Finder. Example for an installation on a Mac, getting the list in iTerm (bash):

1 [simon@SimonProRetina ~]$ 1ls -lho /Applications/MATLAB R2015b.app/

toolbox/ |
total 0

drwxr-xr-x
drwxr—-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr—-xr-x

O J o U Ww N

drwxr—-xr-x
9 drwxr-xr-x
10 drwxr-xr-x
11 drwxr-xr-x

head

5
7
12
23
11
40
8
8
8

simon
simon
simon
simon
simon
simon
simon
simon
simon

170B
238B
408B
782B
374B
1.3K
272B
272B
272B

12 [simon@SimonProRetina ~]$

Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct

13
13
13
13
13
13
13
13
13

2015
2015
2015
2015
2015
2015
2015
2015
2015

aero
aeroblks
bioinfo
coder

comm
compiler
compiler sdk
control
curvefit

Here, you need to be able to recognize that the toolbox names are abbreviated, so that, e.g.,
the Aerospace Toolbox is referred to simply as aero.

133
Introduction to MATLAB

Appendix: HTML and Live Scripts

Publish Your Script to HTML

If you want to show your code and it’s output to someone, without running MATLAB, you
can do it with the PUBLISH feature. Running this command on your script will execute
itand create a folder called “html” in the same place as your script. Inside of this folder you
will find a single . htm1l file and perhaps a number of . png files for the figures that your
script created. @ Figure 5.16 shows the result of publishing to HTML the same code as was
shown in @ Fig. 5.4.

Working with Live Scripts

Live Script isanew feature in MATLAB R2016a. You can think of it as something in
between publishing to HTML and working directly in the script editor. Existing scripts can
be converted to live scripts and the other way around! @ Figure 5.17 shows the same code as
in @ Fig. 5.4, but converted to the live script format (extension m1x). If you have seen iPy-
thon notebooks or Mathematica you might see what the inspiration is. Try it out, you might
like it! Just keep in mind that it is a new feature and that you cannot share your live-scripts
with anyone using an older version than R2016a (unless you convert to standard m-file first).

Appendix: Getting File and Folder Names Automatically

Read from a Folder

To get a list of files in a folder you have several options: (1) Navigate MATLAB to the
folder (by clicking or using the cd command) and type 1s or dir; (2) Give the 1s or
dir command followed by the path to the folder, like this

>> 1ls /Users/simon/Desktop/
blobs.tif mri-stack.tif

>> dir /Users/simon/Desktop/

blobs.tif
mri-stack.tif

~ o U W N

We can also assign the output to variables:

1 >> l1lsList = 1ls(’/Users/simon/Desktop/’) ;
2 >> dirList = dir ('’ /Users/simon/Desktop/’) ;

What is the difference between the two variables dirList and 1sList?

134 S.F. Norrelykke

Contents

= — INITIALIZE —
= FUNCTIONS OF X -—
= —PLOTS -

= —savetofile —

myFirstScript.m

"stepsize"

--- INITIALIZE ---

clear variables
close all
clc

A
stepsize
maxX

0 The peak-amplitude
the

ularity o

oror

0; the maximum <

% : stepsize : maxX;

stepsize =

0.0100

--- FUNCTIONS OF X -

y =R *cos(x);
y2 5 oY &5

nearly growing amplitude

- PLOTS -

figure, hold on, box or
plot(%, y)

plot(x, y2, '--r')
legend('cos (x)', 'cos(x)/x')
xlabel ()
ylabel (
title('Plots o

i 0

sinusoidal functions')

@ Plots of various sinusoidal functions

60

401 i

20+ i

Position (AU)

0 1 2 3 4 5 6
Time (AU)

O Fig.5.16 Example of publishing code to HTML. This is the same code as in the m-script shown in

B Fig. 5.4. Notice how the output of the script is included with the code. This is an HTML file and therefor
easy to share, but you cannot execute it in MATLAB

135
Introduction to MATLAB

% myFirstScript.m
% This script demonstrates documentation and sections
% 2016-06-02, sfn: created

% 2016-06-03, sfn: added plot lines
% 2016-03-21, sfn: converted to live-script. Show value of "A" and "stepsize"

=== INITIALIZE ---
clear variables
close all
cle
A =10 % The peak-amplitude
A=10
stepsize = 0.01 % the granularity of the the x-vector

stepsize = 0.0100

maxX
X

10; % the maximum value x can take
© : stepsize : maxX; % creating the x-vector

--- FUNCTIONS OF X ---

y =A*cos(x); % a simple cosine

y2 =y .*x; % a cosine with linearly growing amplitude
- PLOTS ---

figure, hold on, box on

plot(x, y)

plot(x, y2, '--r')

legend('cos(x)"', 'cos(x)/x"')

xlabel('Time (AU)')

ylabel('Position (AU)')

title('Plots of various sinusoidal functions')

0 Plots of various sinusoidal functions

60|

=)

<

c

jo

=

o

< . \
—40t \ J
—60 Y 4
80| N 4

-100 L L M
0 1 2 3 4 5 6 7 8 9 10
Time (AU)
—save to file —

cd ~/Desktop
% print('-dpdf', 'cosineFigure.pdf');

O Fig.5.17 Example of Live Script,anew feature in MATLAB R2016a. This is the same code as in

the m-script shown in B Fig. 5.4. Notice how the output of the script is included with the code. This script
can be edited and executed in MATLAB

Path and File Names

To illustrate how to work with and combine file-names and path-names we will introduce

the dialogue window (again assuming we are in the /Users/simon/Desktop/ direc-
tory and have a file called “blobs.tif” there):

136 S.F. Norrelykke

[m"] [1 Desktop C] [f] [<] [Q, Search

Devices Name ~ Date Modified
[simonProRetina blobs.tif Yesterday 11:45
Macintosh HD B rri-stack.tif Yesterday 13:14

@ Remote Disc
Favorites

Dropbox (Perscnal)

Q Dropbox (ScopeM)

ﬁ} simon

& Desktop

#% Applications

¢ iCloud Drive

B3 Google Crive

Media

T music

Enable: [0 8

[Cancel][Open

O Fig.5.18 The dialogue window, in OS X, that appears in response to the uigetfile command

1 >> fileName = uigetfile(’ .tif’)

In response to which we should see a dialogue window similar to @ Fig. 5.18.
We should also be told the name of the file we selected:

1 fileName =
2
3 Dblobs.tif

If we want more information, such as the location of the file we do:

>> [fileName, pathName] = uigetfile(’.tif’)
fileName =
blobs.tif

pathName =

W 0w J oy U b WD

/Users/simon/Desktop/

137
Introduction to MATLAB

From the file- and path-name we can now create the full file-name, incl. the path, using the
command fullfile:

>> fullFileName = fullfile (pathName, fileName)

fullFileName =

a s w N

/Users/simon/Desktop/blobs.tif

Obviously, if you are working on a different system you file-separator might look different.
However, that is because fullfile inserts platform-dependent file separators. If you
want more control over this aspect you should look into the filesep command.

Reversely, if you had the full name of a file and wanted to extract the file-name or the
path-name, you could do this:

>> [pathstr,name,ext] = fileparts (fullFileName)
pathstr =
/Users/simon/Desktop

name =

0 J o U b wN

O

blobs

= e
= O

ext =

=
w N

Ltif

Alternatively, if all we wanted was the name of a directory we would use the command
uigetdir—you can guess what it does.

Why did we just do all this? We did it because we often have to spend a lot of time on
data-wrangling before we can even get to the actual data-analysis. Knowing how to easily
extract file and path names for your data allows you automate many later steps. Example:
You might want to open each image in a directory, crop it, scale it, smooth it, then save the
results to another directory with each modified image given the same name as the original
but with “_modified” appended to the name.

Appendix: Codehygiene

It is important for your future self, not to mention collaborators, that you keep good prac-
tices when coding.

The actual code should be easy to read, not necessarily as compact as possible

Use descriptive names

Document the code

Insert plenty of blank spaces: Let your code breathe!

138 S.F. Norrelykke

B Editor - /Users/simon/Desktop/simulateAndPlotBrownianMotion.m

| imponTrackMateTrack_s,m __fL_m_msd_at_tau,m "_Ioad_data_plot_msd.m imulateAndPlotBrownianMotion.m _+ '_
1 % simulateAndPlotBrownianMotion.m

11

12 %% == INITIALIZE —-

21

22 %% —— GENERATE RANDOM STEPS —

23 - stepNumber = numel(t }; % number of steps to take
24 - xSteps = randn(1, stepNumber); % Gaussian distributed steps of zero mean, variance one
25

26 %% ——— CALCULATE POSITIONS AND SPEEDS —

31

32 %% ——— DISPLAY NUMBERS —-

35

36 %% —— PLOT STEPS VERSUS TIME —

5@

51 %% —— PLOT HISTOGRAM OF STEPS —

66

67 %% ——— PLOT POSITION VERSUS TIME —

ae

81

O Fig.5.19 Screenshot of code that is clearly structured and folded. The currently active code-block is
highlighted in yellow

O Figure 5.19 is and example of how your code could look, when folded, if you take care
to structure it nicely—notice how easy it to figure out what goes on where, without having
to read a single line of actual code.

Appendix: MATLAB Cheat Sheet

Here are two compact pages that you are encouraged to print separately and keep around
when using MATLAB—at least initially. They outline most of the syntax and also list the
most commonly used commands. This version (you can find several online) was compiled
by Thor Nielsen (thorpn86@gmail.com) » http://www.econ.ku.dk/pajhede/.

http://www.econ.ku.dk/pajhede/

139

‘Q\V = q(y)aws :peorsur \ ySnoayy
G 98T ‘POSt 9 19AS JSOWE PINOYS ()AUL XLIYRU JO OSIOAU

Toyo ‘W Fo1z‘ywex :suorseredo pIEpUEISH
‘dp W sunz 31 ‘fezaynds e pessed st ungxsq/ungheire FTx
Jeudes To unjAeiie‘UnyXsq 0eS ‘SEOTIIEW UO SUOTIOUNG I0d

A[[eo1100A S9YRUDIEIUOD [a<v]
A[[RIUOZLIOY SOILUIIRIUOD [a°v]
SjuouIR[NBN JO SOOIpUl ((V)URUST)puTy

G< SyuMo JO SodIpU] (s<v)yputy

G< sjueuIale 381 (§<x)x

0 0} ¢< sjuws[e oFuryd 0=(g<X) %
sjuowa[e AvIIR JO IdqUINU (V) Toumu
s10300AULSI0 pue soneAusSIz (¥)Ste
15081 0] 1SO[[RWIS WIOI] 10700A S1I0S (V) ax0s
Xrryew £)1uapy (u)ohs

SUWN[O)) PUe SMOY (x)ezTs

XLIJRUI JO OSIOAU] (¥)Aut

ssodsuey, v
wy
wy

V Jo 1omod ostmjuouals
v 30 tomod x1yel/[eution
UOIRIIYNS JUOWA[D Aq JuatalF]
uomppe Juswse Aq Juaoly
UOISIATP JuoWd Aq JUOW[E
worpeordiynur Juowape Aq JuULWO[E
X Jo syuowa [euoSerp

sjuoura wwm(od [[

sjuawale mod [[e

X JO JURUIB[R 3G 0 pug

X Jo Juomwoo el 03 T3, [(pue: [)x

(x se awes) X jo syuLUIAD [V ()x
2 U onfea Xopur afueyd p=(20)%
Xujew gxg [y ‘€ ‘g ‘T]=¥

103094 (UWN[O)) [XE [e ‘T f1]=x

103004 (80Y) £XT [e ‘T ‘T]=x

suorjounj/suorjerado 103094 pue X1Ijewt

ButdooT ‘8o weys Ieasel UoMW ‘SOTqR) I0F 1eeI8 ST UNFMOIx
“suotqerado Is3sey moTTe pue LIowew SS8T @Sn

[aa]
< £ay3 esnedsq ‘siesejep 98IeT IoF 3e8I3 °oXe SaTqel
— *SeTqRTIRA PUR SMOI 93BDTPUT SIRA PUR SMOY
_AM i wol1o3no (zL‘11)utofreamo = |
urol1auur (zletl)utrofzeuut = [
M Aelre woly d[qe) ayeur | (¥)oTqeagherre = [
e SOUIRU D[qRLIRA soweurep ‘saTaredord L,
c sonpeA owos sofueyd G=(G<gIeA"L)EIRA"]
o a[qe) Jo Arewrums (1) £rewums
= SMOI WOIJ JeA JO San[eA 108 (smox)xen"]
[} IRA JO SMOI [[e (XepuTIRA) ‘] I0 IeA']
|w a[qe) woij eyep 308 {sxen‘smox}]
o a[qel-qus 108 (sxeA‘smox)]
=} £O1qe) SONEIN (NTRA®" " ‘ZIeA‘TIeA)STqRI=L
< SOIqeL

2doos [eqO[S X SOAIS x Teqors
q pue © sare[ap ((§°S)NeN) Teep=[qe]

s10109A £ pue X jo pus pg (£x)pradyseu
SON[EA () JO XLIJRUI (X E (q‘e)soxaz
SON[EA T JO XLIJRUI (X© (q‘e)seuo
son[ea NEN JO XLJew qxe (a‘e)Nen

q pue e Supnpur pue
pooeds Apesur| spurod u
[cr+0 0] 10300a mox
[1+0¢[] 103004 mox

(u‘q‘e)sdsedsurt

il
uorjeIoual a[qeLIRA

femfue 3TNOITO 3I0ys pue pa3dnq ore HS-UOUx

®TI01TI0 PUOdes UT BuTINooo siozize Jurprose idy Tnyesn puy
*Ie3sey oI0Fyoteul ST 3T ‘pessed ST BTILITID 3ISITF

IT ®TI07TI0 pUODeS e3eNTEAd ATUO SITNOITO 2I0USH

wumToosT ‘reressst ‘Agdwest

10909AST ‘JUTST ‘TeydsT ‘TenbasT ‘URUST :SI0JROTPUT SSETDH
SSIMJUeWPP exe siojeredo DAOQE TTV*

=>‘=<‘<‘> :sizojeredo TeoT80T 18Uk

sse ur 199(qo st (oweu~ssero, ‘[fqo)est

[enba jou .

uostredwon Aypenbgy =

Jou

10 |

10 HIMOI)-3I0YS I

ANV 2

TANY HmIn-yoqs 3

s10jerodo esiSory

uotssordxo rensar 10§ yoresg dxeSex
orysod 1aeys SoALS ©

Sulgs ® um SuLys puy puTIIRs

s10990] 181y U AQuo 1nq ‘dwoons s dwoouras

(oAtsuos osed jou) sfuts oreduwos Tdwooias

(oAnsuos oseo) sfuts oredwos dwooias

suorissoxdxa rengea pue sSuLIg

O ut s[Eo 0} oureuy sorddy (D¢ eweuF)uUnFITEO

ungpoo XHIEI 0 [0 suLojsueI) (x)2RuZTTeD
wu (90 sse00e {wuyx
Aeare [[00 qx © (q‘e)TTe9=X

“od4) s[qerrea Aue urejuod ud [0 Y SPURTIWOD [[9))

1¢ > @ 203 ostoead ATuo ST (X)TETIOIDRIH
Tesseg ‘utu ‘xew ‘dxe ‘Sor ‘3ibs :suoriouny prepueagx
“SUOIOUNY pIRPUR)S T00TF/XTF/TT6/puUnox

SJUOTIA[JO IUDIOYI(T IITP
jonpoid eArjemUITIND (x) poadumd
Ssyuewae Aeire Jo 1oNpoIg poxd
wns eArRmUITI . (x)msumd

X UL SJUDWD[D SWNS (x)ums

90T 991

foeanooe yutod Suneoy sde
0 Jut

e d

onfea ajnjosqe (x)sqe

S)URISUOD /SUOIPOUN] UT I[N

971S DI0)S01/MOPULM XeuT W+IFTYS+TILD
Mopursm sypPopup) T+3FTYS+TID

MopuIM SO P+ATTUS+TIAD

adrs aso) MHTIID

dros maN N+TZ3D

QUI[JUSUIOOUN / JUDTO)) L/9 +1330
[y sapod paySIYBLY ued(A+T23D
opoo sydnazejug D+T13D

sjuet0d WO TedMID SPAOTY FFTUSH+TIID
sqe) ueomiaq seaoly umop/dn o8ed+TI3D

qutod yea1q j1esuf ztd

188nqop orvor| G4+27TUS

SUOTOUN] 10JUD OUI[9POD UNY TTd
ourf 0pod Ty otd

opoo PANEIAY umy o1

2poo umy sd

wotgouny poyyBIYSHY 10§ uoeILIINOOp/d[OF] 14
skoxyyon sfeqdsi(y 3TV

1031po Ut dureus|y suado sweusTTy 2Tpe
S$INDYI0YS preoqAadf

-seTTauenb Sursstu To7 uorserodreur sesn 3T)
‘UOISTOA 001X Jou ST (d‘x)eTrauenbs

¢ (£°X) 1100 (£¢X)A0D‘TRA‘URTPSW URSW :SUOTIOUNF PIRPUBISH
outrq ‘gTyo ‘mwed ‘y ‘3 ‘mrou :(3STP) SUOTINQTIISTP PIEPURISH

pue wreaSojsry (X)3TFISTY

X jo ureagojsiy (x)astq

1SIP WO} SIOQUINU Wopuel puIISTP
1SIp JpO IpoasTP

Js1p wouy Jpd spdastp

SIP WIOJJ SIOQUINU WOpPueL puILSTP

SpuURWIUIOD [edI)SIIR)S

V 10§ spoyjew sse 31
xoq Sorerp ynduy
ssoapeqom suado

UOIRIUEWMOOp UDIESS
wonouny 10§ wOHEIELUMOOP,/dPH

(V) spoyaeu
31pandut

woo- 78008 qen
Burias yoIeesoop
uoT3ouUNy S0p

punos dooq oty soyEY desq
SOXO([00) PUE UOISIOA SISIT o0

[y JeU’ WOLj SO[qRLIRA [[& SPRO] sweusTTI peoT
oy yeur o3 x spuodde X eweus(ry puedde- oaes

o[y yeur 0} so[qeLEA A'X SoA®S £°x suweusTTy saes

[Jeur’ 03 SO[(RLIEA [[E SOARS sweUSTTF ones

ssep $300(qo sumyox (fqo)sseto

19p[oj Juermd uad((pud)wedouts

H o8y sosod (H)®soT>

soansy [re sosop 1T esoTd

Jmsox jser] sue

X JO soquIIe pue ssep ‘sa1dq ‘oz x soym
SOINJONIIS BIRD SISI soym
MOpULMpURWILIOD 100[0s/uodo nopuTApuemIod
Ar0wow woy X 1ea[y) X 1eeTo

Krowow woysks 1eo]) TeeTo

MOPULM PURTIIOD Tea[) o1

spuewIUIOd A)J1U dUOS

100U§ yeoy) qe[IeIN

S.F. Norrelykke

140

/epeuled/fp - uose- nun//:daay
(woo [rewBp9gudioys) usspEIN 1YL §T0Z @ 3yBakdop

‘0=(66'0—1) == 100 :o[dwexo 10} uosaid

jutod Suryeoy oxe Koy ‘sojqnop Surredwos 10j == osn

JUO(] *NEN 10U “JUI SWINO1 (/] “I0MIe0 Aq UILIMIDAC U0O(
QAR JBIU 1 0STROSQ ‘SUOHR[NO[ED JDqUINU AreuiBeu] 10 1,¢
ey} Ioyjel I¢ 9s() :esrorid POOr) TUUIN[0D/MOI JUIISIXOUOU
© ur 931m NOA JT SUIUIEA JNOYILA POPPE OIe SUWN[0D/SMOY
([= 1+ [)) wonmIAO LON 1 sooryewt Syduwo FTUMITAY

*sdoo[10y Jo peoysur tojred osn sl ‘yuowrapduar
0y fseo uoyo st (Funndwod aprered) so100 ofdinur Surs()

iNdD 2y Sutsn 1opisuo)) “juspuadoput oq ued suorjejnduiod
os ‘Prrered ApAssedt (g) pue (ejep Sunejsuer) aur

yonur Supuads jou) sarsusjur A[reuoneinduwod st weaoad
(1) 31 "se100 (qrews) Luewt aaey s, (N JH)spred omqders)

“TuonPuNy” JIN
‘3o ‘SOUSC> PIOAT 0) S[RIIUI ([)IM SOWIBU UOI}DUNY 0IEJOI]
“210[} S[R[IEAR A[UO ST B[W' ® Ul PAUYDP SUODUN]

Tlom woayg ozrurydo jued

sto[dwon puw suoid 10110-10ST KoY} ‘SO[ULILA (O[3 PIOAY

‘suonjouny X Sursn suorouny (uweriiof+-+5') paprduioo
981 WD N0X "o 9000 2INjea) SuISN o Torpe[dmos
QuIL[-uf-)sup (A[3sour) prepueys ayj wing ued nox e

a[8urs ‘[ed1So] “reyo ‘o[qnop ‘pYur ‘ZgIUL ‘9rIuL ‘gyur
:Swsn (wey]) Arowow oaes A[peryuojod 03 SSE[S[qEIIEA
S8uey) dn 31 paads Jou [[Im UONOUNJ B 0} (SISSIpR)
stoyutod Surssed os BIIM-U0-AA0D S9SN qR[IRI “[oBesI

TOWOW STONBIIIGS soambox qe[yely ‘So[qeLeA 10§ Atowou

21800[waxd OS[E DPOD 19)5E] 10, “SAEM[E }SIY SSTAUTN[0D

Arowawr peof ‘ofengue| paseq 103094 UWIN[OD © ST (R[IR\

*(seourgsur) sioxIom JuatayIp Suisn uni pue sureifoid
azour ogur 31 ypds - ;, A1owout/ () J7) 93 JO [[B oSN JUSIOP
(z) pue uni oy sury Suo[© o} (T) JeU) WRISOI] SPUL, ®

“AI0WDUI+-0UIL) SPARS "SUOIIR[NO[RD

10§ SUOTHIO

19818] A[SUISEaIOUT 95Tl PUR 10100A © UL 1811 9ZIS

J50810] 0yeI0UeS FUSEoIOUT 018 S071S S[AWES J (0[Ie)-0Juoly ®

SHUDWIUIOD [BIDUDY)

pue
¢ smpesoxd

asTMIBYI0
Z eanpesoad

(poymoods J1) z oseo
¢ ompoood unx 1 eanpesoxd

sploy auou J| “u smpasoxd unt 1 esed

‘Sploy u osen Ju

uoTssexdxe UD]TAS YOITHS

pue
gompaooad

¢ oapoood op oS ¢ esTo
zoanpesoxd

g @anpadoxd op anay SI g BLIDILIO JT oS[° (T ®TI81TID) JTOSTO
Tenpesoxd

T oanpaooid op NIy ST RLLD J1

(T ®TI03TI0) 3T

(T)on1y st el B FUO[SB pus
2anpoooxd 19A0 sayeI] sxnpedoxd
(BTI93TID)STTYA

1 £q u 09 [woyy | SurjueuwaIdul pus
2mpoooid 140 so1e10)] eInped0xd

=1 z0%

sdoo| pue s[euoIrpuo))

(zex)unghu (x)unyfup = gungluw

Susn waAd 10

fZX+IX (TXTX)0 = ungfw

ouwures8o1d urew ur PoIo)s J0U SUOIOUNY SnoWAUOUY
(Ux¢cccrx)unghw = [NACC 0 ¢74] uwotjouny

Leare g5 03 SAqUILA 110AUOD (X)LezzyndS=p
SISIXO X JT SHDAYD (x)3sTX®

worouny SUn{oAUr 01 WY uInjex
spuewuod SurwmerSoa g

sory oSewy 93 TINUT/pPeSIUT

(ur) soqy qepyent ones/peot

(as0yx9) soqy 9x0% TTOSe- aAes/peol

(as0x)) saqy 9x01 23 TIMUTP/PRSIWTP

(wspx-sx) spooyspeasds oTqe3e3TIN/BTqRIPEST

ws[X*‘s[x*) sjeayspeasd 99TIMSTX/PEOISTX
XS] speatdg /

110dxa/yr0dwr eyeqq

aeq Surresy TeqaTRA

doO[O[1YM /10§ JO UOIINODXD SOYRUULIDT, yeo1q
oSessow Sururem jser uzemssey

afessowl 10110 jser] II93seT

TOIMODXD DUINSAT quooqp

syutodseniq sreap TesToqpP

3po[q Pyed /A1y SpIsUT 10110
181y e sdojs

M200 10110

a1eym Surpuy 10§ jeors)
ndjno e[goid s9s nok sporp
wogoid syae)s

zoxxe 31 doasqp

yoqed /L1
IomeTA oTTFoxd
wo srryord

tow sdojs 509
IOUIN) SIRYS B8
UOINOOXD SAUWNSOL uIniex
Ho1Meoxo sosneg preoqhex

210 SuiSnqqaq

£([] ‘punogadn ‘punoganT [] €[] []‘[] ‘ssenpTeTaTUI‘
(Lfex‘zx‘1x‘sureq)T80TI- (SWIed)D)UOOUTWI = 3So~suwIed
- 1) 90U ‘uoryRZILIIXRUI POOYI[PNI[-S0] paureljsuoy) :ojdurexyy
UOOUN) PAUTEIISUOD JO WINUITUTU uooutmF
POYIOU D0I-OATTRALIDD SuIsT
UoIOUNY S]RLIBAIINU
PAUIRIISUODUN JO WINIUIUIUL
q o1 & woxy
uny Jo uogeisojur uosduwrs
SpOYJoW [ROLIDWWINU JEIUI[UON]

(0x‘uny)yoIessutuy

$9X0q[00 SISI[84
JUBYTOD IOP[O] IST[atp

qepyew aso[) 31X

Azowow ur suoroun,| wewut
f1opoup Lrerodua], zrpduwes
£1030011p MoU SR\ ITpYu
£1090011p JuOLINY) pud
s1opjojqus 10§ sSuLys s38 (Surass)ysedusd
aordsyiom oy yyed sppe (Sutias)ysedppe

SuLys © 0 vyEp poyeULIo)
Sui1ys 0 X ur 1080ul OYY S}ILAUCY)
BuLI)s 01 X UT XMIJRW 9] S}I9AUO))
I

iadsn NALIO

SULI)S 0] X UL JoqUINU Y} SIIDAUOL)
x Suts oy sAerdsic]

x Surns ayy skerdsi(y

0 1038 spSIp g1 skerdsiq

0 103ye sUSIp § sfedsi

SPURTITIOD WID)SAS

(x) 33utads

(%) I3sgaut

(x)13sg30U
([(®)x3sgunu

¢ = ST yu.])Iisgunu

(%) 23sgunu

(x)dstp

(x)dstp

SuoT jemroy

3I0YS JeuwIOF

spuewrod jndinQ

(0--q,‘L<x)301d :orduexe UOTIRUTQWOD INDIIOYS %

‘¢ o ‘. :seTh3s euTT emwo§ x

§ ‘A ‘8 ‘q ‘1 :samdAIOYS I0T0D *

JoeTq ‘moTTek ‘ueeil ‘enTq ‘pel :SIOTOD OWOS *

exenbs ‘0 ‘X ‘x ‘4 ¢, :SIeNTeW BUWOS

ononb Jueas Ut [Op nounexp
201nos poytoads Ji

ydeis ur eyep ysoyor elRpYSOIJOl

stxe £ omy wo joid
SIX® SOLIOS DUIT)

syord 10§ o[4ys

mopum paxpoc]

(uo proy ou)

J[Nejop 03 $103saI
Pgs Mou Surppe usym
omSy JuoLmd surejor
spuagal sppe

jord 03 pus sppy

jo1d soureu

q-e 03 jord 10§

syuy] sixe x/4 sjo8
sxe 7/4/x soureu

jord o[Sus ur somsy
adyu 10y pasn
o[puey 2an8y juermd 308
{ 1900qo sorqdess
UOTJRULIOJUT SUINYDI

[y0fqo soryders
Mmoputs oSy mou

T 9718 0} SYUoy

(4 99s) o718 IO IRWL

(4 908) 10[05 ouI

(5 905) od&) aonpreu

(4 99s) siayrRW J0D
IpIs our oSy

(q“e‘ung)penb3l 01 198 o[puey ‘jo[d duy pg

(ghzx 1L 1x)£Lr0Td
(££¢ x)¥oT03RD

£ ((pexoq, ‘ (9TAagMOPUTH ‘T) 305
170 PTOY

uo proy
(c3seg, ¢ u0T3e20T ‘ L ¢ %)pusSer
f330/u0 ptrad

(TT* (°ZTSIUOT, ¢ (oWRU,)eT3TH

(GRS
(VT (®ZTSIUOS * (SUTT W\) TSqRTX

(o‘q‘e)sotdqns
()38

(£)3e3

(f)smm3ty

sanS1y

(¥T ‘(ozTSauod, ‘18T)30s
(0T ‘. ezTgIedIRy, ‘181F)38s
(Pox, ‘(30700 ‘1BTI)308S
(c'c “cToTRy, ‘1817)%0S
(¢ “coThageurt, ‘1813)308
(T cuapTMeUTT, ‘181F)30S
(£x)301d = 18171
spuewod 3ur}jojd

141
Introduction to MATLAB

Bibliography

Brown R, Hon FRS, MRSE, Acad RI, VPLS (1828) XXVII. A brief account of microscopical observations made
in the months of June, July and August 1827, on the particles contained in the pollen of plants; and
on the general existence of active molecules in organic and inorganic bodies. Philos Mag 4(21):
161-173. https://doi.org/10.1080/14786442808674769

Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev 51(4):
661-703

Michalet X (2010) Mean square displacement analysis of single-particle trajectories with localization error:
Brownian motion in an isotropic medium. Phys Rev E Stat Nonlin Soft Matter Phys

Norrelykke SF, Flyvbjerg H (2011) Harmonic oscillator in heat bath: exact simulation of time-lapse-
recorded data and exact analytical benchmark statistics. Phys Rev E Stat Nonlin Soft Matter Phys
83(4):041103

Qian H, Sheetz MP, Elson EL (1991) Single particle tracking. Analysis of diffusion and flow in two-
dimensional systems. Biophys J 60(4):910-921

Vestergaard C, Blainey PC, Flyvbjerg H (2014) Optimal estimation of diffusion coefficients from single-
particle trajectories. Phys Rev E Stat Nonlin Soft Matter Physics

Wang YM, Flyvbjerg H, Cox EC, Austin RH (2007) When is a distribution not a distribution, and why would
you care: single-molecule measurements of repressor protein 1-D diffusion on DNA. In: Controlled
nanoscale motion: nobel symposium, vol 131, pp 217-240. Springer, Berlin/Heidelberg. ISBN: 978-3-
540-49522-2. https://doi.org/10.1007/3-540-49522-3_11

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (» http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not included in
the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1080/14786442808674769
https://doi.org/10.1007/3-540-49522-3_11
http://creativecommons.org/licenses/by/4.0/

	5: Introduction to MATLAB
	5.1	 Tools
	5.1.1	 MATLAB
	5.1.2	 Image Processing Toolbox
	5.1.3	 Statistics and Machine Learning Toolbox, Curve Fitting Toolbox

	5.2	 Getting Started with MATLAB
	5.2.1	 Baby Steps
	5.2.2	 Plot Something
	5.2.3	 Make it Pretty
	5.2.4	 Getting Help

	5.3	 Automating It: Creating Your Own Programs
	5.3.1	 Create, Save, and Run Scripts
	5.3.2	 Code Folding and Block-Wise Execution
	5.3.3	 Scripts, Programs, Functions: Nomenclature

	5.4	 Working with Images
	5.4.1	 Reading and Displaying an Image
	5.4.2	 Extracting Meta-Data from an Image
	5.4.3	 Reading and Displaying an Image-Stack
	5.4.4	 Smoothing, Thresholding and All That

	5.5	 Time-Series Analysis
	5.5.1	 Simulating a Time-Series of Brownian Motion (Random Walk)
	5.5.2	 Plotting a Time-Series
	5.5.3	 Histograms
	5.5.4	 Sub-Sampling a Time-Series (Slicing and Accessing Data)
	5.5.5	 Investigating How “Speed” Depends on Δt
	5.5.6	 Investigating How “Speed” Depends on Subsampling
	5.5.7	 Simulating Confined Brownian Motion
	5.5.8	 Simulating Directed Motion with Random Tracking Error
	5.5.9	 Loading Tracking Data from a File
	5.5.10	 Smoothing (Filtering) a Time-Series

	5.6	 MSD: Mean Square Displacement
	5.6.1	 Creating a Function That Calculates MSDs
	5.6.1.1	 About Functions and How to Call Them

	5.6.2	 MSD: Linear Motion
	5.6.3	 MSD: Brownian Motion
	5.6.3.1	 MSD: Simulated Random Walk

	5.6.4	 MSD: Averaged Over Several 2-Dim Tracks
	5.6.5	 Further Reading About Diffusion, the MSD, and Fitting Power-Laws

	Appendix: MATLAB Fundamental Data Classes
	MATLAB Documentation Keywords for Data Classes

	Appendix: Do I Have That Toolbox?
	Appendix: HTML and Live Scripts
	Publish Your Script to HTML
	Working with Live Scripts

	Appendix: Getting File and Folder Names Automatically
	Read from a Folder
	Path and File Names

	Appendix: Codehygiene
	Appendix: MATLAB Cheat Sheet
	Bibliography

