
Learning Materials in Biosciences

Bioimage
Data Analysis
Work� ows

Kota Miura
Nataša Sladoje Editors

Learning Materials in Biosciences

Learning Materials in Biosciences textbooks compactly and concisely discuss a specific biological, bio-
medical, biochemical, bioengineering or cell biologic topic. The textbooks in this series are based on lec-
tures for upper-level undergraduates, master’s and graduate students, presented and written by
authoritative figures in the field at leading universities around the globe.

The titles are organized to guide the reader to a deeper understanding of the concepts covered.
Each textbook provides readers with fundamental insights into the subject and prepares them to

independently pursue further thinking and research on the topic. Colored figures, step-by-step protocols
and take-home messages offer an accessible approach to learning and understanding.

In addition to being designed to benefit students, Learning Materials textbooks represent a valuable
tool for lecturers and teachers, helping them to prepare their own respective coursework.

More information about this series at http://www.springer.com/series/15430

http://www.springer.com/series/15430

Kota Miura
Nataša Sladoje

Editors

Bioimage Data
Analysis Workflows

Editors
Kota Miura
Im Neuenheimer Feld 267
Nikon Imaging Center Bioquant BQ 0004
Heidelberg, Germany

Nataša Sladoje
Department of Information Technology
Centre for Image Analysis,
Uppsala University
Uppsala, Sweden

ISSN 2509-6125	     ISSN 2509-6133  (electronic)
Learning Materials in Biosciences
ISBN 978-3-030-22385-4     ISBN 978-3-030-22386-1  (eBook)
https://doi.org/10.1007/978-3-030-22386-1

© The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access publication.

Open Access  This book is licensed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.
The images or other third party material in this book are included in the book's Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book's
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publica-
tion does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein
or for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-22386-1

V

Preface

The often-posed question among life science researchers, “Which software tool is the best
for bioimage analysis,” indicates misunderstanding which calls for explanations. It
appears that this question cannot be answered easily, maybe even not at all. Biological
research problems are not general, and each of them questions specific events among
various phenomena seen in biological systems. Therefore, the answer to the “Which is
the best?” question to a high extent depends not only on the biological problem that is to
be addressed but also on the specific goals and criteria to be met. Moreover, the misun-
derstanding seems to be based on an assumption that at some point in the future, there
will be an almighty software tool for bioimage analysis that solves most of the problems
just by clicking on a button. This, most likely, is simply a dream that may never come true.

Software tools are developed with their central value towards having generic applicabil-
ity of offered functionality to be as wide as possible. In a sense, this is the agenda towards
“almighty.” On the other hand, the biological question asked by each researcher is unique
and specific. “Novel findings,” which biologists are seeking, come as answers to specific
and original questions that others have not thought about or by using a novel method
that others have not used to approach the mystery of biological systems. There is a clear
gap between how bioimage analysis tools are developed and how biological questions are
valued. The former is towards generality, and the latter is towards specificity.

The gap can be filled by designing unique combinations of general tools. More precisely,
image analysis software tools should be used by a researcher in a one-and-only, specific
way, by designing a customized workflow combining various suitable implementations
of algorithms, to address a specific biological problem. Such novel designs help the
researchers to see and quantify the biological system in a way that no one has done
before. The highly desired optimal combination of the generality of the available soft-
ware tools and the specificity of biological problem is thus achieved. The outcome can
lead to outstanding scientific results. However, when this gap between generality and
specificity is overlooked, bioimage analysis becomes simply a pain: life science research-
ers do not know how to approach it and benefit from it. Question such as “A great soft-
ware tool is available in my computer but why can’t I solve my problem?” can be rather
frustrating.

As digital image data have become one of the fundamental infrastructures of biological
research activities, students and researchers in the biomedical and life sciences more and
more want to learn how to use the available tools. They want to know how to use various
resources for image analysis and combine them to set up an appropriate workflow for
addressing their own biological question. Getting used to bioimage analysis tools means
learning about the various components that are available as a part of the software and
becoming proficient in combining them for quantifying the biological systems.

The Network of European Bioimage Analysts (NEUBIAS) was established in 2016, with
the aim to promote and share information about rich image analysis resources that have
become widely available nowadays and to encourage, through education, their uses.

VI

Nowadays, we can access many resources. These are good news, but at the same time,
this variety of options may be overwhelming, leading to difficult choices regarding tools
and resources most suitable for a particular problem and their most effective combina-
tions for any specific purpose.

The aim of this textbook is to offer guidance in learning to make such choices. It provides
“guided tours” through the five selected bioimage analysis workflows relevant in real
biological studies, which combine different software packages and tools. Realistically,
these workflows are not general and cannot be directly applied to other problems. How-
ever, the best (if not the only) way to learn to design own specialized workflows is to
study the craft (approaches and solutions) of others. Bioimage Data Analysis (Wiley
2016) was published with the same motivation; this textbook is a sequel, contributing to
the same goal. We hope to continue by including more bioimage analysis workflows and,
by that, inspiring new creative solutions of life science problems.

One prominent contribution of the NEUBIAS team to the life science community is the
conceptual apparatus required for swimming in the sea of rich image analysis resources:
definitions of components, collections, and workflows. These notions are introduced and
explained in 7  Chap. 1 and then utilized in the subsequent ones.

7  Chapter 2 focuses on a workflow for measuring the fluorescence intensity localized to
the nuclear envelope. Automatic segmentation of the nuclear rim, based on thresholding
and mathematical morphology, is iterated through multiple image frames to measure the
changes in fluorescence intensity over time. ImageJ macro commands are recorded by
the command recorder and converted to a stand-alone ImageJ macro.

7  Chapter 3 offers a step-by-step guide through a procedure to build a macro for a 3D
object-based colocalization, showing also how to extend and adjust the developed work-
flow to include intensity-based colocalization methods.

7  Chapter 4 aims at teaching the principles and pitfalls of single particle tracking (SPT).
Tracking is, in general, very important for dynamic studies; focus is on propagating
object identities over time and subsequently computing relevant quantities from the
identified tracks. The developed workflow combines tools available in ImageJ/Fiji (for
generating the tracks) and in MATLAB (for analyzing them).

7  Chapter 5 introduces some of the powerful and flexible image analysis methods native
to MATLAB, also providing a crash course in programming for those with no, or limited,
experience. The tools are used to simulate a time series of Brownian motion or diffusion
process, to analyze time-series data, and to plot and export the results as figures ready for
publication. The workflow presented in this chapter is quite powerful in analyzing track-
ing data such as those presented in 7  Chap. 4.

7  Chapter 6 presents the computational approach of registering images from different
modalities based on manual selection of matching pairs of landmarks. The identification
of sites of clathrin-mediated endocytosis by correlative light electron microscopy
(CLEM) is used as an example on how to apply an image registration workflow based on
MATLAB’s image processing toolbox.

	 Preface

VII

This textbook is the first bioimage analysis textbook published as an output of the com-
mon efforts of NEUBIAS, the Network of European Bioimage Analysts, funded under
COST Action CA15124. We would like to thank the leaders of workgroups (WGs) in
NEUBIAS: Sebastian Munck, Arne Seitz and Florian Levet (WG1 “Strategy”), Paula
Sampaio and Irene Fondón (WG2 “Outreach”), Perrine Paul-Gilloteaux and Chong
Zhang (WG4 “Webtool biii.eu”), Sébastien Tosi and Graeme Ball (WG5 “Benchmarking
and Sample Datasets”), Julia Fernandez-Rodriguez and Clara Prats Gavalda (WG7
“Short-Term Scientific Missions and Career Path”), and Julien Colombelli (NEUBIAS
Chair). Their efforts to create a synergistic effect of the diverse workgroup activities
towards the establishment of “Bioimage Analysts” are the strong backbone that has led to
the successful realization of this book. We are very much grateful to the reviewers of each
chapter: Anna Klemm, Jan Eglinger, Marion Louveaux, Christian Tischer, and Ulrike
Schulze. Their critical comments largely improved the presented workflows. We are par-
ticularly grateful to the authors of each workflow chapters: Fabrice P. Cordeliéres, Chong
Zhang, Perrine Paul-Gilloteaux, Martin Schorb, Simon F. Nørrelykke, Jean-Yves Tinevez,
and Sébastien Herbert. They have traveled together with selfless commitment to achieve
the demanding publication format we chose, which is to offer both the normal printed
textbook and the “continuously updated” online electronic version. The publication of
this book was enabled by the financial support from the COST Association (funded
through EU framework Horizon2020), through the granted project “A New Network of
European Bioimage Analysts (NEUBIAS, COST Action CA15124).” Finally, we thank all
the members of NEUBIAS who, with their enthusiasm and commitment to the network’s
activities, have contributed to keep the momentum of the initiative constantly high, a
vital element to enable it to reach its objectives, including the publication of this book.

Nataša Sladoje
Uppsala, Sweden

Kota Miura
Heidelberg, Germany

Preface

Acknowledgements

This textbook is based upon the work from COST Action CA15124, supported by COST
(European Cooperation in Science and Technology).

COST (European Cooperation in Science and Technology) is a funding agency for
research and innovation networks. Our actions help connect research initiatives across
Europe and enable scientists to grow their ideas by sharing them with their peers. This
boosts their research, career, and innovation.

7  www.cost.eu

http://www.cost.eu

IX

Contents

	1	� Workflows and Components of Bioimage Analysis . 	 1

Kota Miura, Perrine Paul-Gilloteaux, Sébastien Tosi, and Julien Colombelli

	2	 Measurements of Intensity Dynamics at the
Periphery of the Nucleus . 	 9

Kota Miura

	3	� 3D Quantitative Colocalisation Analysis . 	 33

Fabrice P. Cordelières and Chong Zhang

	4	� The NEMO Dots Assembly: Single-Particle Tracking and Analysis 	 67

Jean-Yves Tinevez and Sébastien Herbert

	5	� Introduction to MATLAB . 	  97

Simon F. Nørrelykke

	6	 Resolving the Process of Clathrin Mediated Endocytosis
Using Correlative Light and Electron Microscopy (CLEM) 	 143

Martin Schorb and Perrine Paul-Gilloteaux

		 Supplementary Information
�Index. 	 169

Contributors

Julien Colombelli
Advanced Digital Microscopy Core Facility,
Institute for Research in Biomedicine, IRB
Barcelona, Spain

Barcelona Institute of Science and
Technology, BIST
Barcelona, Spain
julien.colombelli@irbbarcelona.org

Fabrice P. Cordelières
Bordeaux Imaging Center, UMS 3420
CNRS – Université de Bordeaux – US4 INSERM
Bordeaux, France

Pôle d’imagerie photonique, Centre Broca
Nouvelle-Aquitaine
Bordeaux, France
fabrice.cordelieres@u-bordeaux.fr

Sébastien Herbert
Image Analysis Hub – C2RT – Institut Pasteur
Paris, France
sebastien.herbert@pasteur.fr

Kota Miura
Im Neuenheimer Feld 267
Nikon Imaging Center Bioquant BQ 0004
Heidelberg, Germany
miura@embl.de

Simon F. Nørrelykke
Image and Data Analysis Group,
Scientific Center for Optical and Electron
Microscopy, ETH
Zurich, Zurich, Switzerland
simon.noerrelykke@scopem.ethz.ch

Perrine Paul-Gilloteaux
SFR-Santé MicroPICell Facility, UNIV Nantes,
INSERM, CNRS, CHU Nantes
Nantes, France

INSB France BioImaging
Nantes, France
Perrine.Paul-Gilloteaux@univ-nantes.fr

Martin Schorb
Electron Microscopy Core Facility,
EMBL Heidelberg
Heidelberg, Germany
martin.schorb@embl.de

Jean-Yves Tinevez
Image Analysis Hub – C2RT – Institut Pasteur
Paris, France
tinevez@pasteur.fr

Sébastien Tosi
Advanced Digital Microscopy Core Facility,
Institute for Research in Biomedicine, IRB
Barcelona, Spain

Barcelona Institute of Science and
Technology, BIST
Barcelona, Spain
sebastien.tosi@irbbarcelona.org

Chong Zhang
SimBioSys Group, Pompeu Farba University
Barcelona, Spain
chong.zhang@upf.edu

mailto:julien.colombelli@irbbarcelona.org
mailto:fabrice.cordelieres@u-bordeaux.fr
mailto:sebastien.herbert@pasteur.fr
mailto:miura@embl.de
mailto:simon.noerrelykke@scopem.ethz.ch
mailto:Perrine.Paul-Gilloteaux@univ-nantes.fr
mailto:martin.schorb@embl.de
mailto:tinevez@pasteur.fr
mailto:sebastien.tosi@irbbarcelona.org
mailto:chong.zhang@upf.edu

© The Author(s) 2020
K. Miura, N. Sladoje (eds.), Bioimage Data Analysis Workflows, Learning Materials in Biosciences,
https://doi.org/10.1007/978-3-030-22386-1_1

1

Workflows and Components
of Bioimage Analysis
Kota Miura, Perrine Paul-Gilloteaux, Sébastien Tosi,
and Julien Colombelli

1.1	 �Introduction – 2

1.2	 �Types of Bioimage Analysis Software – 2

�Bibliography – 6

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22386-1_1&domain=pdf

2

1
What You Learn from This Chapter
Definitions of three types of bioimage analysis software—Component, Collection, and
Workflow—are introduced in this chapter. The aim is to promote the structured designing
of bioimage analysis methods, and to improve related learning and teaching.

1.1	 �Introduction

Software tools used for bioimage analysis tend to be seen as utilities that solve problems
off-the-shelf. The extreme version of such is like: “If I know where to click, I can get good
results!”. In case of gaming software, as the user gets more used to the software, the user
can achieve the final stage faster. To some extent, this might be true also with bioimage
analysis software, but there is a big difference. As bioimage analysis is a part of scientific
research, the goal to achieve is not to clear the common final stage that everyone heads
toward, but something original that others have not found out. The difficulty of the usage
of bioimage analysis software does not only reside in the hidden commands, but also in
the fact that the user needs to come up with more-or-less original analysis. Then, how can
we do something original using tools that are provided in public?

In this short chapter, we define several terms describing the world of bioimage analysis
software, which are “workflows”, “components”, and “collections”, and explain their rela-
tionships. We believe that clarifying the definition of these terms can contribute largely to
those who want to learn bioimage analysis, as well as to those who need to design the
teaching of bioimage analysis. The reason is that these terms link the generality of software
packages provided in public, with the specificity and the originality of the analysis that one
needs to achieve.

1.2	 �Types of Bioimage Analysis Software

Software packages such as ImageJ (Schneider et al. 2012),1 MATLAB,2 CellProfiler
(Carpenter et al. 2006)3 or ICY (de Chaumont et al. 2012)4 are often used to analyze image
data in life sciences. These software packages are “collections” of implementation of
image processing and analysis algorithms. Libraries such as ImgLib2 (Pietzsch et al.
2012),5 OpenCV (Bradski 2000),6 ITK (Johnson et al. 2015a,b),7 VTK (Schroeder et al.
2006),8 and Scikit-Image (van der Walt et al. 2014)9 are also packages of image processing
and analysis algorithms, although with a different type of user interface that is not graph-
ical. We invariably refer to them as “collections”. To scientifically analyze and address
an underlying biological problem, one needs to hand-pick some algorithms from these

1	 7  https://imagej.org
2	 7  https://nl.mathworks.com
3	 7  https://cellprofiler.org/
4	 7  http://icy.bioimageanalysis.org
5	 7  https://imagej.net/ImgLib2
6	 7  https://opencv.org
7	 7  https://itk.org
8	 7  https://vtk.org
9	 7  https://scikit-image.org

	 K. Miura et al.

https://imagej.org
https://nl.mathworks.com
https://cellprofiler.org/
http://icy.bioimageanalysis.org
https://imagej.net/ImgLib2
https://opencv.org
https://itk.org
https://vtk.org
https://scikit-image.org

3 1

collections, carefully adjust their functional parameters to the problem and assemble
them in a meaningful order. Such a sequence of image processing algorithms with a spec-
ified parameter set is what we call a “workflow”. The implementations of the algorithms
that are used in the workflows are the “components” constituting that workflow (or
“workflow components”). From the point of view of the expert who needs to assemble a
workflow, a collection is a package bundling many different components. As an example,
many plugins offered for ImageJ are mostly also collections (e.g. Trackmate (Tinevez
et al. 2016),10 3D Suite (Ollion et al. 2013),11 MosaicSuite12…), as they bundle multiple
components. On the other hand, some plugins, such as Linear Kuwahara filter plugin,13
are a single component implemented as a single plugin.

Each workflow is uniquely associated with a specific biological research project
because the question asked therein as well as the acquired image quality are often unique.
This calls for a unique combination of components and parameter set. Some collections,
especially those designed with GUI, offer workflow templates. These templates are pre-
assembled sequences of image processing tasks to solve a typical bioimage analysis prob-
lem; all one needs to do is to adjust the parameters of each step. For example, in the case
of Trackmate plugin for ImageJ (Tinevez et al. 2016), a GUI wizard guides the user to
choose an algorithm for each step among several candidates and also to adjust their
parameters to achieve a successful particle tracking workflow (see 7  Chap. 4). When
these algorithms and parameters are set, the workflow is built. CellProfiler also has a help-
ful GUI that assists the user in building a workflow based on workflow templates
(Carpenter et al. 2006). It allows the user to easily swap the algorithms for each step and
test various parameter combinations. .  Figure 1.1 summarizes the above explanations.

Though such templates are available for some typical tasks, collections generally do
not provide helpful clues to construct a workflow—choice of components to be used and
approach taken to assemble those components depend on expert knowledge, empirical
knowledge or testing. Since the biological questions are so diverse, the workflow often
needs to be original and might not match any available workflow templates. Building a
workflow from scratch needs some solid knowledge about the components and the ways
to combine them. It also requires an understanding of the biological problem itself. Each
workflow is in essence associated with a specific biological question, and this question
together with the image acquisition setup affect the required precision of the analysis. For
example, image data in general should not be analyzed at a precision higher than the
physical resolution of the imaging system that captures those data.14 In some cases, a
higher precision does not imply more meaningful results just because such precision can
be irrelevant to the biological question. These aspects should be carefully considered dur-
ing the planning of the analysis and the choice of the components, together with the
choice of statistical treatment.

Many biologists feel difficulty in analyzing image data, because of the lack in skills
and knowledge to close the gap between a collection of components and a practical

10	 7  https://imagej.net/TrackMate
11	 7  http://imagejdocu.tudor.lu/doku.php?id=plugin:stacks:3d_ij_suite:start
12	 7  http://mosaic.mpi-cbg.de/?q=downloads/imageJ
13	 7  https://imagej.net/Linear_Kuwahara
14	� If the model-based approach designed to compute sub-pixel resolution results is used e.g. single

molecule localization microscopy, precision does go beyond the given optical resolution and the
approach is thus validated.

Workflows and Components of Bioimage Analysis

https://imagej.net/TrackMate
http://imagejdocu.tudor.lu/doku.php?id=plugin:stacks:3d_ij_suite:start
http://mosaic.mpi-cbg.de/?q=downloads/imageJ
https://imagej.net/Linear_Kuwahara

4

1

workflow. A collection bundles components without workflows, but it is often errone-
ously assumed that installing a collection is enough for solving bioimage analysis prob-
lem. The truth is that expert knowledge is required to choose components, adjust their
parameters and build a workflow (.  Fig. 1.1 red arrows). The correct assembly of compo-
nents as an executable script is in general even more difficult, as it requires some pro-
gramming skills. The use of components directly from library-type of collections, which
host many useful components, also requires programming skills to access their
API. Bioimage analysts may fill this gap but even they, who professionally analyze image
data, need to always search for the most suitable components to solve problems, reaching
the required accuracy or coping with huge data in a practical time.

Another important aspect and difficulty is the reproducibility of workflows. We often
want to know how other people have performed image analysis and to learn from others
new bioimage analysis strategies. In such cases, we look for workflows addressing a sim-
ilar biological problem. However, many articles do not document the workflows they
used in sufficient details to enable the reproducibility of the results. As an extreme exam-
ple, we found articles with their image analysis description in Materials and Methods
merely documenting that ImageJ was used for the image analysis. Such a minimalism
should be strictly avoided. On the other hand, some workflows are written as a detailed
text description in Materials and Methods sections in the publications. We go even fur-
ther and recommend to publish workflows as executable scripts, i.e. a computer pro-
gram, with documented parameter sets for clarity and reproducibility of analysis and
results. In our opinion, the best format is a version-tracked script because the version

Collection

Component

Component

Component

Component

Component

Component

Component

Component

Component

Component

Component

Component

Component

Component

Component

Component

Numbers, Plots, Stats,
Visualization

Biological Image Data
Workflow

.      . Fig. 1.1  Relationship between components, collection and workflow. Components (e.g. Gaussian
blurring filter) are selected from collection (e.g. ImageJ) and assembled into a specific workflow (red
arrow) for analyzing image data in each research project (e.g. scripts associated with journal papers)

	 K. Miura et al.

5 1

used for the published results can be clearly stated and reused by others. A script embed-
ded in a Docker image is even better for avoiding problems associated with a difference
in execution environments.

Towards a more efficient designing of workflows, The Network of European Bioimage
Analysts (NEUBIAS) has been developing a searchable index named Bioimage Informatics
Search Engine (BISE). This service is accessible online at 7  https://biii.eu and hosts the
manually curated registry of collections, workflows and components.

Two ontologies are used for annotating resources registered to BISE: The BISE ontol-
ogy for properties of resources e.g. programming language; and the EDAM Bioimaging
Ontology (Kalaš et al. 2019)—an extension of the EDAM ontology (Ison et al. 2013) devel-
oped together with ELIXIR15—for applications of these resources, e.g. image processing
step and imaging modality. “Component”, “Workflow” and “Collections” are implemented
as part of the BISE ontology for classifying the type of software, for more distinctive filter-
ing of search results.

While BISE allows researchers to search for bioimage analysis resources at all these
levels, general web search engines, such as Google, typically return hits of collections but
not to the details of their components. In addition, workflows are in many cases hidden
in biological papers and difficult to be discovered. BISE is also designed to feature users
impressions on the usability of components and workflows so that individual experi-
ences can be swiftly shared within the community.

Take Home Message

Within the world of bioimage analysis software, various types of tools, which can be
classified as “collections”, “components”, or “workflows”, coexist and are flatly provided
to the public as “software tools”. Clear definition of these types and recognition of the
role of each is a foundation for learning and teaching bioimage analysis.

kFurther Readings
	1.	 Miura and Tosi (2016) discusses the general challenges of bioimage analysis.
	2.	 Miura and Tosi (2017) provides more details on the structure and designing of

bioimage analysis workflows.
	3.	 Details about NEUBIAS can be found at the following web pages:

55 7  http://neubias.org
55 7  https://www.cost.eu/actions/CA15124: The Memorandum of Understanding

describes the objectives of the network, that includes the motivation to create
the registry 7  http://biii.eu.

Acknowledgements  We are grateful to Nataša Sladoje for critically reading this text. We
thank Matúš Kalaš for checking the text and correcting our mistakes.

15	 7 https://www.elixir-europe.org

Workflows and Components of Bioimage Analysis

https://biii.eu
http://neubias.org
https://www.cost.eu/actions/CA15124
http://biii.eu
https://www.elixir-europe.org

6

1
Bibliography

Bradski G (2000) The OpenCV Library. Dr. Dobb’s Journal of Software Tools. http://www.drdobbs.com/
open-source/the-opencv-library/184404319

Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA,
Moffat J, Golland P, Sabatini DM (2006) CellProfiler: image analysis software for identifying and quan-
tifying cell phenotypes. Genome Biol 7(10):R100. ISSN: 1465-6914. https://doi.org/10.1186/gb-2006-
7-10-r100

de Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, Provoost T, Meas-Yedid V, Pankajakshan P,
Lecomte T, Le Montagner Y, Lagache T, Dufour A, Olivo-Marin J-C (2012) Icy: an open bioimage infor-
matics platform for extended reproducible research. ISSN: 1548-7091

Ison J, Kalaš M, Jonassen I, Bolser D, Uludag M, McWilliam H, Malone J, Lopez R, Pettifer S, Rice P (2013)
EDAM: an ontology of bioinformatics operations, types of data and identifiers, topics, and formats.
Bioinformatics 29(10):1325–1332. https://doi.org/10.1093/bioinformatics/btt113

Johnson HJ, McCormick MM, Ibanez L (2015a) Template: the ITK software guide book 1: introduction and
development guidelines, vol 1

Johnson HJ, McCormick MM, Ibanez L (2015b) Template: the ITK software guide book 2: design and func-
tionality, vol 2

Kalaš M, Plantard L, Sladoje N, Lindblad J, Kirschmann MA, Jones M, Chessel A, Scholz LA, Rössler F, Dufour
A, Bogovic J, Waithe CZD, Sampaio P, Paavolainen L, Hörl D, Munck S, Golani O, Moore J, Gaignardand
A, Levet F, Participants in the NEUBIAS Taggathons, Paul-Gilloteaux P, Ison J, the EDAM Dev Team,
Miura K, Colombelli J, Welcoming New Contributors (2019) EDAM-bioimaging: the ontology of bioim-
age informatics operations, topics, data, and formats (2019 update) [version 1; not peer reviewed].
F1000Research 8(ELIXIR):158. https://doi.org/10.7490/f1000research.1116432.1

Miura K, Tosi S (2016) Introduction. In: Miura K (ed) Bioimage data analysis. Wiley-VCH, Weinheim, pp 1–3.
ISBN: 978-3-527-34122-1

Miura K, Tosi S (2017) Epilogue: a framework for bioimage analysis. In: Standard and super-resolution
bioimaging data analysis. Wiley, Chichester, pp 269–284. https://doi.org/10.1002/9781119096948.
ch11

Ollion J, Cochennec J, Loll F, Escudé C, Boudier T (2013) TANGO: a generic tool for high-throughput 3D
image analysis for studying nuclear organization. Bioinformatics 29(14):1840–1841. ISSN: 13674803.
https://doi.org/10.1093/bioinformatics/btt276

Pietzsch T, Preibisch S, Tomančák P, Saalfeld S (2012) ImgLib2–generic image processing in Java.
Bioinformatics (Oxford, England) 28(22):3009–3011. ISSN: 1367-4811. https://doi.org/10.1093/bioin-
formatics/bts543

Schneider CA, Rasband WS, Eliceiri KW (2002) NIH Image to ImageJ: 25 years of image analysis. Nat
Methods 9(7):671–675 (2012). ISSN: 1548-7105. http://www.ncbi.nlm.nih.gov/pubmed/22930834

Schroeder W, Martin K, Lorensen B (2006) The visualization toolkit, 4th edn. Kitware Inc. ISBN:
978-1930934191. https://vtk.org/

Tinevez J-Y, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri
KW (2016) TrackMate: an open and extensible platform for single-particle tracking. Methods. ISSN:
10462023. https://doi.org/10.1016/j.ymeth.2016.09.016. http://linkinghub.elsevier.com/retrieve/pii/
S1046202316303346

van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T (2014)
Scikit-image: image processing in Python. PeerJ 2:e453. ISSN: 2167-8359. https://doi.org/10.7717/
peerj.453. https://peerj.com/articles/453

	 K. Miura et al.

http://www.drdobbs.com/open-source/the-opencv-library/184404319
http://www.drdobbs.com/open-source/the-opencv-library/184404319
https://doi.org/10.1186/gb-2006-7-10-r100
https://doi.org/10.1186/gb-2006-7-10-r100
https://doi.org/10.1093/bioinformatics/btt113
https://doi.org/10.7490/f1000research.1116432.1
https://doi.org/10.1002/9781119096948.ch11
https://doi.org/10.1002/9781119096948.ch11
https://doi.org/10.1093/bioinformatics/btt276
https://doi.org/10.1093/bioinformatics/bts543
https://doi.org/10.1093/bioinformatics/bts543
http://www.ncbi.nlm.nih.gov/pubmed/22930834
https://vtk.org/
https://doi.org/10.1016/j.ymeth.2016.09.016
http://linkinghub.elsevier.com/retrieve/pii/S1046202316303346
http://linkinghub.elsevier.com/retrieve/pii/S1046202316303346
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://peerj.com/articles/453

7 1

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (7  http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not included in
the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Workflows and Components of Bioimage Analysis

http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2020
K. Miura, N. Sladoje (eds.), Bioimage Data Analysis Workflows, Learning Materials in Biosciences,
https://doi.org/10.1007/978-3-030-22386-1_2

9

Measurements of Intensity
Dynamics at the Periphery
of the Nucleus
Kota Miura

2.1	 �Introduction – 10

2.2	 �Tools – 11

2.3	 �Dataset – 11

2.4	 �Workflow – 12
2.4.1	 �Segmentation of Nucleus Rim – 12
2.4.2	 �Integration: The Measurement Over Time – 24
2.4.3	 �Integrating Segmentation and Measurements – 25

2.5	 �Results and Conclusion – 29

2.6	 �Exercise Answers – 31
2.6.1	 �Exercises 2.1–2.4 – 31
2.6.2	 �Exercise 2.5 – 31

�Bibliography – 32

2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22386-1_2&domain=pdf

10

2

What You Learn from This Chapter
The aim of this chapter is to learn how to construct a workflow for measuring the fluores-
cence intensity localized to the nuclear envelope. For this purpose, the nucleus image is
segmented to create a mask along the nuclear rim. The reader will learn a typical technique
for automatically delineating the segmented area by post-processing using the mathemat-
ical morphology algorithm, and how to loop that piece of ImageJ macro and iterate through
multiple image frames to measure changes in fluorescence intensity over time. This chapter
is also a good guide for learning how to convert ImageJ macro commands recorded by the
Command Recorder to a stand-alone ImageJ macro.

2.1	 �Introduction

In some biological research projects, we encounter problems that should be studied by
measuring fluorescence intensity at the boundary between two different compartments.
Here, we pick up an example analysis of the Lamin B receptor protein density targeting
inner nuclear membrane. The protein changes its location from the cytoplasmic area
(Endoplasmic Reticulum, ER) to the nuclear envelope (Boni et al. 2015).

We analyze a two-channel time-lapse image stack, a sequence of the process of the
protein re-localization that causes increases in the protein density at the nuclear envelope.
The data was acquired by Andreas Boni (Jan Ellenberg lab, EMBL Heidelberg) and have
been used in many training workshops in EMBL as a great example for learning bioimage
analysis. His work, with more advanced bioimage analysis workflows for analyzing the
protein targeting dynamics, is published in The Journal of Cell Biology (Boni et al. 2015).
Those codes and image data used in his study, which might be interesting for you after
going through this chapter, are accessible through the supplementary data section in the
journal website.1

Two images shown in .  Fig. 2.1 are from the first and the last time points of a time-
lapse sequence.2 Compare these images carefully. The green signal broadly distributed in
the cytoplasmic area at time point 1 becomes accumulated at the periphery of nuclei (red)
at time point 15—between these image frames, the signal changed its localization from ER
to the nuclear envelope. We construct a workflow that measures this accumulation pro-
cess by writing an ImageJ macro. The workflow involves two steps: First, we segment the
rim of nucleus—nuclear membrane—using the first channel (histone). Second, we use
that segmented nuclear rim as a mask to measure the intensity changes over time in the
second channel.

Segmentation of nucleus using its marker (e.g. DAPI) is a popular image analysis tech-
nique used in many biological research projects, but to measure more specific location—
in our case nuclear envelope—we need to add several more steps to refine the
region-of-interest. When we are successful in determining the area of nuclear envelope,
the measurement of intensity in that region over time is rather trivial. We just need to loop
the same process for each time point. Especially for the analysis of time-lapse sequence,
programming is highly recommended to iterate the measurement for each time point.

1	 7  http://jcb.rupress.org/content/209/5/705
2	 The images shown in the .  Fig. 2.1 are from a 4D hyperstack “NPC1.tif”, which can be downloaded

using ImageJ plugin “CMCI-EMBL”. More details are in “Dataset” section.

	 K. Miura

http://jcb.rupress.org/content/209/5/705

11 2

This chapter should be a good guide not only limited to study the intensity changes
occurring at the nuclear envelope, but also in general for segmenting the edge (perimeter)
of biological compartments such as the edge of organelle, plasma membrane and tissue
boundaries. In principle, similar post-processing strategy is also applicable to 3D volumes
by using 3D morphology filters.

2.2	 �Tools

We use Fiji (Fiji Is Just ImageJ) for image analysis.
55 Fiji

55 Download URL: 7  https://imagej.net/Fiji/Downloads
55 Please choose the latest version.

In addition, a plugin is required for loading the sample image data. Using the “Update
sites” function, please add “CMCI-EMBL” to your Fiji installation. Please restart Fiji after
this plugin installation.

2.3	 �Dataset

All ImageJ macro codes can be downloaded from the Github repository.3
The image data we used in this chapter can be downloaded using the plugin

“CMCI-EMBL”. After installation of this plugin, select the menu item [EMBL > Sample
Images > NPCsingleNucleus.tif] to load the image data. This is a time-lapse

3	 7  https://github.com/miura/NucleusRimIntensityMeasurementsV2/

a b

.      . Fig. 2.1  Lamin receptor localization difference at two time points: More Lamin receptor in nucleus
periphery. a Time point 1. b Time point 15

Measurements of Intensity Dynamics at the Periphery of the Nucleus

https://imagej.net/Fiji/Downloads
https://github.com/miura/NucleusRimIntensityMeasurementsV2/

12

2

sequence of a cell, extracted from “NPC1.tif ” which can be also downloaded through the
same plugin.

55 Cell Type: Hela Cells
55 Scale: 0.165 μm/pixel
55 Frame Rate: 400 Sec/Frame
55 Channels

55 Red channel (C1): H2B-mCherry (ex:561nm)
55 Green Channel (C2): Lamin B Receptor-GFP (ex:488nm)

2.4	 �Workflow

To simplify the development, we focus on a single cell/nucleus to construct the workflow.
Load the image stack NPCsingleNucleus.tif. This is a hyperstack sequence. Slide the scroll
bar at the bottom back-and-forth to watch the process of intensity changes. H2B-mCherry
signal (red), used as a marker for nucleus, is more or less constant with its distribution. On
the other hand, the Lamin receptor signal (green) exhibits strong accumulation to the
nuclear membrane. To study this accumulation process, our aim is to measure the inten-
sity changes of green signal intensity at the rim of the nucleus over time. The outline of the
workflow is shown in the diagram (.  Fig. 2.2).

To achieve this aim we first need to identify the region of nucleus rim (“segmenta-
tion”)—in other words, we create a mask of the nucleus rim. Using this mask we measure
the changes in intensity over time.

2.4.1	 �Segmentation of Nucleus Rim

We first write a macro for the nucleus rim segmentation by taking following steps:
	1.	 Split the original multi-channel image stack and create two image stacks of each

channel for processing them independently (.  Fig. 2.3a)
	2.	 Blur the image to attenuate noise (.  Fig. 2.3b)
	3.	 Nucleus segmentation: Binarize the image by intensity thresholding (.  Fig. 2.3c)
	4.	 Remove other Nuclei: At the right-bottom corner of the image, a small part of

different nucleus is present. This should be removed.
	5.	 Duplicate the image

	(a)	 Erode the original (.  Fig. 2.3e)
	(b)	 Dilate the duplicated (.  Fig. 2.3d)

	6.	 Subtract the eroded from the dilated (.  Fig. 2.3f)

In the following we record these steps as macro commands using the Command Recorder
([Plugins > Macros > Record…]). We recommend you NOT to launch the com-
mand recorder from the beginning. Please first try to reproduce the workflow using mouse
and the graphical user interface (GUI). This is like a rehearsal before recording your actions.
When you become clear with the steps you have to take, record the processing steps. When
you use the command recorder, be sure that “Macro” is selected in the “Record:” drop down
menu at the top-left corner of the recorder.

	 K. Miura

13 2

2.4.1.1	 �Block 1: Splitting Channels
To split the multichannel image stack from the GUI menu, do [Image > Color >
Split Channels]. In the Recorder you will see the following command.

  run("Split Channels");

run function is the most frequently used build-in macro function.

Ch1
Nucleus

Pre-processing
Gaussian blur

Intensity
Thresholding (Otsu)

Dilation Erosion

Image
Subtraction

Measurement Block

Define the region /
measurements

Ch2
NPC

Nucleus Rim Segmentation Block

Channel
Splitting Block

2-Channel Time
Series

.      . Fig. 2.2  The outline of the workflow

Measurements of Intensity Dynamics at the Periphery of the Nucleus

14

2

run(”command”[, ”options”])

Executes an ImageJ menu command. The optional second argument contains values that
are automatically entered into dialog boxes (must be GenericDialog or OpenDialog). Use
the Command Recorder (Plugins>Macros>Record) to generate run() function calls. Use
string concatenation to pass a variable as an argument. With ImageJ 1.43 and later, variables
can be passed without using string concatenation by adding “&” to the variable name.

The run function takes a menu item as the first argument and optional values (values you
fill-in in a dialog window) in the second argument. In case of channel splitting, there is no
such optional value so the second argument is ignored.

We then process the nucleus image. Click the nucleus image window to bring it up to
the top—We call this action as “activating a window”. By this clicking, we activated
Channel 2 (red, nucleus image).

Please confirm that a new command shown below, is added to the recorder after acti-
vating the nucleus image.

selectWindow("C1-NPCsingleNucleus.tif");

…Here is the explanation from the macro function reference.

selectWindow(”name”)

Activates the window with the title ”name”.

a

d

b

e

c

f

.      . Fig. 2.3  The strategy of segmentation. a Original nucleus image. b Blurred nucleus image.
c Binarized image, after thresholding. d Dilated binary image. e Eroded binary image. f Subtraction
result, the rim

	 K. Miura

15 2

This function takes a window title as an argument and activates a window with that title.
When we used mouse to activate the nucleus channel window, we did it manually by visu-
ally recognizing the red nucleus image. On the other hand, in macro, we need to know the
title of the windows of each individual channels to activate a specific window to provide it
to macro as an argument of “selectWindow” command. How can we get the name of the
nucleus channel window after splitting the channels of the original image?

Standard behavior of “Split Channel” command is that it automatically names the
resulting stacks of individual channels by prefixing “C1-” or “C2-” or “C3” to the original
image title. Based on this known behavior, we can construct these names if the original
image title is known. For this we use the command getTitle() which returns the title
of currently active window as a string.

getTitle()

Returns the title of the current image.

Here is the code to activate the nucleus channel automatically after the splitting. More
importantly, we also acquire “image ID”. This will be explained later.

code/code_block1_ChannelSplitting.ijm
1  orgName = getTitle();
2  run("Split Channels");
3  c1name = "C1-" + orgName;
4  c2name = "C2-" + orgName;
5  selectWindow(c1name);
6  c1id = getImageID();
7  selectWindow(c2name);
8  c2id = getImageID();

Details:
55 The first line grabs the window title as a string variable “orgName”.
55 The second line splits the stacks to each individual channel stack.
55 3rd and 4th lines compose the window title for each channel stack.
55 5th line activates the channel 1 stack.
55 6th line acquires the image ID of channel 1 stack.
55 7th line activates the channel 2 stack.
55 8th line acquires the image ID of channel 2 stack.

In lines 6 and 8, we acquire image IDs. Here is some more explanation about this: Each
window has a unique ID number. To get this ID number from each image we use the
command getImageID().

getImageID()

Returns the unique ID (a negative number) of the active image. Use the
selectImage(id), isOpen(id) and isActive(id) functions to activate an image or to
determine if it is open or active.

Measurements of Intensity Dynamics at the Periphery of the Nucleus

16

2

A window can be activated by selectWindow using its window title, but this could
have a problem if there is another window with same name. Image ID has less problem
since it is uniquely given to each window. To select a window using image ID, we use
selectImage(ID) command.

selectImage(id)

Activates the image with the specified ID (a negative number). If id is greater than
zero, activates the ID-th image listed in the Window menu. The ID can also be an
image title (a string).

We acquire image IDs just after the splitting. From here on, we will use image IDs when
we want to specify the image window we want to work on and to activate it.

?? Exercise 2.1
Test the code below and run it on several image windows. Confirm that each window
has an unique ID number. Please ignore the line numbers when you write the code.

1  id = getImageID();
2  print(id);
3  name = getTitle();
4  print(name);

Save the channel splitting macro. When you name the file, add an extension “.ijm”, as this
indicates that the file is an ImageJ macro. This is only a part of the final workflow, and we
call such part as a “block” of the workflow, and by assembling blocks with various func-
tions, we construct a workflow. A block is a functional unit within the workflow. Each
block is consisting of several components, each of which is the build-in function that
implements a certain algorithm (see 7  Chap. 1).

In the current case, we just finished the Channel Splitting Block, consisting of a chan-
nel splitter component, a window title getter component, an image window ID getter com-
ponent, and window selector components.

2.4.1.2	 �Block 2: Segmentation of Nucleus Rim
Now we start working on the segmentation of nucleus rim. For this, we use only the
nucleus image stack (channel 1) we got in the Block 1. Create a new tab in the script editor
by [File > New]. We use this blank editor to write the next block for the detection of
nucleus rim. We assemble all blocks as a single workflow later.

Following is the step-by-step procedure. Try first using the GUI (your mouse and the
menu bar!). Then launch the Command recorder, redo the steps to record the history of
commands. I recommend you to do so mainly because the initial trials with GUI let you
visually understand what is going on, and also to get used to the sequence of operation for
the command recording.
	1.	 Gaussian Blur

55 [Process > Filter > Gaussian Blur], sigma = 1.5, tick “Do Stack”
55 This diminutive blurring of the image attenuates noise and allows a better result

for the segmentation.

	 K. Miura

17 2

	2.	 Find Threshold
55 [Image > Adjust > Threshold], select Otsu method
55 This simply changes the LUT, but not the data

	3.	 Apply Threshold: Click ‘Apply’
55 Changes the data to black and white using the threshold value using the Otsu

method.
	4.	 Find Threshold again (Otsu method)

55 We do this again for selecting the nucleus for the “AnalyzeParticle” in the follow-
ing step.

	5.	 Analyze Particles
55 [Analyze > Analyze Particles]
55 Options:

55 Size: 800-Infinity
55 Tick “Pixel Units”
55 Circularity: default (0–1.0)
55 Show: Mask
55 Tick Display Results, Clear results, Exclude on edges, Include holes.

55 We use AnalyzeParticle as a filter for segmented object. In our case, this filtering
removes nucleus touching the edge of image. This way of usage is also effective in
removing small none-nucleus signals.

	6.	 Invert the LUT of the “Mask” created by AnalyzeParticle, so operations to be done in
the following recognizes nucleus as the target of Dilation and Erosion.

55 [Image > Look-up Table > Invert LUT]
	7.	 Duplicate the “Mask” Stack, and then apply “Dilation” to the original stack and apply

“Erosion” to the duplicated.
55 [Image > Duplicate]
55 Set Iterations [Process > Binary > Options]

55 iterations 2 or 3
55 Tick dark background

55 Original: Dilate [Process > Binary > Dilate]
55 This increases the edge of nucleus by 2 or 3 pixels.

55 Duplicate: Erode [Process > Binary > Erode]
55 This decreases the edge of nucleus by 2 or 3 pixels.

	8.	 Image Subtraction
55 [Process > Image Calculator]
55 tick “keep original”, compute the difference of Dilated and Eroded.

55 Result: a band of 4 or 6 pixels at the edge of nucleus.

When you are done with the macro recording, check the results in the recorder. Below is
an example of the output from the recorder.

code/code_block2_recordNucSeg.ijm
1  selectWindow("C1-NPCsingleNucleus.tif");
2  run("Gaussian Blur...", "sigma=1.50 stack");
3 
4  //run("Threshold...");
5  setAutoThreshold("Otsu dark");

Measurements of Intensity Dynamics at the Periphery of the Nucleus

18

2

6   setOption("BlackBackground", true);
7  � run("Convert to Mask", "method=Otsu background=Dark calculate

black");
8   //run("Threshold...");
9  � run("Analyze Particles...", "size=800-Infinity pixel circular-

ity=0.00-1.00 show=Masks display exclude clear include stack");
10  run("Invert LUT");
11 � run("Duplicate...", "title=[Mask of C1-NPCsingleNucleus-1.tif]

duplicate range=1-15");
12  selectWindow("Mask of C1-NPCsingleNucleus.tif");
13 � run("Options...", "iterations=2 count=1 black edm=Overwrite

do=Nothing");
14  run("Dilate", "stack");
15  selectWindow("Mask of C1-NPCsingleNucleus-1.tif");
16  run("Erode", "stack");
17 � imageCalculator("Difference create stack", "Mask of C1-

NPCsingleNucleus.tif", "Mask of C1-NPCsingleNucleus-1.tif");
18  selectWindow("Result of Mask of C1-NPCsingleNucleus.tif");

This recorded macro already runs properly as it is, but there is a problem: the code works only
with image data with a specific window title. See the line 1. The command looks like this.

selectWindow("C1-NPCsingleNucleus.tif");
The window title given in the argument of selectWindow is hard-coded, so that if

you need to apply this macro to a image data with a different window title, it will not work.
The macro needs to be improved to allow the general applicability to other images.

For this reason, we need to change the code so that it uses ImageID instead of a fixed
image title. Since the ImageID of the nucleus channel was already acquired after splitting
the original image, we can use that ID to activate a specific image window.

As we are working separately from the channel splitting block, we assume that the nucleus
channel stack is active and is the top window at the starting of current code. We replace the
first line selectWindow with getImageID() command to capture the ID number of
the nucleus image window. Next, we need to add getImageID in line 10 and 13 to capture
IDs of newly created windows. Due to these changes, we need to replace selectWindow
in line 12 and 15 to selectImage to consistently use ImageID for accessing specific win-
dow. After these replacement, the updated code will look like the one shown below.

code/code_block2_recordNucSegV2.ijm
1   orgID = getImageID();
2   run("Gaussian Blur...", "sigma=1.50 stack");
3  
4   //run("Threshold...");
5   setAutoThreshold("Otsu dark");
6   setOption("BlackBackground", true);
7  � run(Convert to Mask", "method=Otsu background=Dark calculate

black");
8   //run("Threshold...");
9   �run("Analyze Particles...", "size=800-Infinity pixel circular-

ity=0.00-1.00 show=Masks display exclude clear include stack");
10  dilateID = getImageID();

	 K. Miura

19 2

11  run("Invert LUT");
12 � run("Duplicate...", "title=[Mask of C1-NPCsingleNucleus-1.tif]

duplicate range=1-15");
13  erodeID = getImageID();
14  //selectWindow("Mask of C1-NPCsingleNucleus.tif");
15  selectImage(duplicateID);
16 � run("Options...", "iterations=2 count=1 black edm=Overwrite

do=Nothing");
17  run("Dilate", "stack");
18  //selectWindow("Mask of C1-NPCsingleNucleus-1.tif");
19  selectImage(erodeID);
20  run("Erode", "stack");
21 � //imageCalculator("Difference create stack", "Mask of C1-

NPCsingleNucleus.tif","Mask of C1-NPCsingleNucleus-1.tif");
22 � imageCalculator("Difference create stack", dilateID, erodeID);

Here is the explanation of what was done.
55 line 1: The first line is replaced with the getImageID() command.
55 line 10: getImageID() command was inserted for a new image created by

Analyze Particle command (in line 9). The new image is the mask that is eliminated
with edge-touching nucleus.

55 line 13: getImageID() command was inserted for the duplicated image.
55 line 15: The selectWindow command in line 14 was commented out and replaced

by the selectImage command.
55 line 19: selectWindow command is replaced by the selectImage command.
55 line 22: Because we now have ImageIDs of both dilated and eroded images, we

replace the titles of image windows with imageIDs for image calculator arguments.
Compare the line 21 (commented out) and the line 22.

We are now almost done with the generalization of the nucleus rim segmentation block,
but there still is a part that can be more general instead of a fixed window name. See line
12. This line uses run command to duplicate the “Mask” stack.

run("Duplicate...", "title=[Mask of C1-NPCsingleNucleus-1.
tif] duplicate range=1-15");

The first argument “Duplicate…” is the name of the menu item [Image >
Duplicate…] and this is OK.

The second argument contains multiple optional values you chose in the GUI. The first is
the title of the duplicated image, that was automatically created by suffixing “-1” to the image
title. Square brackets surrounding this new image title is for avoiding the problem with spaces
in the image title, because spaces are used as the separator for the options in the second argu-
ment. duplicate is a keyword of a checkbox in the duplication dialog, for choosing whether
to duplicate multiple frames in a stack or just a single currently shown frame. The third option
is the frame range (range=), which defines the range of frames to be duplicated. Since we
want to duplicate all frames, the range is set to 1-15, from the first frame to the last 15th frame.

Within this second argument, two values in this command are not flexible enough for
applying the macro to other images with different names. First is the image title. We better
have a more general name for the duplicated image. The second is the frame range. The
duplication of full stack is better be applicable for stacks with any number of frames, not
limited to 15-frames stacks. We can construct the option string of the second argument as
shown below to allow the general applicability of the macro.

Measurements of Intensity Dynamics at the Periphery of the Nucleus

20

2

options = "title = dup.tif duplicate range=1-" + nSlices
nSlices is a macro function that returns the number of frames or slices in the current stack. This
macro function allows the duplication all frames of a stack, regardless of the number of frames
within that stack.

We can now replace the second argument for image duplication by this new variable
options.

run("Duplicate...", options);

?? Exercise 2.2
Create a new script tab and write the code below (please ignore the line numbers
when you write the code). Run the code with various stacks with different slice or
frame numbers and confirm that this short macro successfully duplicate stacks with
any slice or frame numbers.

1  print(nSlices);
2  options = "title=dup.tif duplicate range=1-" + nSlices;
3  print(options);
4  run("Duplicate...", options);

Below is the upgraded code. All the lines previously commented out were removed, and
line 10 was inserted for preparing options for the Duplicate command. In addition, we
added line 19–24 for closing all images that are not needed anymore.

code/code_block2_recordNucSegV3.ijm
1   orgID = getImageID();
2   run("Gaussian Blur...", "sigma=1.50 stack");
3 
4   setAutoThreshold("Otsu dark");
5   setOption("BlackBackground", true);
6  � run("Convert to Mask", "method=Otsu background=Dark calculate

black");
7   �run("Analyze Particles...", "size=800-Infinity pixel circular-

ity=0.00-1.00 show=Masks display exclude clear include stack");
8   dilateID = getImageID();
9   run("Invert LUT");
10  options = "title = dup.tif duplicate range=1-" + nSlices;
11  run("Duplicate...", options);
12  erodeID = getImageID();
13  selectImage(dilateID);
14 � run("Options...", "iterations=2 count=1 black edm=Overwrite

do=Nothing");
15  run("Dilate", "stack");
16  selectImage(erodeID);
17  run("Erode", "stack");
18  imageCalculator("Difference create stack", dilateID, erodeID);
19  selectImage(dilateID);
20  close();
21  selectImage(erodeID);
22  close();
23  selectImage(orgID);
24  close();

	 K. Miura

21 2

We now have a block that segments nucleus rim. Save this code, and we are done with the
second block of the workflow.

2.4.1.3	 �Block 3: Intensity Measurement Using Mask
Using the isolated nucleus rim image, we can specify the region for measuring the fluores-
cence intensity in the Lamin receptor channel. This will be the third block of the workflow.

Before start writing the third block of the workflow, we do a small preparation. We
merge the rim-segmented stack and the Lamin receptor stack to create a multi-channel
stack, which will be used as the input image data of this third block. Open the rim binary
image (if you closed it already, run the second block macro again to regenerate it!) and the
Lamin receptor image.

Two stacks can be merged to a two channel image stack by the following command.
[Image > Color > Merge Channels…] In the dialogue window, assign red

color (C1) to the nucleus channel (nucleus rim binary image), and green color (C2) to the
NPT channel. Make sure that “Create composite” is ticked. Clicking “OK” button, you will
have an image stack that looks like .  Fig. 2.4.

We are now ready to start writing the third block of the workflow. Please follow the
steps below using GUI. When you become sure with the operations, record your opera-
tions using Command Recorder.
	1.	 [Image > Color > Split Channels…]
	2.	 [Analysis > Set Measurements…]

55 You will see a dialog window with many check boxes (.  Fig. 2.5). Among the
parameters to be measured, tick at least Area, Mean gray value and
Integrated density. Integrated density is the sum of all pixel values.

	3.	 Activate the rim image and do [Edit > Selection > Create Selection]
55 This selects the background, not the rim.

	4.	 [Edit > Selection > make Inverse]
55 Inverting the selection, now we are selecting the nucleus rim.

.      . Fig. 2.4  Merged image of
the segmented nucleus rim and
the lamin receptor channel

Measurements of Intensity Dynamics at the Periphery of the Nucleus

22

2

	5.	 Activate the Lamin receptor image (C2) and then [Edit > Selection > Restore
Selection]

	6.	 [Analyze > Measure]

Selection of the rim should look like .  Fig. 2.6.
You will then see results in the Results table such as shown in .  Fig. 2.7.
When you record these procedures by Command Recorder, the code will look like

shown below. Create a new tab in the Script Editor and copy & paste (or it’s possible to do
the same by clicking “create” button in the Recorder).

1  run("Split Channels");
2 � run("Set Measurements...", "area mean centroid perimeter shape

integrated display redirect=None decimal=3");
3  selectWindow("C1-Composite");
4  run("Create Selection");
5  run("Make Inverse");
6  selectWindow("C2-Composite");
7  run("Restore Selection");
8  run("Measure");

.      . Fig. 2.5  Measurement
settings

	 K. Miura

23 2

In the 1st line, we split the multichannel stack to do processing individually. In the 3rd and
the 6th lines, specific window titles are used. Just like we did in the first block, we need to
convert these lines by composing window title of stacks for individual channel by adding
prefixes. We also need to acquire their image IDs. For composing window titles, we just
need to reuse the code we wrote already in the 7  Sect. “Block 1: Splitting Channels”.

code/code_block3_measurements.ijm
1  orgName = getTitle();
2  run("Split Channels");
3  c1name = "C1-" + orgName;
4  c2name = "C2-" + orgName;
5  selectWindow(c1name);
6  c1id = getImageID();
7  selectWindow(c2name);
8  c2id = getImageID();

.      . Fig. 2.6  ROI selection of
nucleus rim

.      . Fig. 2.7  Results output

Measurements of Intensity Dynamics at the Periphery of the Nucleus

24

2

9   � opt = "area mean centroid perimeter shape integrated limit dis-
play redirect=None decimal=3";

10  run("Set Measurements...", opt);
11  selectImage(c1id);
12  run("Create Selection");
13  run("Make Inverse");
14  selectImage(c2id);
15  run("Restore Selection");
16  run("Measure");

55 Line 1: We first need to capture the title of the multi-channel image.
55 Line 2: Then the channels are separated into two stacks.
55 Line 3–4: Since we know the rule of how the resulting image stack names are, we

construct titles each for channel 1 and channel 2.
55 Line 5–8: We then acquire image IDs.
55 Line 9–10: To be more explicit, we compose the measurement options as opt in line 9

and then use that variable opt as an argument for Set Measurements in line 10.
55 Line 11: Activate nucleus rim image using ImageID captured in line 6, instead of

using selectWindow.
55 Line 12–13: Create nucleus rim ROI (a selection).
55 Line 14: Activate Lamin receptor image using ImageID captured in line 8.
55 Line 15: Restore the ROI created in line 13.
55 Line 16: We measure the region specified by the ROI created above.

?? Exercise 2.3
Merge the nucleus rim and the Lamin receptor image stacks as described in the
beginning of this section and test the code

code_block3_measurements.ijm to measure the fluorescence intensity of
the nuclear rim.

2.4.2	 �Integration: The Measurement Over Time

The code above measures only one time point. To measure the intensity changes over time,
we need to add looping from line 11 to 16 in code_block3_measurements.ijm
to repeat the measurement over time frames. For this, we need to modify the code by add-
ing a for-loop.

code/code_block3_MeasurementOverTime.ijm
1  orgName = getTitle();
2  run("Split Channels");
3  c1name = "C1-" + orgName;
4  c2name = "C2-" + orgName;
5  selectWindow(c1name);
6  c1id = getImageID();
7  selectWindow(c2name);
8  c2id = getImageID();

	 K. Miura

25 2

9   � opt = "area mean centroid perimeter shape integrated limit display
redirect=None decimal=3";

10  run("Set Measurements...", opt);
11  for (i =0; i < nSlices; i++){
12  selectImage(c1id);
13  setSlice(i + 1);
14  run("Create Selection");
15  run("Make Inverse");
16  selectImage(c2id);
17  setSlice(i + 1);
18  run("Restore Selection");
19  run("Measure");
20  }

In this updated code, following 4 lines were added for looping through the time lapse
frames and measure successively.

55 A new line was inserted at line 11 to define the condition of for-looping.
55 A new line was inserted at line 13 to activate a specific frame in the nucleus rim

stack.
55 A new line was inserted at line 17 to activate a specific frame in the stack.
55 A curly brace was added at line 20 to close the looping.

?? Exercise 2.4
Merge rim and Lamin receptor image stacks and test the code

code_block3_MeasurementOverTime.ijm to see if it measures the
intensity of nucleus rim over time frames.

If you see 15 lines of measurement values in the Results window, you are successful.

2.4.3	 �Integrating Segmentation and Measurements

Finally, we can assemble three blocks of code: the channel splitting block, the segmenta-
tion block and the intensity measurement block. As the third block, the intensity measure-
ment block, starts with a two-channel stack (nucleus rim segmentation image and the
Lamin receptor signal image), all we need to do is to insert the segmentation block between
line 4 and line 5 of block 3 code code_block3_MeasurementOverTime.ijm.

Instead of copy and pasting the segmentation block to the measurement block, a better
way to do this is to convert the segmentation block to a user-defined function. Like all the
macro commands that you see in the Build-in ImageJ macro function reference, we can
create our own function by ourselves. We briefly learn how to write a custom function
with a simple example.

If we have a code like below:

1  a = 10;
2  b = 20;
3  c = a + b + a * b ;
4  print(c);

Measurements of Intensity Dynamics at the Periphery of the Nucleus

26

2

Evidently, “230” will be printed in the log window. Now, We can convert this formula to a
custom function calc1 that does the calculation in line 3.

1  a = 10;
2  b = 20;
3  c = calc1(a, b);
4  print(c);
5 
6  function calc1(n, m){
7  return n + m + n * m;
8  }

Three lines were added to the original code. Line 6 declares a new user-defined function
named “calc1”. It takes two arguments, n and m. Commands between curly braces is the
content of this function, and in this case there is only one line that returns a value. To be
more explanatory, this function can be rewritten as follows to do the same thing.

1  function calc1(n, m){
2  answer = n + m + n * m;
3  return answer;
4  }

?? Exercise 2.5
	1.	 Modify the code above so that the function calc1 calculates m to the power of n.

Use the build-in command pow(m, n).
	2.	 Change the name of function to calc2 and run the code. If there is error, fix the

code.

In a similar way, we can convert the segmentation block to a single custom function that
takes an ImageID as input, does pre-processing, does segmentation, and then returns an
ImageID of the segmented image as the output. Here is the code:

code/code_block2_recordNucSegV3_function.ijm
1  function nucseg(orgID){
2  //orgID = getImageID();
3  selectImage(orgId);
4  run("Gaussian Blur...", "sigma=1.50 stack");
5 
6  setAutoThreshold("Otsu dark");
7  setOption("BlackBackground", true);
8  � run("Convert to Mask", "method=Otsu background=Dark calculate

black");
9  � run("Analyze Particles...", "size=800-Infinity pixel circular-

ity=0.00-1.00 show=Masks display exclude clear include stack");
10  dilateID = getImageID();
11  run("Invert LUT");
12  options = "title = dup.tif duplicate range=1-" + nSlices;

	 K. Miura

27 2

13  run("Duplicate...", options);
14  erodeID = getImageID();
15  selectImage(dilateID);
16  � run("Options...", "iterations=2 count=1 black edm=Overwrite

do=Nothing");
17  run("Dilate", "stack");
18  selectImage(erodeID);
19  run("Erode", "stack");
20  imageCalculator("Difference create stack", dilateID, erodeID);
21  resultID = getImageID();
22  selectImage(dilateID);
23  close();
24  selectImage(erodeID);
25  close();
26  selectImage(orgID);
27  close();
28  run("Clear Results");
29  return resultID;
30  }

Only several lines were added to the original code_block2_recordNucSegV3.ijm.
55 In line 1, we declare that this is a custom function named nucseg that takes a single

argument orgID. In the original code, orgID, which is the imageID of the histone
channel image, was captured using getImageID command.

55 Line 2 is commented out. This is because We do not need to do getImageID since
the imageID of the histone channel image is provided through the argument of the
function.

55 Line 3 is inserted, to explicitly activate the image with id orgId.
55 One line is inserted at line 21, to capture the imageID of the resulting image stack—

the mask of nuclear rim—of Image Calculation in line 20. This imageID is named as
a variable “resultID” in the function and is returned in the line 29 as the final output
of the function.

55 run("Clear Results"); is added at the bottom (line 28) to clear the results
table, as we want to have only the results of intensity measurement later.

55 In the last line, a curly brace is added to mark the boundary of function.

We can paste this function nucseg(orgID) below the intensity measurement macro,
and call this function to segment the nucleus rim. In below, I show only the part in the
block 3 intensity measurement where function call was added. line 7 to line 8 was inserted
to code_block3_MeasurementOverTime.ijm.

1  orgName = getTitle();
2  run("Split Channels");
3  c1name = "C1-" + orgName;
4  c2name = "C2-" + orgName;
5 
6  selectWindow(c1name);

Measurements of Intensity Dynamics at the Periphery of the Nucleus

28

2

7    nucorgID = getImageID();
8    nucrimID = nucseg(nucorgID);
9   
10  selectWindow(c2name);
11  c2id = getImageID();
12 � opt = "area mean centroid perimeter shape integrated display

redirect=None decimal=3";
13  run("Set Measurements...", opt);
14  for (i =0; i < nSlices; i++){
15  selectImage(nucrimID);
16  setSlice(i + 1);
17  run("Create Selection");
18  run("Make Inverse");
19  selectImage(c2id);
20  setSlice(i + 1);
21  run("Restore Selection");
22  run("Measure");
23  }

In line 6 and 7, the image ID of the nucleus (histone) channel is captured. As we do not
know if the nucleus channel image stack is the top window, we explicitly call it to the top
by selectWindow, and then get its ImageID. This ImageID nucorgID is then passed
to the segmentation function in line 8 (nucseg(nucorgID)).

After the image segmentation is done in the function nucseg, the ImageID of seg-
mentation result is returned. We capture this ImageID by a variable nucrimID. From
there, everything is same like we already coded, except that the image selection at line 15
now uses nucrimID.

Here is the final code.

code/code_final.ijm
1  orgName = getTitle();
2  run("Split Channels");
3  c1name = "C1-" + orgName;
4  c2name = "C2-" + orgName;
5 
6  selectWindow(c1name);
7  nucorgID = getImageID();
8  nucrimID = nucseg(nucorgID);
9 
10  selectWindow(c2name);
11  c2id = getImageID();
12 � opt = "area mean centroid perimeter shape integrated display

redirect=None decimal=3";
13  run("Set Measurements...", opt);
14  for (i =0; i < nSlices; i++){
15  selectImage(nucrimID);
16  setSlice(i + 1);
17  run("Create Selection");
18  run("Make Inverse");
19  selectImage(c2id);

	 K. Miura

29 2

20  setSlice(i + 1);
21  run("Restore Selection");
22  run("Measure");
23  }
24 
25  function nucseg(orgID){
26  selectImage(orgId);
27  run("Gaussian Blur...", "sigma=1.50 stack");
28 
29  setAutoThreshold("Otsu dark");
30  setOption("BlackBackground", true);
31  � run("Convert to Mask", "method=Otsu background=Dark calcu-

late black");
32  � run("Analyze Particles...", "size=800-Infinity pixel circular-

ity=0.00-1.00 show=Masks display exclude clear include
stack");

33  dilateID = getImageID();
34  run("Invert LUT");
35  options = "title = dup.tif duplicate range=1-" + nSlices;
36  run("Duplicate...", options);
37  erodeID = getImageID();
38  selectImage(dilateID);
39  � run("Options...", "iterations=2 count=1 black edm=Overwrite

do=Nothing");
40  run("Dilate", "stack");
41  selectImage(erodeID);
42  run("Erode", "stack");
43  imageCalculator("Difference create stack", dilateID, erodeID);
44  resultID = getImageID();
45  selectImage(dilateID);
46  close();
47  selectImage(erodeID);
48  close();
49  selectImage(orgID);
50  close();
51  run("Clear Results");
52  return resultID;
53  }

2.5	 �Results and Conclusion

The final output is a list of nucleus rim intensity values for each time point in Results
window. These values can be saved in a CSV file and further analyzed using other software
tools more suited for data analysis such as R or Python. Here, to summarize the analysis
in this chapter, we plot the changes in the total fluorescence intensity over time using
ImageJ Macro code_plotResults.ijm (.  Fig. 2.8). The code appears after the para-
graph below.

The plot in .  Fig. 2.8 shows an increase in total fluorescence intensity by 1.3-folds in
the initial five time points, and then it becomes mostly constant. To know the baseline
level intensity more precisely, it might be better to start the imaging and measurement
from an earlier time point. In addition, ideally, more measurements could be done with
other nuclei to compute an averaged curve for a more reliable results.

Measurements of Intensity Dynamics at the Periphery of the Nucleus

30

2

Here is the code for this plotting. Explanations follow.

code/code_plotResults.ijm
1  // store normalized total intensity values in an array
2  intA = newArray(nResults);
3  for (i = 0; i < nResults; i++)
4  intA[i] = getResult("RawIntDen", i) / getResult("IntDen", 0);
5 
6  //prepare x-axis values
7  t = Array.getSequence(intA.length);
8 
9  // get the statistics of the total intensity array.
10  Array.getStatistics(intA, amin, amax, amean, astdDev);
11 
12  // Create the plot
13 � Plot.create("Total Intensity at Nuclear Membrane", "Time", "Inten-

sity");
14  Plot.setLimits(0, intA.length, amin * 0.9, amax * 1.1);
15  Plot.setColor("red", "red");
16  Plot.setLineWidth(3);
17  Plot.add("circle", t, intA);
18  Plot.setFontSize(14);
19  Plot.addLegend("Normalized Total Intensity");

55 Line 2 creates a new array for storing intensity measurements listed in the Results
table. nResults is a build-in function that returns number of rows in the table.
This array will be the Y-axis value in the plot.

55 Line 3–4 gets the result of non-calibrated integrated density (Column “RawIntDen”)
of each row, and divide that value by the integrated density at the time point 0 (the
first frame).

1.4

1.3

1.2

In
te

ns
it

y

1.1

1.0

0.9
0 5

Time

10 15

Normalized Total Intensity

.      . Fig. 2.8  Changes in the total fluorescence intensity over time

	 K. Miura

31 2

55 Line 7 creates a new array for X-axis values, where we will store time points. To
simplify, we use the frame number as time points, starting from 0.

55 Line 10: For fitting the plot in a good range, we first get the minimum and the
maximum values of measured intensity. With function Array.getStatistics,
descriptive statistics values are called back to the provided variables in the argument.
In this case, amin is the minimum value and amax is the maximum value of the
array.

55 Line 13–19: Plotting commands.
55 Line 13 creates the plot with specified title, X-axis label and Y-axis label.
55 Line 14 sets the range of values to be shown in the plot. Here, the minimum and

the maximum value of measurement results are used.
55 Line 15 sets the color of the marker.
55 Line 16 sets the line width of the marker.
55 Line 17 sets the shape of the marker, X-axis values (the array t) and Y-axis values

(the array intA)
55 Line 18 sets the font size of the title and labels
55 Line 19 adds the legend of the plot.

2.6	 �Exercise Answers

2.6.1	 �Exercises 2.1–2.4

vv In these exercises, one only needs to follow the instructions.

2.6.2	 �Exercise 2.5

vv 1.	� Modify the code above so that the function calc1 calculates m to the power of n.
Use the build-in command pow(m, n).

1  a = 10;
2  b = 20;
3  c = calc1(a, b);
4  print(c);
5 
6  function calc1(n, m){
7  return pow(m , n);
8  }

Take Home Message

To measure the changes in the fluorescence intensity over time at the nuclear membrane,
we post-processed segmented image of nucleus by mathematical morphology
processing “Erosion” and “Dilation” to create a mask for the region-of-interest. In the same
way, boundaries of biological structures can be segmented and analyzed.

Measurements of Intensity Dynamics at the Periphery of the Nucleus

32

2

vv 2.	� Change the name of function to calc2 and run the code. If there is error, fix the
code.
Answer: Be sure thatcalc1 in line 3 needs to be replaced by calc2 as well.

1  a = 10;
2  b = 20;
3  c = calc2(a, b);
4  print(c);
5 
6  function calc2(n, m){
7  return pow(m, n);
8  }

Acknowledgements  This workflow was initially developed together with Andreas Boni for
teaching in a practical course at EMBL Heidelberg. We are grateful to his contributions. The
same topic was taught in many courses during last five years and we thank all the feed-backs
we received from those teaching sessions from participants. We thank Andreas Boni, Nathalie
Daigle, and Jan Ellenberg for providing the sample image data. We thank Christian Tischer
(EMBL Heidelberg) for reviewing this chapter.

Bibliography

Boni A, Politi AZ, Strnad P, Xiang W, Hossain MJ, Ellenberg J (2015) Live imaging and modeling of inner
nuclear membrane targeting reveals its molecular requirements in mammalian cells. J Cell Biol
209(5):705–720. ISSN: 0021-9525. https://doi.org/10.1083/jcb.201409133. http://www.jcb.org/
lookup/doi/10.1083/jcb.201409133

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (7  http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not included in
the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

	 K. Miura

https://doi.org/10.1083/jcb.201409133
http://www.jcb.org/lookup/doi/10.1083/jcb.201409133
http://www.jcb.org/lookup/doi/10.1083/jcb.201409133
http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2020
K. Miura, N. Sladoje (eds.), Bioimage Data Analysis Workflows, Learning Materials in Biosciences,
https://doi.org/10.1007/978-3-030-22386-1_3

33

3D Quantitative
Colocalisation Analysis
Bioimage Analysis Series

Fabrice P. Cordelières and Chong Zhang

3.1	 �Introduction – 34
3.1.1	 �What Is Colocalisation? – 34
3.1.2	 �Which Colocalisation Methods Are There? – 34
3.1.3	 �Some Image Preprocessing Tips You Should Keep in Mind – 36

3.2	 �Datasets – 37

3.3	 �Tools – 39

3.4	 �Workflow 1: Objects Overlap Volume
Quantification – 39

3.4.1	 �Step 0: Building a Strategy – 40
3.4.2	 �Step 1: Normalize the Image Names – 41
3.4.3	 �Step 2: Tag the Objects – 43
3.4.4	 �Step 3: Isolating the Overlapping Parts – 47
3.4.5	 �Step 4: Retrieve Volumes – 49
3.4.6	 �Step 5: Generate Outputs – 53
3.4.7	 �Step 6: Make the Macro User Friendly – 57
3.4.8	 �What Then? – 58

3.5	 �Workflow 2: Objects Overlap Intensity
Quantification – 59

3.5.1	 �What Should We Do? – 59
3.5.2	 �New Step 4: Retrieve Intensities – 60
3.5.3	 �Adapted Step 6: Make the Macro User Friendly – 62

�Bibliography – 66

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22386-1_3&domain=pdf

34

3

What You Learn from This Chapter
In this module we will first build a 3D object based colocalisation macro step by step. Then
we will practice to adapt and extend the current macro such that it can also work with
intensity-based colocalisation methods.

3.1  �Introduction

3.1.1  �What Is Colocalisation?

Subcellular structures interact in numerous ways, which depend on spatial proximity or
spatial correlations between the interacting structures. Colocalisation analysis aims at
finding such correlations, providing hints of potential interactions. If the structures only
have simple spatial overlap with one another, it is called co-occurrence; If they not only
overlap but also co-distribute in proportion, it is then correlation.

Two proteins are said to be colocalised when the locations of their associated signals
(fluorescence) are indistinguishable by the imaging system used, i.e. the distance between
signal is below the resolution of the imaging system. For example, in .  Fig. 3.1, the seem-
ingly one pair of colocalised objects in low resolution images are actually several pairs
of smaller objects in close proximity. Therefore, the diagnosis placed for colocalisation
should always be stated relative to a particular resolution and sampling rate. In other
words, conclusions that could be drawn from a colocalisation study are:

55 In cell biology: the two proteins are at the same location;
55 In statistics: considering the current resolution, it might not be excluded that the two

proteins are indeed at the same location.

3.1.2  �Which Colocalisation Methods Are There?

In general, when we have a specific application for colocalisation analysis, a few ques-
tions should be asked first, and depending on the answers to them, one or more methods
should be applied. Here in .  Fig. 3.2 is our recipe for which method(s) are appropriate.
Specifically, colocalisation may be evaluated visually, quantitatively, and statistically:

55 It may be identified by superimposing two images and inspecting the appearance
of the combined color. For example, colocalisation of red and green structures can
appear yellow. However, this intuitive method can work only when the intensity levels
of the two images are similar (see a detailed example in Dunn et al. (2011)). Scatter

.      . Fig. 3.1  (left to right) The same objects imaged with varying resolutions, expressed as a fraction of
the highest resolution: 1/16, 1/8, 1/2, 1, and a zoom-in view (white frame). The white pixel in the bottom
right corner depicts the sampling rate (pixel size) adapted to each resolution. The seemingly one pair of
colocalised objects are actually several pairs, as shown in images with higher resolution

	 F. P. Cordelières and C. Zhang

35 3

YES

YE
S/

N
O

N
O

INTENSITIES OBJECTS

YES

NO

NO

O
ve

rla
y

&
 S

im
p

le
vi

su
al

 in
sp

ec
tio

n

O
p

tim
is

at
io

n
re

qu
ire

d

C
os

te
s’

ra
nd

om
is

at
io

n

Va
n

St
ee

ns
el

’s
CC

F

k 1
&

 k
2

co
ef

fic
ie

nt
s

Pe
ar

so
n’

s
co

ef
fic

ie
nt

Li
’s

m
et

ho
d

Cy
to

flu
or

og
ra

m

M
an

de
rs

’
co

ef
fic

ie
nt

s

C
en

tr
e/

pa
rt

ic
le

co
in

ci
de

nc
e

A
re

a/
Vo

lu
m

e
ov

er
la

p

C
en

tr
e

to
 c

en
tr

e
di

st
an

ce
s

C
os

te
s’

au
to

m
at

ic
th

re
sh

ol
d

O
ve

rla
p

 c
oe

ff
ic

ie
nt

Se
ve

ra
l

si
tu

at
io

ns
 to

co
m

p
ar

e
?

Li
m

ite
d

no
is

e
?

In
te

ns
ite

s
or

O
b

je
ct

s
?

O
b

je
ct

s’
si

ze
s

cl
os

e
to

 re
so

lu
tio

n
?

Vi
su

al
is

at
io

n
Ch

ec
k

fo
r c

o-
lo

ca
lis

at
io

n
M

ea
su

re
 c

o-
lo

ca
lis

at
io

n

N
O

, b
ut

 s
tr

uc
tu

re
s

ar
e

ra
th

er
 ro

un
d

an
d

sm
al

l

G
et

 a
P-

va
lu

e

C
o-

lo
c°

 v
s

ex
cl

us
io

n

Q
ua

nt
ify

co
-lo

ca
lis

at
io

n

Check presence of
co-localisation

Tr
ou

b
le

sh
oo

tin
g

O
p

tio
n

.      
.

Fi
g.

 3
.2

 
O

ur
 g

ui
de

lin
e

de
ci

si
on

 tr
ee

3D Quantitative Colocalisation Analysis

36

3

plot of pixel intensities from the two images also qualitatively indicates colocalisation,
e.g. the points form a straight line if the two structures correlate. But visual evaluation
does not tell the degree of colocalisation, nor if it is true colocalisation at all.

55 In general, two categories of quantitative approaches to colocalisation analysis can be
found: intensity based correlation methods and object based methods. Intensity based
methods compute global measures about colocalisation, using the correlation informa-
tion of intensities of two channels. Several review papers have been published during
the last decade, where coefficients’ meaning, interpretation, guide of use, and examples
for colocalisation are given (Bolte and Cordelières 2006; Cordelières and Bolte 2014;
Dunn et al. 2011; Zinchuk and Zinchuk 2008). Tools for quantifying these measures
can be found in many image analysis open-source and commercial software pack-
ages, to name just a few: Fiji’s JACoP plugin and Coloc 2, CellProfiler, BioImageXD,
Huygens, Imaris, Metamorph, Volocity. Most object-based colocalisation methods first
segment and identify objects, and then account for objects’ inter-distances to analyze
possible colocalisation. Usually, two objects are considered colocalised, if the centroids
of the objects are within certain distance (Bolte and Cordelières 2006; Cordelières and
Bolte 2014; Obara et al. 2013), or if two objects with certain percentage of area/volume
overlap (Rizk et al. 2014; Wörz et al. 2010). We will implement some specific methods
for both categories in two case studies described in 7  Sects. 3.4 and 3.5.

55 Colocalisation studies generally should perform some statistical analysis, in order
to interpret whether the found co-occurrence or correlation is just a random coin-
cidence or a true colocalisation. A common method is Monte-Carlo simulations
Fletcher et al. (2010) but it is computationally expensive. Recently a new analytical
statistics method based on Ripley’s K function is proposed and included as an Icy
plugin, Colocalisation Studio (Lagache et al. 2013).

3.1.3  �Some Image Preprocessing Tips You Should Keep in Mind

Talking about colocalisation, we often also think about deconvolution. Careful image res-
toration by deconvolution removes noise and increases contrast in images, improving the
quality of colocalisation analysis results. Noisy images may generate unwanted “matching
pixels”: it should therefore be handled with great care. High contrast is always a plus, espe-
cially when trying to delineate structures for individual object’s colocalisation determina-
tion. In Fiji, you can find several plugins for these tasks to try on your images, such as:

55 Parallel Iterative Deconvolution (fiji.sc/Parallel_Iterative_Deconvolution), where the
point spread function (PSF) can be estimated using the Diffraction PSF 3D plugin
(fiji.sc/Diffraction_PSF_3D). An example can be found in .  Fig. 3.3.

55 DeconvolutionLab and DeconvolutionLab2 (Sage et al. 2017).
55 To further remove background noise, you can try [Process -> Subtract
Background] (for our images, the rolling ball radius can be set to 10 pixels)

However, deconvolution is not the focus of this module. Therefore, we would assume
that the images to be processed during this module are either already deconvolved or
are acquired with high image quality without the need of deconvolution. Other issues
that may need to be dealt with during the preprocessing include: illumination correction,
noise removal, background or artifacts disturbance. Since we have already been practicing
techniques to handle these situations, here we would as well rather not to discuss them.

	 F. P. Cordelières and C. Zhang

http://fiji.sc/Parallel_Iterative_Deconvolution
http://fiji.sc/Diffraction_PSF_3D

37 3

It is worth noting briefly here that before this step, several points should be taken care
of during the image acquisition and collection part.

55 To have the imaging hardware set up appropriately. That is, to adjust the exposure
time, detector gain and offset so as to be able to detect the dimmest structures with-
out saturating the brightest structures.

55 To check for chromatic aberrations one uses small beads that are fluorescent in many
colors and thus should 100% co-localize with themselves. If they appear shifted you
have to realign your microscope or account for the shift during the analysis.

55 To appropriately control bleed-through.

3.2  �Datasets

Let’s first have a look at the data. The images display a large number of dash-like struc-
tures. The life scientist informs us they result from the labeling of two proteins which
both locate at the most dynamic end of microtubules: they belong to the + TiPs family
(plus-end tracking proteins). When overlaying both images (EB1 on channel 1 and CLIP-
170 on channel 2, available in this module’s folder: Images/+ TIPs.zip and as a smaller
version Images/+ TIPs_mini.zip), it seems that the overlap is only partial, which justifies
the scientist’s first impression. Now we have to “put numbers” and try to evaluate this
partial colocalisation to either demonstrate it or prove it to be a simple visual artifact
(.  Fig. 3.4).

.      . Fig. 3.3  Example images before (left) and after (middle/right) two deconvolution algorithms
(Richardson & Lucy, 200 iterations, middle; Meinel, 10 iterations, right). Lower row presents a magnifica-
tion of upper figures, centered on the upper mitotic spindle pole

3D Quantitative Colocalisation Analysis

38

3

Of course, most of us would rule out this latter hypothesis (.  Fig. 3.5). So let’s take an
example from Fiji’s website: do you think some of the red and green pixels colocalise on
this image?

You may try zooming at the image and realize that yellow pixels are in fact resulting
from the close proximity between green and red pixels: our brain simply blends one tone
into the other. In case you do not believe this is an optical trick, try opening it under
ImageJ then moving the cursor over the “yellowish” pixels: the status bar will display the
values of the green and red components of the image. As a result, you’ll figure out that red
pixels are not green and the reverse way round.

Word of advise: in colocalisation studies, as you can’t trust your eyes and the brain that
lays (or lies) behind, better be ready to build a proper quantification strategy!

In addition to the requirement of a proper quantification strategy, this example
also points out the need for a well characterized dataset. When building a workflow,

.      . Fig. 3.5  Don’t trust your eyes
and brain on colocalisation!

.      . Fig. 3.4  Dataset on which colocalisation will be evaluated (Left: EB1, Middle: CLIP-170, Right:
Overlay, Right-most: magnified sub-images)

	 F. P. Cordelières and C. Zhang

https://imagej.net/Colocalisation_Analysis

39 3

the image analyst might benefit from use of a synthetic dataset. This somewhat barbar-
ian terms designate a computer-generated dataset where all parameters are human
controlled. In microscopy, the images result from single captions of a scene, which
are impaired by the optics and corrupted by noise. To simplify the prototyping pro-
cess, we could generate two images, one per channel, containing simple shapes (circles,
rectangles etc…) which sizes, and degree of overlap are controlled. Such a dataset,
extended to the 3D case is provided. .  Figure 3.6 shows two 3D views of the syn-
thetic dataset with two channels, where channel 1 (red) has six objects and channel
2 (blue) seven. Each object in channel 1 has different level of spatial overlap with one
of the objects in channel 2. The synthetic dataset can be found in this module’s folder
(Images/Synthetic.zip).

3.3  �Tools

55 Fiji
55 Download URL: 7  https://imagej.net/Fiji/Downloads

3.4  �Workflow 1: Objects Overlap Volume Quantification

Let’s imagine a typical conversation between an image analyst and a life scientist who has
a colocalisation analysis request for the dataset to be reviewed under 7  Sect. 3.2:

»» I’ve got a set of two-channel 3D images where objects are overlapping. I think the
overlap might not be the same from object to object.

Therefore, I would like to quantify the overlap and get a map of quantification.

A user comes to the Facility, asking for help

.      . Fig. 3.6  Synthetic 3D dataset from two views

3D Quantitative Colocalisation Analysis

https://imagej.net/Fiji/Downloads

40

3

3.4.1  �Step 0: Building a Strategy

So how would we tackle the problem?
The key words here are: objects, overlapping, map of quantification. So the first task

is to identify objects of interest in the image, i.e. segmentation. Then, overlapping regions
between objects in the two channels should be extracted. In order to obtain a map of
quantification on overlap, one of the quantification metrics could be calculating the vol-
ume of objects and overlapping regions. .  Figure 3.7 and .  Table 3.1 summarizes the steps
that need to be implemented in the macro.

A-Original image B-Individual
channels

C-Masks

Make the difference
between objects vs
background pixels

Display only pixels that
are part of the objects

on both masks

All pixels belonging to
the same object carry
the same intensity (i.e.

tag) Æ per object
measurements

1-measure volumes on E;
2-measure volumes on
combined D & E;
3-report the ratio 2/1 for
each object on image.

D-Common pixels E-Tagged maps Output

.      . Fig. 3.7  A schematic drawing of the full workflow: the first task is to identify objects of interest in the
image, i.e. segmentation. Then, overlapping regions between objects in the two channels should be
extracted. In order to obtain a map of quantification on overlap, one of the quantification metrics could
be calculating the volume of objects and overlapping regions

.      . Table 3.1  What needs to be done?

Step What needs to be done? What for?

1 Normalize the data name Split & rename channels

2 Tag the objects Segment & label 3D objects

3 Isolate the overlapping parts Segment overlapping regions

4 Retrieve volumes Calculate & store object volumes

5 Generate outputs Display & visualize volume ratio

6 Make the macro user friendly Create user interface

	 F. P. Cordelières and C. Zhang

41 3

Since most of the operations will be applied the same way on both channels, or on
different objects/regions, the most efficient scripting strategy would be to define func-
tions that consist of several macro commands such that a specific operation is per-
formed. And these functions could be simply called by the function name plus arguments
as many times as needed in the macro, instead of repeating the macro command lines.
This way improves the readability of the macro thus the re-usability as well.

3.4.2  �Step 1: Normalize the Image Names

Aim:
55 The channels should be split so that images are processed independently.
55 The first channel should be named as “Channel1”, the second “Channel2”.
55 Generate a user-defined function to perform the task: ‘‘normaliseNames’’

with proper arguments, if needed.

When automating an image processing workflow, a major challenge is to make the macro
re-usable and independent about the input images’ naming convention. We will be facing
an additional complication as the image we are working on is a composite, made of several
channels. Processing will be applied to each single channel independently, once they will
have been splitted. A proper strategy should be designed to keep track of the original
image’s title (ie, its name) and the subsequent channels’ image obtained after separating
them. The following section will handle this step in a simple way by renaming the original
and the subsequent images with pre-defined names. This step could be seen as “normal-
izing the images’ names” for better handling.

We will use the function [Plugins > Macros > Record] to track the sequential
operations that have been applied; clean up and convert the recorded macro commands to
our own defined function in the macro file. Some of the functions, for example to retrieve
an image’s title, are not recordable. In such case, making a simple word-based search on
ImageJ’s Built-in Macro Functions page might help. getTitle() function returns the
title of the active image as a String that can be stored into a variable. Let’s call it ‘‘ori’’
as it is used to store the name of the “original” image.

The original image is a composite. For the kind of processing we are planning to do,
each channel should be handled separately. Channels are splitted by using the function
[Image > Color > Split channels] that is macro recordable. ImageJ/Fiji
applies specific naming rules to each image when splitting the channels: the resulting titles
are built by concatenating the letter “C” (for channel), the number of the channel (starting
at 1), a dash, and finally the original image’s title. We therefore have a way to precisely acti-
vate the first or the second channel. However, to make the process a bit easier, we rename
each channel in the form of “ChannelXX”.

Finally, once all operations have been recorded, and the code cleaned up, the cor-
responding lines can be encapsulated into a function. To generate a function, you simply
need to append the keyword “function” with a proper name, a pair of empty paren-
theses (or contain required parameters) and a pair of curly brackets: the few lines of code
we’ve just written should be copied/pasted in between.

3D Quantitative Colocalisation Analysis

https://imagej.nih.gov/ij/developer/macro/functions.html

42

3

To summarize, here is your working plan to implement the code:

Working Plan:
	1.	 Split the image into its channels
	2.	 Select the first channel
	3.	 Rename the image “Channel1”
	4.	 Select the second channel
	5.	 Rename the image “Channel2”
	6.	 Pack everything into a function, thinking about the proper arguments, if any, that

should be entered for the process to be run

The correct code of the function is:

1   //Split the channels and rename them in a normalised way
2   function normaliseNames(){
3 ori= getTitle ();
4 run ("Split Channels");
5 selectWindow ("C1-"+ori);
6 rename ("Channel1");
7 selectWindow ("C2-"+ori);
8 rename ("Channel2");
9 }

Now, in order to run the macro properly with this function, we still need a line in the main
code body of the macro to call it. For this particular step, it is straightforward to call the
function, as follows:

kThe main macro till Step 1

1  //--------------------------------------
2  // Main macro part
3 
4  //Step 1
5  normaliseNames();
6 
7  //--------------------------------------
8  }

Something that is as important as writing the macro itself is to comment in detail each
step you do. This way, it not only helps to remind what the macro does, but also helps
to reuse and adapt existing macros. The latter is much better practice than always writ-
ing things from scratch whenever you need to do some analysis. You will see later why
it is so.

	 F. P. Cordelières and C. Zhang

43 3

3.4.3  �Step 2: Tag the Objects

Aim:
55 For each channel, have a tagged map: all pixels from an object should carry a

same tag/intensity.
55 The tagging should be made in 3D.
55 Generate a user-defined function to perform the task: ‘‘isolateObjects’’

with proper arguments, if needed.

Hints:
55 We need to differentiate background pixels from objects’ pixels: thresholding is

one way to achieve this.
55 ImageJ built-in functions are not the only ones being recordable.

Well, the aim being explicit, one can already see this part of the workflow is not specific
to a single channels: both channels will go through this process. This is therefore a good
candidate for building a function, that will be called twice to process each of them, and
name as “isolateObjects”. The remaining question is how the process would differ
from one image to another?

First, we have to define what an object is. Based on the image, we could define an
object as a group of contiguous pixels, for which each pixel has an intensity above a certain
threshold value.

The latter step is easy to achieve, as long as the background (i.e. the non-object voxels)
is distributed within a well defined range of intensities. The function to be used lies in
the [Image > Adjust > Threshold…] menu. This function is macro recordable:
the recorder should contain the run(‘‘Threshold..’’) instruction. Note, how-
ever, that this function is commented. Un-commenting and running it won’t do much:
this function is only aimed at displaying the dialog box, not to perform any processing.
However, it is useful, for instance, to pop-up the window before asking a user to set the
threshold values. Once more, we will have to refer to ImageJ’s Built-in Macro Functions page
and look at threshold-related instructions. For any kind of process, two types of functions
might be found: setters, to apply parameters and getters to retrieve them. In the specific
case of thresholding, the two types exist, in the form of setThreshold(lower,
upper) and getThreshold(lower, upper). This information will show its use
later on in this module.

The first step, grouping adjacent voxels into objects might seem to be a bit tricky. This
is however the kind of processing that goes behind the scenes when using the [Process
>Analyze Particles…] function. But how does this work ? First, a destination
image is created: we name it as“tagged map” (see .  Fig. 3.8). Each thresholded pixel from
the original image is screened in turn, from the top-left corner to the bottom-right corner,
line by line. The first thresholded pixel is attributed a tag, i.e. the corresponding pixel

3D Quantitative Colocalisation Analysis

https://imagej.nih.gov/ij/developer/macro/functions.html

44

3

on the “tagged map” will be given a value of “1”. Next pixel (to the right) is examined: if
thresholded, a tag will be given. As its direct, left neighbor, as already been given a tag of
“1”, it receives the same tag: both are part of the same object. This process goes on for the
entire image. In case a new thresholded pixel is found, that doesn’t have a tagged neighbor,
a new tag is created: this pixel is a seed for a new object. Please note that several rules
might be applied to define pixels’ vicinity: a pixel can be connected only through its sides
(4-connected in 2D) or one might also consider its diagonal corners as contact points
(8-connected in 2D). Depending on which rule is used, the number of objects might not
be the same.

Although being convenient as an ImageJ built-in tool, the “Analyze Particles” function
only works in 2D: an object spanning over several slices might end-up being counted
several times. In 3D, another tool should be used: 3D-Object counter (aka 3D-OC), which
works with the 26-connected voxels rule. As it is fully macro-recordable, its usage from
within a macro is straightforward. If using Fiji, the plugin is already installed, if not, you’ll
have to download it from this link. Note that when using it from a macro: the Fiji team
has changed the name of its menu entries as compared to the original author’s version: a
macro recorded under Fiji might need few changes to run under ImageJ and vice-versa.

We are now familiar with all the required components for isolating objects. Let’s do
manually all the steps of the workflow, keeping an eye on the macro-recorder. We first need
to select the proper window, then launch the threshold adapter and feed the lower thresh-
old to the 3D-OC plugin, and finally ask it to display the objects map (i.e. tagged map).1

The implementation is straightforward: as user input is required, the threshold box
is first activated. To preset a threshold, assuming fluorescence images, one could press
the Auto button: the following instruction will be recorded: (setAutoThreshold
("Default dark");). Now, we must find a way to display a message box inviting the user to

1	 In case you see numbers overlaid onto the tagged map, go to the “Set 3D Measurements”
menu and uncheck the “Show numbers” option.

4-connected 8-connected

.      . Fig. 3.8  A schematic drawing of converting the segmented object mask into a “tagged map” of these
objects, i.e. all pixels that are connected are labeled as the same color or pixel intensity; and those not
connected are distinguished by a different color or pixel intensity. There are different configurations of
“connected”, e.g. 4 or 8 connected in 2D

	 F. P. Cordelières and C. Zhang

http://imagejdocu.tudor.lu/doku.php?id=plugin:analysis:3d_object_counter:start
http://imagejdocu.tudor.lu/doku.php?id=plugin:analysis:3d_object_counter:start

45 3

finely tune the threshold. In the meantime, the macro’s execution should be idled until proper
values are set. Such an instruction exists, once more, please refer to ImageJ’s Built-in Macro
Functions page to find the proper one. This is the purpose of the waitForUser("text")
function. Now the values have been set, we should capture them into variables: this way, user-
entered values could be recalled for subsequent steps of the workflow. In the final step of this
instructions block, the threshold values are retrieved using the getThreshold(lower,
upper) function. Note that this function expects two variables to be provided as arguments.
The two variables will be filled with the content of the adjustment box, the former with lower
bound value, the latter with the upper bound value.

Often the segmentation contains objects that are not interesting for us such as noise or
other structures. Since object-based methods concern individual objects, then we should
apply some filtering criteria in order to discard them for further analysis. Such criteria
could be, for example:
	1.	 (3D/2D/1D) size range of the object-of-interest (in each channel)
	2.	 object shape, e.g. circularity,2 compactness3

	3.	 object location

It should be mentioned that this step greatly influences the colocalisation measurements.
We will discuss only size related filtering here. 3D Objects Counter is able to do this.
Then let’s select one channel, e.g. Channel 1, to record all the needed operations to con-
vert into the second function, isolateObjects. When running [Analyze > 3D
Object Counter], in the pop-up window there are three parameters of our interest:
Min and Max in the Size filter field, and the threshold. We could pass along the
variable that stores the user specified threshold value in Step 1, i.e. lower. Let’s suppose
that the object of interest should have a size of minimum 5 voxels and maximum 100,000
voxels. This filtering step removes the smallest object from the image. Although they may
seem to overlap with objects in the other channel, they are likely to be e.g. noise and
their spatial co-occurrence could be coming from randomly distributed particles/noises
that are close to each other by chance. Before applying the 3D Objects Counter,
we should check the measurements setting in the [Analyze -> 3D OC Options]
options window. This is similar to [Analyze -> Set Measurements] for the
Analyze Particles function.

After the 3D Objects Counter, we will also obtain a “tagged map” of objects in
the image (.  Fig. 3.8). This “tagged map” is an image with different objects labeled with
different intensity values (1 for the first object, 2 for the second, etc…). When thinking
about it, you will find that this nice image contains a lot of information! How could we
take advantage of it so as to isolate a particular object? How could we extract the number
of voxels per object? Take time to think about it, before reading further. Isolating an object
from a tagged map is quite simple as all its voxels have the same intensity: simply thresh-
old the image, using its tag value as the lower and upper thresholds. As for each object’s
number of voxels, a histogram operation [Analyze -> Histogram] should do the
trick! Let’s keep this in mind for the next step.

2	 Circularity measures how round, or circular-shape like, the object is. In Fiji, the range of this
parameter is between 0 and 1. The more roundish the object, the closer to 1 the circularity.

3	 Compactness is a property that measures how bounded all points in the object are, e.g. within some
fixed distance of each other, surface-area to volume ratio. In Fiji, we can find such measurements
options from the downloadable plugin in [Plugins >3D >3D Manager Options].

3D Quantitative Colocalisation Analysis

https://imagej.nih.gov/ij/developer/macro/functions.html
https://imagej.nih.gov/ij/developer/macro/functions.html

46

3

Now that you have all the elements needed, here is your working plan to implement
the function:

Working Plan:
	1.	 Select the proper image
	2.	 Display the threshold box
	3.	 Pause the execution of the macro by displaying a dialog box asking the user to

tune the threshold
	4.	 Retrieve the threshold values
	5.	 Make sure the proper options for 3D measurements are set
	6.	 Run 3D-OC, using the input threshold and some size limits
	7.	 Pack everything into a function, thinking about the proper arguments, if any, that

should be entered for the process to be run

The correct code of the function is:

1  //Isolate the objects and get the characteristics on each image
2  function isolateObjects(minSize, image){
3 selectWindow (image);
4 run ("Threshold...");
5 waitForUser ("Adjust the threshold then press Ok");
6 getThreshold (lower, upper);
7 �run ("Set 3D Measurements", "dots_size=5 font_size=10 redirect_

to=none");
8 �run ("3D object counter...", "threshold="+lower+ "slice=5 min.=

"+minSize+ " max.=100000 objects");
9 }

Again, in order to run the macro properly with this function, we need to call it in the main
code body of the macro. For this step, since we need to tag objects in both channels, thus
the function will be called twice. The advantage of creating user-defined function is nicely
visible here: we won’t have to re-type all the code from channel 1 to use it on channel 2.
Functions should be called after Step 1 (3.4.2) is done, as shown in Code 3.2.

kThe main macro till Step 2

1  //--------------------------------------
2  // Main macro part
3 
4  //Step 1
5   normaliseNames();
6 
7  //Step 2
8   isolateObjects(10, "Channel1");
9   isolateObjects(10, "Channel2");
10 
11  //--------------------------------------
12  }

	 F. P. Cordelières and C. Zhang

47 3

3.4.4  �Step 3: Isolating the Overlapping Parts

Aim:
55 Isolate object parts that are overlapping.
55 Generate user-defined functions to perform the task: getCommonParts and
maskFromObjects with proper arguments, if needed.

Hints:
55 We have already defined objects in the previous step.
55 On the tagged maps, background is tagged as 0.
55 On the tagged maps, the first object is tagged with an intensity of 1, the second

of 2, and so on.
55 Logical operations could be applied to binary masks.

Since the 3D Object Counter gives a tagged map, a simple thresholding could con-
vert it to a binary image with background being 0, since object tags start at 1. As we will
still need the tagged maps later on in the process, we will first duplicate them, and work
on copies ([Image > Duplicate]).In ImageJ, the binary image after thresholding has
value 0 (non-object pixels) and 255 (object pixels). Sometimes, a binary image of value 0
and 1 makes further analysis easier. Let’s see an example: you want to measure a “positive”
volume within a certain region of interest. Instead of thresholding and measuring the
area within this ROI, in case the image has intensities being either 0 or 1, you can simply
measure the sum of intensities within the ROI to obtain its area! To perform this, we could
divide every pixel by this image’s non-zero value, i.e. 255, using [Process > Math >
Divide]. These would be the steps needed in the function maskFromObjects.

Once these steps have been applied to both tagged map, we end up with two new
masks displaying pixel objects from channel1 and channel2. How to isolate the overlap-
ping parts of objects between both channels ? One should generate a new image, where
pixels are turned “ON” when both the corresponding pixels on the two channels are also
“ON”: this is a job for logical operators that we will now review.

In .  Fig. 3.9, there are two binary images A and B. We could see that in both channels,
the overlapping regions have values higher than zero in both channels; while the rest of
the two images have either one or both channels with zero background. Therefore if we
multiply the two images, only the overlapping regions will show values higher than zero.
Alternatively, we could also apply logic operations, which can be calculated faster than
multiplication for computers. From the three logic operations: AND, OR and XOR, which
is the one that we need? It is AND. So we can run [Process > Image Calculator],
set the object maps of from the two channels as Mask_Channel1 and Mask_Chan-
nel2, and set AND as Operation. We then rename the image with overlapping regions
as “Common_volumes”. These steps would go to the function getCommonParts.
Think about where we should call maskFromObjects?

3D Quantitative Colocalisation Analysis

48

3

Working Plan:
55 Part 1: Convert an object map into a mask scaled between 0 and 1

	1.	 Select the tagged map
	2.	 Duplicate it, giving it a name in the form “Mask_”+original name (be careful: we

want the full stack, not just the current slice)
	3.	 Set the threshold between 1 and the maximum (65535)
	4.	 Convert the thresholded image to a mask
	5.	 Normalize the intensities between 0 and 1 (divide by 255)
	6.	 Pack everything into a function, thinking about the proper arguments, if any,

that should be entered for the process to be run
55 Part 2: Isolate common parts from both images

	1.	 Generate the normalized mask for channel 1 (i.e. 0–1 scaled)
	2.	 Generate the normalized mask for channel 2 (i.e. 0–1 scaled)
	3.	 Use logical operators between both mask to retrieve the overlapping voxels
	4.	 Pack everything into a function, thinking about the proper arguments, if any,

that should be entered for the process to be run

The correct code of the two functions are:

1  //Generate an image of the overlapped parts from channel 1 and 2
2  function getCommonParts(){
3 //Generate the mask for channel 1
4 maskFromObjects("Channel1");

1

A B AND OR XOR

1 1 1 0

1 0 0 1 1

0 1 0 1 1

0 0 0 0 0

Mask BMask A

A OR B A XOR BA AND B

.      . Fig. 3.9  Illustrations of applying logic operations on two binary images A and B

	 F. P. Cordelières and C. Zhang

49 3

5 //Generate the mask for channel 2
6 maskFromObjects("Channel2");
7
8 //Combine the two masks
9 imageCalculator ("AND create stack", "Mask_Channel1", "Mask_Channel2");
10 rename ("Common_volumes");
11 }

1  //Generate a mask from objects map
2  function maskFromObjects(image){
3 selectWindow ("Tagged_map_"+image);
4 run ("Duplicate...", "title=Mask_"+image+ " duplicate");
5 setThreshold (1, 65535);
6 run ("Convert to Mask", "method=Default background=Dark");
7 run ("Divide...", "value=255 stack");
8 resetMinAndMax ();
9 }

And, the main code body of the macro is:

kThe main macro till Step 3

1  //--------------------------------------
2  // Main macro part
3 
4  //Step 1
5  normaliseNames();
6 
7  //Step 2
8  isolateObjects(10, "Channel1");
9  isolateObjects(10, "Channel2");
10 
11  //Step 3
12  getCommonParts();
13  //--------------------------------------
14  }

3.4.5  �Step 4: Retrieve Volumes

Aim:
55 Measure the volumes, object by object on: Mask_Channel1, Mask_Channel2

and Common_volumes.
55 Store the volumes into arrays.
55 Generate a user-defined function to perform the task: getValues with proper

arguments, if needed.

3D Quantitative Colocalisation Analysis

50

3

Hints:
55 On the tagged map, the first object is tagged with an intensity of 1, the second

of 2…: the maximum intensity therefore corresponds to the number of objects in
the tagged map.

55 Thresholding with 1-1 and then Analyze Particles allow sending the
outlines of object 1 in the ROI Manager.

55 A non-recordable macro function exists to retrieve basic image statistics: maxi-
mum intensity, the number of pixels or the area of a ROI.

In order to find and quantify colocalised objects, we have found the overlapping (or
shared) parts of the two filtered channels. We now need to identify the corresponding
objects in each channel that contain these overlapping regions. To achieve this, what do
we need to do? There are multiple ways, all of which involve:
	1.	 In each channel, calculate the volume (in voxels) of each object;
	2.	 Retrieve the volume of each overlapping region;
	3.	 Find the labels of objects in each channel that overlap with some object in the other

channel.

We will have to store multiple values related to each individual object for each channel.
That won’t be feasible using regular variables. Therefore we have to switch to a different
structure that allows to store several values—an array. Here are some tips about how they
work and how they should be used.

Technical Points: Using arrays to store multiple values
55 An array is like a box, with a tag and multiple compartments
55 An array should be initialized using the newArray keyword: either with no

content but a size, e.g. myArray=newArray(3); or with a content, e.g.
myArray=newArray(1,50,3);

55 To attribute a content to an array, the “=” sign should be used between the com-
partment address between “[]” and the content, e.g. myArray[1]=25;

55 The size of an array can be retrieved by concatenating .length to the name of
the array, e.g. myVariable=myArray.length;

Now we know what is it to store data, we should think about how to retrieve them. What
we want to do is to define for each object and for each channel the total volume of the
object, and the volume of the object that is involved in the colocalisation process. How
should we proceed? Let’s think about a strategy, keeping in mind the following four
important points:
	1.	 On the tagged map image, each object is identified by its intensity (i.e. the tag): a

simple thresholding from tag to tag as upper and lower threshold values allows
isolating it.

	2.	 Analyze particles allows exporting all object’s outline to the ROI Manager.
NB: as this function processes stacks slice-per-slice, ROIs are generated per z-plane?
Depending on its spread along the z-axis, a 3D object might therefore be described
by multiple 2D ROIs.

	 F. P. Cordelières and C. Zhang

51 3

	3.	 On the mask, each object pixel has an intensity of 1.
	4.	 Measuring the integrated intensity within a ROI on the mask is the same as measur-

ing the “positive” area.

Why do we decide to design such a procedure ? Let’s think about what we need to retrieve.
We will have to get and store the volume of all objects for channel 1 and channel 2, and the
volumes involved in colocalisation for objects of both channels. All four relies on a com-
mon principle: defining the objects on a tagged map, and estimating the volume from a
mask where positive pixels are labeled with a value of 1. Therefore, all four measurements
can be retrieved by applying the same procedure to four different combinations of images:
as the procedure is generic, building a single function is appropriate. We will call it four
times, with different arguments.

Here are some technical points which should be useful for the implementation of the
workflow.

Technical Points: ROI Manager-related functions
Common structure: roiManager("function", "argument1", "argument2");

55 Some functions are recordable:
ȤȤ Add: push the active ROI to the ROI Manager
ȤȤ Select: select the i-th ROI (numbered from 0)
ȤȤ Rename: select the i-th ROI (numbered from 0)

55 Some are not:
ȤȤ Reset: empty the ROI Manager
ȤȤ Count: returns the number of ROI within the ROI Manager
ȤȤ Set color: self-explanatory

To help you in this task, here is the working plan you should have come up with. Afterwards,
it is always good to start writing the planned steps as comments in the macro file, and then
fill with corresponding real code that you recorded and modified.

Working Plan:
	1.	 Select the tagged map
	2.	 Retrieve the total number of objects. Think: what is the tag of the last detected

object? How to retrieve statistics from a stack ?
	3.	 Create an array to store the volume of objects. Think: what should be the size of

this array ?
	4.	 Loop the following for each object:

	(a)	 Select the tagged map
	(b)	 Set the threshold to highlight only one object
	(c)	 Empty the ROI Manager
	(d)	 Run the Analyze Particles function
	(e)	 Initialize a temporary variable to store current object’s volume
	(f)	 Loop for every found ROI:

3D Quantitative Colocalisation Analysis

52

3

	i.	 Activate the image where the quantification will be done
	ii.	 Activate the proper ROI
	iii.	 Retrieve the region’s statistics
	iv.	 Modify the temporary variable accordingly

	(g)	 Push the temporary variable’s content to the corresponding array compart-
ment

	5.	 Pack everything into a function, thinking about the proper arguments, if any, that
should be entered for the process to be run, and the output that should be made
by the “return” statement

Here is the correct code for the function getValues:

1  //Retrieve volumes object per object
2  function getValues(objectsMap, imageToQuantify){
3 //Activate objects’ map
4 selectWindow (objectsMap);
5
6 //Get and store the number of objects
7 getStatistics (area, mean, min, nObjects, std, histogram);
8
9 //Create an output array, properly dimensioned
10 measures= newArray (nObjects);
11
12 //For each object
13 for (i=1; i<=nObjects; i++){
14 //Activate the objects’ map
15 selectWindow (objectsMap);
16
17 //Set the threshold to select the current object
18 setThreshold (i, i);
19
20 //Empty the ROI Manager
21 roiManager ("Reset");
22
23 //Run analyze particles, add outlines to ROI Manager
24 run ("Analyze Particles...", "add stack");
25
26 �//Create a variable to store the volume and initialise it to zero
27 singleMeasure=0;
28
29 //For each outline
30 for (j=0; j<roiManager("Count"); j++){
31 //Activate the image on which to measure
32 selectWindow (imageToQuantify);
33
34 //Select the ROI
35 roiManager ("Select", j);
36
37 //Measure the volume
38 getStatistics (area, mean, min, max, std, histogram);

	 F. P. Cordelières and C. Zhang

53 3

39
40 //Add the volume to the variable
41 singleMeasure+=area*mean;
42 } //End for each outline
43
44 //Push the measure to the output array
45 measures[i-1]=singleMeasure;
46
47 } //End for each object
48
49 //Return the output array
50 return measures;
51 }

And it will be called four times in the main macro code to calculate values for both
channels:

kThe main macro till Step 4

1  //--------------------------------------
2  // Main macro part
3 
4  //...
5 
6  //Step 4
7  objectsVolume1=getValues("Tagged_map_Channel1", "Mask_Channel1");
8  commonVolume1=getValues("Tagged_map_Channel1", "Common_volumes");
9 
10  objectsVolume2=getValues("Tagged_map_Channel2", "Mask_Channel2");
11  commonVolume2=getValues("Tagged_map_Channel2", "Common_volumes");
12  //--------------------------------------
13  }

To avoid duplicates of same code, in code 3.4 line 4 represents the part in Code 3.3.

3.4.6  �Step 5: Generate Outputs

Aim:
55 With the measure for each channel, calculate the ratio of volume involved in colo-

calisation.
55 Display the results in a resultsTable, one row per object.
55 Build a map where the intensity of object corresponds to the ratio of overlap.
55 Generate a user-defined function to perform the task: generateOutputs with

proper arguments, if needed.

3D Quantitative Colocalisation Analysis

54

3

Hints:
55 On the tagged map, the first object is tagged with an intensity of 1, the second of

2..: the maximum intensity therefore corresponds to the number of objects.
55 Caution: the ratios are decimal values, intensities on all images we are working on

so far are integers.
55 In ImageJ, [Process/Macro], there is a way to replace an intensity by

another value.

Numbers have been extracted: well done! But still, the user can’t see that: we need to create
some outputs. Two ideas come up: should I display a table with all numbers? Or is the user
rather of a visual kind and would require to have the values mapped to an image? Ok, let’s
not make a decision, but do both!

We will first generate a table per channel, with one row per object and three columns
containing the volume of the object, the volume of this object involved in colocalisation
(i.e. overlapping) and the ratio. Before starting coding this output, we should have a look
at the possibilities of table output offered by ImageJ. This is the topic we will cover in the
next technical point.

Technical Points: Using a ResultsTable to output data
55 [Analyze/Clear Results]: empties any existing ResultsTable. This

function is macro-recordable.
55 nResults: predefined variable to retrieve the number of rows.
55 setResult("Column", row, value): Adds an entry to the ImageJ results

table or modifies an existing entry. The first argument specifies a column in the
table. If the specified column does not exist, it is then added. The second argu-
ment specifies the row, where 0<=row<=nResults.

55 To add a row in the table, simply address the last row+1: as the rows are num-
bered 0 to nResults-1, address row nResults.

55 To add a column, one simply needs to give it a name.
55 The rows might be labeled using“Label” as column name.

When reading the technical points, it seems that the output as a table is not that com-
plicated. Do not forget to tag each line with a note about which object it is about! One
additional trick: as two channels are analyzed, each of which should reside in a table,
but only one table would be manipulated at a time. To solve this, once more, ImageJ’s
Built-in Macro Functions page might help: try to find a function that could rename a
ResultsTable.

Let’s deal with the output as a colocalisation map. First, we need a container to push the
ratios into. The simplest way is to duplicate an already existing image. Let’s take the tagged
map and make a duplication. The resulting image is a 16-bits type image. This implies that
only integer intensities can be stored in it. As you may guess, ratios are decimal values:

	 F. P. Cordelières and C. Zhang

https://imagej.nih.gov/ij/developer/macro/functions.html
https://imagej.nih.gov/ij/developer/macro/functions.html

55 3

if we push them directly, the values will be clipped and we are running into the risk of
obtaining a black image! Image type conversion is therefore required and should be per-
formed using the [Image > Type > 32-bit] menu. Finally, how and where to put
the ratio? The easiest way would be to identify the object by its tag, then replace all the
values of its pixels by the ratio. This is a straightforward process when knowing about the
[Process > Batch > Macro] function. This menu allows applying some logic to
images. In our case, we will have to enter something like if(v=tag) v=ratio; (to be
adapted with the proper values).

We now have all the elements to build the function for this part of the workflow, let’s
have a look at the working plan.

Working Plan:
	1.	 Make some clean-up! Empty any existing ResultsTable
	2.	 Activate the tagged map
	3.	 Remove any existing ROI
	4.	 Duplicate this image to generate the future colocalisation map
	5.	 Properly convert the image
	6.	 Loop for all objects:

	(a)	 Calculate the volume ratio
	(b)	 Push a proper label to the ResultsTable
	(c)	 Push the object’s volume to the ResultsTable
	(d)	 Push the object’s volume involved in the colocalisation to the ResultsTable
	(e)	 Push colocalisation ratio to the ResultsTable
	(f)	 Activate the colocalisation map
	(g)	 Replace the the intensity of any pixel carrying the current object’s tag by the ratio

	7.	 Pack everything into a function, thinking about the proper arguments, if any, that
should be entered for the process to be run

Now that you have implemented your own version of the code, you may compare it to the
functions we have implemented.

1  �//Generates two types of outputs: a results table and 2 co-
localisation maps

2  �function generateOutputs(objectsMeasures, commonMeasures, objects-
Map){

3 //Empties any pre-existing results table
4 run ("Clear Results");
5
6 //Duplicate the objects map
7 selectWindow (objectsMap);
8 run ("Select None"); //Needed to remove any ROI from the image
9 run ("Duplicate...", "title=Coloc_Map duplicate");
10 run ("32-bit"); //Needed to accomodate decimal intensities
11

3D Quantitative Colocalisation Analysis

56

3

12 for (i=0; i<objectsMeasures.length; i++){
13 //Calculate the ratio
14 ratio=commonMeasures[i]/objectsMeasures[i];
15
16 //Fill the results table with data
17 setResult ("Label", nResults, "Object_"+(i+1));
18 setResult ("Full object", nResults-1, objectsMeasures[i]);
19 setResult ("Common part", nResults-1, commonMeasures[i]);
20 setResult ("Ratio", nResults-1, ratio);
21
22 �//Replace each object’s tag by the corresponding colocalisa-

tion ratio
23 selectWindow ("Coloc_Map");
24 run ("Macro...", "code=[if(v=="+(i+1)+ ") v="+ratio+ "] stack");
25 }
26 resetMinAndMax();
27 }

Once more, to test this new function, some lines should be added to the main body of our
macro. An example is given hereafter.

kMy main macro till Step 5

1  //--------------------------------------
2  // Main macro part
3 
4  //...
5 
6  //Step 4
7  objectsVolume1=getValues("Tagged_map_Channel1", "Mask_Channel1");
8  commonVolume1=getValues("Tagged_map_Channel1", "Common_volumes");
9 
10 � objectsVolume2=getValues("Tagged_map_Channel2", "Mask_Channel2");
11 � commonVolume2=getValues("Tagged_map_Channel2", "Common_volumes");
12 
13  //Step 5
14 � generateOutputs(objectsVolume1, commonVolume1, "Tagged_map_Chan-

nel1");
15  IJ.renameResults("Volume_colocalisation_Channel1");
16  selectWindow ("Coloc_Map");
17 rename ("Volume_colocalisation_Channel1");
18
19 � generateOutputs(objectsVolume2, commonVolume2, "Tagged_map_Chan-

nel2");
20 � IJ.renameResults("Volume_colocalisation_Channel2");
21 selectWindow ("Coloc_Map");
22 rename ("Volume_colocalisation_Channel2");
23 //--------------------------------------

	 F. P. Cordelières and C. Zhang

57 3

3.4.7  �Step 6: Make the Macro User Friendly

Aim:
55 A graphical user interface should be displayed first, to ask the user for the param-

eters to use for analysis.
55 This step should be implemented as a function: GUI with the proper set of

argument(s), if needed.
55 The function should return the entered values as an array.

Hints:
55 Identify which parameters are there
55 Use previous technical points.

During step 1 (7  Sect. 3.4.2), we have had a glimpse at user interactions: we used the wait-
ForUser statement to pause the execution of the macro, and to ask for a user’s interven-
tion. There is another possible interaction: Graphical User Interface (GUI). GUI are dialog
boxes, which can be fed with parameters. Our first task is to review all parameters that are
user-defined, then to build a proper GUI. When looking at the workflow, we can identify
two such parameters: the minimum and maximum expected sizes of objects to be isolated
from both channels’ images. We will build a basic GUI, asking for those two parameters. We
will need to learn about the instructions to be used, detailed in the next technical points.

Technical Points: Generating Graphical User Interface
55 Initialise a new GUI: use Dialog.create(‘‘Title’’)
55 Add content to the GUI, where content could be number, string, checkboxes…

e.g.: Dialog.addNumber(label, default) adds a numerical field to the
dialog, using the specified label and default value.

55 Display the GUI: Dialog.show()
55 Retrieve the values in order: one instruction that retrieves the first number, then

with a new call, the second…e.g.: Dialog.getNumber() returns the contents
of the next numeric field.

Based on the above information, the building steps are quite simple:

Working Plan:
	1.	 Create a new Dialog Box
	2.	 Add a numeric field to retrieve the minimum expected size of objects
	3.	 Add a numeric field to retrieve the maximum expected size of objects

3D Quantitative Colocalisation Analysis

58

3

	4.	 Display the Dialog Box
	5.	 Create a properly sized array to store the input data
	6.	 Fill the array with retrieved data
	7.	 Pack everything into a function, thinking about the proper arguments, if any, that

should be entered for the process to be run, and to output that should be made by
the “return” statement

Now it is your turn to do some coding! Try to go ahead yourself first, before looking at our
version of the implementation below!

1  //Display the graphical user interface
2  function GUI(){
3 Dialog.create ("colocalisation");
4 �Dialog.addNumber ("Minimum size of objects on channel1 (in vox-

els)", 10);
5 �Dialog.addNumber ("Minimum size of objects on channel2 (in vox-

els)", 10);
6 Dialog.show ();
7
8 out= newArray (2);
9 out[0]= Dialog.getNumber ();
10 out[1]= Dialog.getNumber ();
11
12 return out;
13 }

We will revisit Code 3.1: as parameters are now stored in an array after applying our own
defined function GUI, we need to use them in the function calls.

1  //--------------------------------------
2  // Main macro part
3 
4  //Step 6
5  parameters=GUI();
6 
7  //Step 1
8  normaliseNames();
9 
10  isolateObjects(parameters[0], "Channel1");
11  isolateObjects(parameters[1], "Channel2");

3.4.8  �What Then?

What then? First, lay done, have a nice cup of tea, and get ready for a review of what you’ve
achieved so far! The macro works nicely now and you’ve achieved all aims we’ve fixed on
.  Table 3.1. Here is an update (.  Table 3.2):

	 F. P. Cordelières and C. Zhang

59 3

So, are we done? Since users’ requests always evolve, we won’t have to wait long till the
user comes back, with his mind changed or asking for more…Get ready for next chal-
lenges in 7  Sect. 3.5!

3.5  �Workflow 2: Objects Overlap Intensity Quantification

Scenario

»» It works well…but…
I have now the impression that the overlap might not be the main parameter. I

think what matters is the amount of protein engaged in the colocalisation process.
Therefore, I would like to quantify object per object, channel per channel the

percentage of protein involved in the process and get a map of quantification.

The user comes back to the Facility…but he has changed his mind

3.5.1  �What Should We Do?

The answer is quite simple. First, we will go for a loud primal scream: we spent 3 h coding
a macro that most probably won’t be used!? Second, we will be tempted to trash all what
we’ve done, and heavily swear at the user who has no clue about what he really needs.
Finally, we will think again at the beauty of our code, and try to find a way to re-use it.

Lucky enough, we have been structuring our code into functional blocks. Several of them
can be re-used, as we only need to adapt the analysis part and the GUI. In study case 1, 7  Sect.
3.4.5, we used a normalized mask and determined the intensities on it, using the 0–1 scaling

Step What is it What have learned

1
Normalize the data name
(7 Section 3.5.2)

Re-use & adapt existing code easily:
thanks to user-defined functions

2
Tag the objects
(7 Section 3.5.3)

Waiting for an action from the user
Using a plugin from a macro

3
Isolate the overlapping parts
(7 Section 3.5.4) Manipulating binary masks

4
Retrieve volumes
(7 Section 3.5.5)

Exploiting the plugin’s outputs,
Using the ROI Manager (repeat)

5
Generate outputs
(7 Section 3.5.6)

Using the Results Table to output data
(repeat), Generating output images

6
Make the macro user friendly
(7 Section 3.5.7) Generating Graphical User Interfaces

.      . Table 3.2  What have we learned so far?

3D Quantitative Colocalisation Analysis

60

3

to report for volumes. Instead of using a scaled map directly, we could try to retrieve the
original intensities. This strategy needs a bit of thinking, which we’ll do in 7  Sect. 3.5.2.

Next table gives an overview of our workflow and the steps to be adapted (.  Table 3.3).

3.5.2  �New Step 4: Retrieve Intensities

Aim:
55 We need to generate new inputs for getValues function.
55 This step should be implemented as a function: getMaskedIntensities

with the proper set of argument(s), if needed.

Hints:
55 We already have generated functions to get masks within intensity of 0 for

background and 1 for objects.
55 Arithmetics is possible between images via [Process >Image Calculator].

Now we have settled down on user’s request, we realize that the workflow is actually
not too much work to implement and adapt. We have already been able for each chan-
nel to determine for each object its volume, and the part of its volume involved in the
co-localization process, allowing to generate a physical co-localization percentage map.

Step What is it What to implement

1
Normalize the data name
(Same as in 7 Section 3.5.2)

Re-use & adapt existing code easily:
thanks to user-defined functions
DONE!

2
Tag the objects
(Same as in 7 Section 3.5.3)

Waiting for an action from the user

Using a plugin from a macro

DONE!

3 Isolate overlapping parts
(Same as in 7 Section 3.5.4)

Manipulating binary masks

DONE!

4
Retrieve intensities
(Todo in 7 Section 3.6.2)

Exploiting the plugin’s outputs,
Using the ROI Manager (repeat)

5
Generate outputs
(Same as in 7 Section 3.5.6)

Using the ResultsTable to output data

(repeat), Generating output images

DONE!

6
Make it user friendly
(To adapt in 7 Section 3.6.3) Generating Graphical User Interfaces

.      . Table 3.3  What more do we need to do?

	 F. P. Cordelières and C. Zhang

61 3

What we now need to do is exactly the same process replacing the volume per object
by the total fluorescence intensity associated to it. In the previous case study, we have
fed the getValues function with the 0–1 scaled mask and the tagged map. We now
should feed it with the original image intensities, together with the tagged map. We
already have the normalized mask. It can be used together with the original image to
get a filtered-intensities map. The operation to be performed is a simple mathematical
multiplication between both images. This is the purpose of the [Process >Image
Calculator] function from ImageJ. This operation should be performed using both
the objects’ maps for a channel and for the overlaps’ mask. With all these in mind, the
plan is easy to form:

Working Plan:
1.	 Use [Process > Image Calculator] function between the objects’ mask

and the original image
2.	 Rename the resultant image as “Masked_Intensities”
3.	 Use [Process > Image Calculator] function between the overlaps’

mask and the original image
4.	 Rename the resultant image as “Masked_Intensities_Common”
5.	 Pack everything into a function, thinking about the proper arguments, if any,

that should be entered for the process to be run

And its implementation takes the following form:

1  //Generate masked intensities images for the input image
2  function getMaskedIntensities(mask, intensities){
3 imageCalculator ("Multiply create stack", mask,intensities);
4 rename ("Masked_intensities_"+intensities);
5 �imageCalculator ("Multiply create stack", "Common_volumes",

intensities);
6 rename ("Masked_intensities_Common_"+intensities);
7 }

To be able to launch and test the new version of the macro, we will replace Code 3.5 by:

1  //--------------------------------------
2  // Main macro part
3 
4  //...
5 
6  //Step 4
7    getMaskedIntensities("Mask_Channel1", "Channel1");
8    getMaskedIntensities("Mask_Channel2", "Channel2");
9 
10 � objectsIntensity1=getValues("Tagged_map_Channel1", "Masked_inten-

sities_Channel1");
11 � commonIntensity1=getValues("Tagged_map_Channel1", "Masked_inten-

sities_Common_Channel1");
12 

3D Quantitative Colocalisation Analysis

62

3

13 � objectsIntensity2=getValues("Tagged_map_Channel2", "Masked_inten-
sities_Channel2");

14 � commonIntensity2=getValues("Tagged_map_Channel2", "Masked_inten-
sities_Common_Channel2");

15 
16  //Step 5
17 � generateOutputs(objectsIntensity1, commonIntensity1, "Tagged_map_

Channel1");
18  IJ.renameResults("Intensity_colocalisation_Channel1");
19  selectWindow ("Coloc_Map");
20 rename ("Intensity_colocalisation_Channel1");
21
22 � generateOutputs(objectsIntensity2, commonIntensity2, "Tagged_map_

Channel2");
23 IJ.renameResults("Intensity_colocalisation_Channel2");
24 selectWindow ("Coloc_Map");
25 rename ("Intensity_colocalisation_Channel2");
26 //--------------------------------------

3.5.3  �Adapted Step 6: Make the Macro User Friendly

Aim:
55 Modify the GUI function to add choice between the two types of analysis.
55 The GUI function should return an array containing the 2 former parameters,

plus the choice made by the user.

Hints:
55 We already have all the required code.
55 We previously have seen some function exist to create GUIs: have a look at IJ

build-in macro functions webpage.
55 We previousy have seen that structures exist to branch actions on users’ input.

During the previous step (7  Sect. 3.5.2, we have introduced a new way to process the
images. This is a second option to interpret the colocalisation: rather than being based
on the physical overlap, it deals with the distribution of molecules, as reported by the
associated signal. Both options could be used in colocalisation studies, and it would be
ideal to be able to switch from one option to another, e.g. by choosing it from a drop-
down menu.

We already have seen how to create a GUI. The remaining step consists of custom-
izing the existing one so that it accommodates the list and behaves according to the user
choices. Therefore, surely the required instructions would start with something like
Dialog.addSomething and Dialog.getSomething. Refer to ImageJ’s Built-in
Macro Functions page to find the proper instructions.

	 F. P. Cordelières and C. Zhang

https://imagej.nih.gov/ij/developer/macro/functions.html
https://imagej.nih.gov/ij/developer/macro/functions.html

63 3

Once the parameters are set, the behavior of the macro should adapt. We should use
a conditional operation of the different parts of the macro, with a proper structure that is
described in the next technical point.

Technical Points: Generating Graphical User Interface
55 Several types of instructions exist to branch the execution of certain part of the

code according to a parameter’ value. For example, a parameter can be tested
against one reference value, against two or more.

55 if(condition) {} statement: a boolean argument is provided to the if
statement. If true, the block of instructions reside between the curly brackets are
executed. If not, the macro will resume its execution, starting with the first line after
the closing bracket. The argument generally takes the form of two members, sepa-
rated by a comparison operator. Amongst operators, greater than sign, >, or lower
than sign, <, could be used. Greater/lower than or equal to statement could be
generated by addition the equal sign to the formers: =. As for equality, the compari-
son statement is formed by doubling the equal sign ==, to be not confused with
the attribution statement (simple sign). Finally, the non equality might be checked
either by <> or by constructing a “not” in front of the “equal” statement: !=.

55 if(condition) {} else{} statement: same as above, except this structure
also specifies a way to handle the alternative behavior, in case the argument is false.

55 if(condition1) {} elseif(condition2) {} ...elseif
(conditionN) {} statement: this structure allows testing several conditions
and adapt accordingly. This is an alternative way to achieve same result as the
switch/case statement, which is not handled by the ImageJ macro language.

And here is the working plan of the final building block:

Working Plan:
1.	 Create a new array containing the possible options for colocalisation analysis methods
2.	 Modify the Dialog Box to include a drop-down list allowing selection of colocali-

sation methods
3.	 Retrieve the colocalisation method chosen by the user
4.	 Modify the return statement to take into account the new parameter
5.	 Adapt the behavior of the main part of the macro, depending on the user’s choice

The adapted GUI function now looks like this:

1  //Display the graphical user interface
2  function GUI(){
3 items= newArray ("Intensity", "Volume");
4
5 Dialog.create("colocalisation");
6 �Dialog.addNumber ("Minimum size of objects on channel1 (in vox-

els)", 10);

3D Quantitative Colocalisation Analysis

64

3

7 �Dialog.addNumber ("Minimum size of objects on channel2 (in vox-
els)", 10);

8 Dialog.addChoice ("Analysis based on", items);
9 Dialog.show ();
10
11 out= newArray (3);
12 out[0]= Dialog.getNumber ();
13 out[1]= Dialog.getNumber ();
14 //Same kind of elements should be stored in an array
15 out[2]=0;
16 //The returned string is encoded as a number
17 if (Dialog.getChoice ()== "Volume") out[2]=1;
18 return out;
19 }

A possible implementation of our macro’s main body could be implemented as follows:

1  if (parameters[2]==0){
2 //Performs intensity-based analysis
3
4 getMaskedIntensities("Mask_Channel1", "Channel1");
5 getMaskedIntensities("Mask_Channel2", "Channel2");
6
7 �objectsIntensity1=getValues("Tagged_map_Channel1", "Masked_inten-

sities_Channel1");
8 �commonIntensity1=getValues("Tagged_map_Channel1", "Masked_inten-

sities_Common_Channel1");
9
10 �objectsIntensity2=getValues("Tagged_map_Channel2", "Masked_intensi-

ties_Channel2");
11 �commonIntensity2=getValues("Tagged_map_Channel2", "Masked_inten-

sities_Common_Channel2");
12
13 �generateOutputs(objectsIntensity1, commonIntensity1, "Tagged_

map_Channel1");
14 IJ.renameResults("Intensity_Colocalisation_Channel1");
15 selectWindow ("Coloc_Map");
16 rename ("Intensity_Colocalisation_Channel1");
17
18 �generateOutputs(objectsIntensity2, commonIntensity2, "Tagged_map_

Channel2");
19 IJ.renameResults("Intensity_Colocalisation_Channel2");
20 selectWindow ("Coloc_Map");
21 rename ("Intensity_Colocalisation_Channel2");
22} else {
23 �//Performs volume-based analysis
24 �objectsVolume1=getValues("Tagged_map_Channel1", "Mask_Channel1");
25 commonVolume1=getValues("Tagged_map_Channel1", "Common_volumes");
26
27 �objectsVolume2=getValues("Tagged_map_Channel2", "Mask_Channel2");
28 commonVolume2=getValues("Tagged_map_Channel2", "Common_volumes");
29

	 F. P. Cordelières and C. Zhang

65 3

30 �generateOutputs(objectsVolume1, commonVolume1, "Tagged_map_Chan-
nel1");

31 IJ.renameResults("Volume_Colocalisation_Channel1");
32 selectWindow ("Coloc_Map");
33 rename ("Volume_Colocalisation_Channel1");
34
35 �generateOutputs(objectsVolume2, commonVolume2, "Tagged_map_Chan-

nel2");
36 IJ.renameResults("Volume_Colocalisation_Channel2");
37 selectWindow ("Coloc_Map");
38 rename ("Volume_Colocalisation_Channel2");
39 }

Take Home Message

Thanks to our user’s uncertainty (and to our patience), we have come up with a flexible
macro that performs both object-based and intensity-based colocalisation analysis.
During the process of implementation, we have applied strategies that allow us to
format the code in such a way that is easy to adapt and modify the overall workflow. The
use of functional blocks is the key element in adapting the behavior of our macro.

For both methods, we have generated quality control images in the forms of
colocalisation maps. A simple table as an output might be difficult to visually interpret
or to link to positional clues on the image. With this type of map, the user can visually
inspect the output of our macro, and adapt its parameters to make the analysis even
more accurate (.  Table 3.4).

Step What is it What have learned

1
Normalize the data name
(7 Section 3.5.2)

Re-use & adapt existing code easily:
thanks to user-defined functions

2
Tag the objects
(7 Section 3.5.3)

Waiting for an action from the user
Usinga plugin from a macro

3
Isolate the overlapping parts
(7 Section 3.5.4)

Manipulating binary masks

4
Retrieve volumes
(7 Section 3.5.5)

Exploiting the plugin’s outputs,
Using the ROI Manager (repeat),
Adapt existing code

5
Generate outputs
(7 Section 3.5.6)

Using the ResultsTable to output data
(repeat), Generating output images

6
Make the macro user friendly
(7 Section 3.5.7)

Generating Graphical User Interfaces
Branch on user’s input

.      . Table 3.4  Overall, what have we learned?

3D Quantitative Colocalisation Analysis

66

3

Acknowledgements  We are very grateful to Anna Klemm (BioImage Informatics Facility,
SciLifeLab, Uppsala University) for reviewing our chapter and suggesting extremely relevant
enhancements to the original manuscript. In particular, the workflow exposition and clarifi-
cation made through .  Fig. 3.7 results from one of her suggestions.

Bibliography

Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J
Microsc 224:213–232

Cordelières FP, Bolte S (2014) Experimenters’ guide to colocalization studies: finding a way through indica-
tors and quantifiers, in practice. Methods Cell Biol 123:395–408

Dunn KW, Kamocka MM, McDonald JH (2011) A practical guide to evaluating colocalization in biological
microscopy. Am J Physiol Cell Physiol 300:C723–C742

Fletcher PA, Scriven DR, Schulson MN, Moore DW (2010) Multi-image colocalization and its statistical sig-
nificance. Biophys J 99:1996–2005

Lagache T, Meas-Yedid V, Olivo-Marin JC (2013) A statistical analysis of spatial colocalization using Ripley’s
K function. In: ISBI, pp 896–899

Obara B, Jabeen A, Fernandez N, Laissue PP (2013) A novel method for quantified, superresolved, three-
dimensional colocalisation of isotropic, fluorescent particles. Histochem Cell Biol 139(3):391–402

Rizk A, Paul G, Incardona P, Bugarski M, Mansouri M, Niemann A, Ziegler U, Berger P, Sbalzarini IF (2014)
Segmentation and quantification of subcellular structures in fluorescence microscopy images using
Squassh. Nat Protoc 9(3):586–596

Sage D, Donati L, Soulez F, Fortun D, Schmit G, Seitz A, Guiet R, Vonesch C, Unser M (2017) Deconvolutionlab2:
an open-source software for deconvolution microscopy. Methods 115:28–41

Wörz S, Sander P, Pfannmöller M, Rieker RJ, Joos S, Mechtersheimer G, Boukamp P, Lichter P, Rohr K (2010)
3D geometry-based quantification of colocalizations in multichannel 3D microscopy images of
human soft tissue tumors. IEEE Trans Med Imaging 29(8):1474–1484

Zinchuk V, Zinchuk O (2008) Quantitative colocalization analysis of confocal fluorescence microscopy
images. Curr Protoc Cell Biol U4:19

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (7  http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not included in
the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

	 F. P. Cordelières and C. Zhang

http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2020
K. Miura, N. Sladoje (eds.), Bioimage Data Analysis Workflows, Learning Materials in Biosciences,
https://doi.org/10.1007/978-3-030-22386-1_4

67

The NEMO Dots Assembly:
Single-Particle Tracking
and Analysis
Jean-Yves Tinevez and Sébastien Herbert

4.1	 �Introduction – 68

4.2	 �Datasets – 69

4.3	 �Tools and Prerequisites – 70

4.4	 �Workflow – 70

4.5	 �Single-Particle Tracking with TrackMate – 71
4.5.1	 �Step 1: Loading Image Data and Launching TrackMate – 71
4.5.2	 �Step 2: Detection – 72
4.5.3	 �Step 3: Filtering – 73
4.5.4	 �Step 4: Particle-Linking – 76
4.5.5	 �Step 5: Filtering Tracks – 79
4.5.6	 �Step 6: Export Results – 81

4.6	 �Motility Analysis with Mean-Square
Displacement – 82

4.6.1	 �Step 1: Importing Tracks into MATLAB – 82
4.6.2	 �Step 2: Create and Add Data to the MSD Analyzer – 85
4.6.3	 �Interlude: A Short Word About Mean-Square Displacement

Analysis – 87
4.6.4	 �Step 3: Compute the Mean-Square Displacement – 88
4.6.5	 �Step 4: Log-Log Fit of the Mean-Square Displacement – 90
4.6.6	 �Step 5: Analysis of the Log-Log Fit – 91

4.7	 �Results and Conclusion – 94

�Bibliography – 95

4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22386-1_4&domain=pdf

68

4

What You Learn from This Chapter
The aim of this chapter is to learn the principles and pitfalls of single-particle tracking (SPT).
Tracking in general is very important for dynamic studies, as it is about propagating object
identities over time, permitting the calculation of dynamic quantities such as object veloci-
ties. Tracking is often the first step in analyzing dynamics.

The output of tracking is simply tracks, and later steps involve computing relevant
quantities from these tracks. In the case of the applications we use in this module, we
wanted to learn something about the particles we track, which are unknown organelles (at
the time of the publication) appearing transiently in cells upon stimulation by an interleu-
kin. Namely we want to determine whether they are bound to a structure, transported or
freely diffusing. To do so, the analysis is completed by performing a Mean Squared-
Displacement (MSD) analysis.

4.1	 �Introduction

The data and analysis we will perform in this module is taken from the following paper:
TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO-IKK supramo-
lecular structures, Tarantino et al. (2014). In particular, we will reproduce the analysis of
the paragraph “NEMO-containing punctae are slow-moving anchored structures located
close to the cell surface”.

Nuclear factor KB (NF-KB) essential modulator (NEMO) is a regulatory component
of the IKB kinase (IKK) complex and controls NF-KB activation through its interaction
with ubiquitin chains. The work of Emmanuel Laplantine focuses on the mechanics of
NF-KB regulation by ubiquitination. Recently, his lab showed that NEMO, a component
of the IKK complex, is crucial for NF-KB activation and the linear ubiquitination by K64.
Patients with a deficiency in the linear ubiquitination machinery enabled to correlate their
symptoms with a defect in NF-KB activation by cytokines. This project aims at investigat-
ing the details of the NF-KB activation initiated by stimulation by IL-1 and TNF.

We engineered cells that were expressing constitutively NEMO-eGFP from a NEMO-
deficient human fibroblast cell line. They allowed us to follow NEMO dynamics using
high-resolution microscopy. The most marking result of the project is that stimulation
with interleukin-1 (IL-1) and TNF induces a rapid and transient recruitment of NEMO
into punctate structures. These structures appear briskly, probably assembling from a pool
of NEMO soluble in the cytoplasm, and roughly constant in quantity in the cell over time.
They disassemble in, on average, 15–45 min depending on the stimulus (TNF or IL-1).

Our part of the project revolved around the characterization of these previously
unknown structures via imaging and image analysis, completing data obtained by bio-
chemistry. These structures and their dynamics proved to be extremely sensitive to light,
and their study required careful imaging with a dedicated protocol. The part we will cover
in this module focuses on a single question: Are these punctate structures bound to the
membrane, freely diffusing or transported?

This simple question was important to backup the biochemistry data. Since the punc-
tate structures were not described before and their function unknown, their motion type
could give us clues about their function. For instance, if they are transported, they may be
internalized in some vesicles and transported from membrane to nucleus to convey the
cell activation signal. If they are freely diffusing, they may be supramolecular structures
polymerizing upon some signal.

	 J.-Y. Tinevez and S. Herbert

69 4

Our first imaging protocol falsely led us to think that they were transported towards
the nucleus after assembly. However, these movements proved to be artifacts and caused
by a phototoxic effect.1 A second imaging protocol involved the use of TIRF microscopy
with a low illumination power, which diminished the phototoxic effects. We filmed the
dots for long times and process the acquired structures to analyze their motility.

We tracked the dots in Fiji using TrackMate (Tinevez et al. 2017) and, because the dots
are well separated, the tracking proved relatively easy. We then analyzed the tracks using
MSD analysis, to conclude on their motility with certainty. The MSD analysis is also the
subject of this module, and we will then go from Fiji to MATLAB to perform it.

This particular analysis proved that the NEMO dots are anchored, both when stimu-
lated by IL-1 and TNF. We concluded further that they are not anchored to actin filaments
or microtubules (MTs), as repeating the analysis with drugs that depolymerize the cyto-
skeleton did not show any change. Additional analysis showed that they were most likely
anchored to the cell membrane, and that NEMO molecules were under a rapid turnover
in these punctate structures. So they probably play the role of phosphorylation factories,
assembled and anchored at the cell membrane, that would process quickly a large amount
of the otherwise soluble NEMO proteins.

4.2	 �Datasets

The data for this module consists in a subset of the data only from the paper. It only fea-
tures 5 movies over 2 conditions:

55 Ctrl: A couple of dots can be seen wandering in the cells, even if there is not stimula-
tion. They are permanent instead of transient, and probably non-specific. They give a
control of how spurious particles would perturb our measurements.

55 IL1: Following IL-1 stimulation. In the study, this was the “easy” case, for the dots
were bright and large compared to e.g. the dots we see after TNF stimulation.

You can find it on Zenodo:
7  https://doi.org/10.5281/zenodo.1341987. The dataset (download size about 800 MB)

is organized as follow:

Tracking-NEMO-movies_subset
 NEMO-Ctrl
 Cell_01.tif 35.2 MB
 Cell_01.xml 5.9 MB
 Cell_01_Tracks.xml 16.6 kB
 Cell_02.tif 175.5 MB
 Cell_02.xml 5.6 MB
 Cell_02_Tracks.xml 170.4 kB
 NEMO-IL1
 Cell_02.tif 91.9 MB
 Cell_02.xml 6.4 MB
 Cell_03.tif 444.8 MB
 Cell_03.xml 53.0 MB

1	 We documented this phototoxic effect later in Tinevez et al. (2017).

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

https://doi.org/10.5281/zenodo.1341987

70

4

 Cell_03_Tracks.xml 1.2 MB
 Cell_04.tif 251.6 MB
 Cell_04.xml 50.8 MB
 Cell_04_Tracks.xml 4.6 MB

The movies themselves are not very pretty. Bright dots can be seen over a cell background
caused by the soluble pool of NEMO. They bleach over time. The temporal resolution is
not very high (0.5 s) and the SNR is not high either since we had to compromise on laser
power to avoid cell death.

Files are .tif movies, made for ImageJ, with the right spatial and temporal calibra-
tion. They are already split cell by cell, and have a ROI that encloses the cell. There also are
.xml files from TrackMate and _Tracks.xml files generated from TrackMate, ready to
be imported in MATLAB. But we will do the tracking ourselves.

4.3	 �Tools and Prerequisites

55 Fiji
55 Download URL: 7  https://imagej.net/Fiji/Downloads
It does not require any extra, as TrackMate is included in the core of Fiji.

55 MATLAB
55 We rely on MATLAB for the MSD analysis part, with the Curve Fitting toolbox.
55 You need to know at least a little bit about MATLAB features, like logical indexing
and structures. We will not be introducing them here.

55 Because we will install specialized functions and classes in MATLAB, you also
need to know at least a little bit about the MATLAB path. 7  https://mathworks.
com/help/matlab/matlab_env/what-is-the-matlab-search-path.html

55 We built a special class to perform the analysis that you can download here:
7  https://github.com/tinevez/msdanalyzer/zipball/master

@msdanalyzer is a MATLAB class, so you have to put the @msdanalyzer folder in
the MATLAB path, but not its content.2 For instance on my MATLAB installation, I have
a folder called /Users/tinevez/Development/Matlab/msdanalyzer that is
on the path and that contains the @msdanalyzer folder. But the @msdanalyzer
folder is not in the path.

4.4	 �Workflow

We will deal separately with single-particle tracking in Fiji using TrackMate, and track
motility analysis in MATLAB using @msdanalyzer. The two following sections are
largely independent and present different concepts. To perform the MSD analysis, please
use the dataset linked above that include them.

2	 This is explained on The Mathworks website: 7 https://mathworks.com/help/matlab/matlab_oop/
organizing-classes-in-folders.html.

	 J.-Y. Tinevez and S. Herbert

https://imagej.net/Fiji/Downloads
https://mathworks.com/help/matlab/matlab_env/what-is-the-matlab-search-path.html
https://mathworks.com/help/matlab/matlab_env/what-is-the-matlab-search-path.html
https://github.com/tinevez/msdanalyzer/zipball/master
https://mathworks.com/help/matlab/matlab_oop/organizing-classes-in-folders.html
https://mathworks.com/help/matlab/matlab_oop/organizing-classes-in-folders.html

71 4

4.5	 �Single-Particle Tracking with TrackMate

TrackMate is a Fiji plugin dedicated to tracking. It can do cell-lineaging (and was ini-
tially developed for this very purpose, see Tinevez et al. (2012)) but also has automated
analysis tools to perform single-particle tracking of sub-cellular structures. It ships a
user-friendly graphical user interface that allows to inspect tracking results and curate
them. The following part describes how to use TrackMate to generate the tracks over
one of our movies. An extended documentation for this plugin can be found here:
7  https://imagej.net/TrackMate, along with supplementary material of the associated
publication.

4.5.1	 �Step 1: Loading Image Data and Launching TrackMate

For the example below, we will use the Cell_02.tif in the NEMO-IL1 folder. You
can display a .tif file by performing a simple drag and drop on the Fiji toolbar. This
movie does not have many dots, which will simplify getting familiar with the
workflow.

It is very important that you check the dimensionality of the image at this point of
the analysis and correct it if required. To do so, check the image properties in Fiji
(Image Properties... menu item or + P , .   Fig. 4.1). In our case we have a 2D over
time acquisition, so make sure the metadata reports 1 z-slice and 307 frames. Also,
TrackMate reports any quantities (space and time) in physical units, so the pixel size

.      . Fig. 4.1  Image properties

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

https://imagej.net/TrackMate

72

4

.      . Fig. 4.2  The first panel in TrackMate UI

and frame interval must be correct since you will not be able to change them further in
the analysis. For these movies, the pixel size is 0.160 µm per pixel and the frame
interval is 0.5 s.

When this is done, close the properties window, make sure the active image is the one
with our NEMO-labelled cell, and launch TrackMate. The plugin can be found in the
Plugins Tracking TrackMate menu. The GUI will show up and the first panel will display a
recapitulation of the image metadata. At this step, you can define a ROI that will be used
for the analysis. In our case it does not matter, since the images are cropped around a cell.
If you want to use a ROI in TrackMate, draw a ROI over the active image, and press the

Refresh source button on the first panel. You should see the bounds changing on the panel
(.   Fig. 4.2).

4.5.2	 �Step 2: Detection

In our case, the objects we want to track are NEMO dots; since they are smaller than the
resolution limit of the microscope, we cannot resolve their shape, hence segmenting them
would not bring any information that would allow us to discriminate them. They all look
the same in the eye of our microscope. We need a simple detection algorithms that will
yield their position nothing more, which is exactly what TrackMate ships.

The TrackMate user interface is inspired by the Bitplane Imaris wizard. You will find at
the bottom right of the panel a Next button that will bring you to the next panel when
you are done with the current one. Typically, you deal with one group of parameters or

	 J.-Y. Tinevez and S. Herbert

73 4

choice per panel and you can navigate backward if you want to try another one. Click on
the Next button and you will now see a panel where you can choose the detector we will
use. Pick the LoG detector , which is the default, then click again on the Next button. You
are now presented with a panel that lets you configure the LoG detector.

The LoG detector is performing remarkably well for its simplicity. It excels at finding
bright, blob-like, roundish objects, that we will call spots or detections and only requires
two parameters: the approximate diameter (in physical units) of the objects we want to
detect, and a threshold value on a quality metrics, below which detections will be
rejected. The LoG detector works by filtering the image with the Laplacian of Gaussian
filter (also dubbed Mexican hat filter) tuned to the specified diameter. In the filtered
image, the spots will appear as bright and sharp peaks, and they are detected by looking
for local maxima. The quality of a detection is the value at the local maxima location in
the filtered image. Due to this image filtering step, spots smaller or larger than the esti-
mated diameter will have a lower quality value than spots of the same intensity but of the
right size. Consequently, the quality of detection is highest when the spot is bright and
of the right size.

?? Exercise 4.1
Play with the Estimated blob diameter and Treshold parameters to find settings that would

detect all NEMO dots and a limited number of spurious detections. The Preview

button will show you what the chosen parameters do on the current frame only. The
other parameters can be ignored.

vv Solution
Using a diameter of 0.5 µm and a threshold of 1000 seems OK (.   Fig. 4.3). We still have
many spurious spots but we can filter them out later.

Click on the Next button to run the analysis on the whole movie. It should not
take too long (a few seconds) and you should have about 9000 spots in total.

4.5.3	 �Step 3: Filtering

It is very important to filter out as many spurious spots as we can because detection might
very well yield a large amount of them. By setting the quality threshold to a non-zero
value we already filtered them a first time. When clicking Next after the detection is
completed, you are presented with the initial filtering panel (.   Fig. 4.4). It shows the qual-
ity histogram and allows for discarding spots with a quality lower than what we set here.
In simple cases, we expect a bi-modal histogram, with two peaks well separated between
spurious spots with low quality and spots with a high quality. This is not the case here, so
we keep the value unchanged and move to the next panel by clicking Next .

TrackMate lets you pick the view to display the detection and tracking results. As of
today, there is only one working consistently, the HyperStack Displayer. It simply displays
the results on the ImageJ hyperstack, so select this one. The spots are now displayed on the
image as magenta circles (.   Fig. 4.5). A quick inspection reveals that we still have spurious
spots. You can see them appearing and disappearing as you move in time, while true spots
tend to persist over several frames.

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

74

4

.      . Fig. 4.3  LoG detector parameters

.      . Fig. 4.4  Initial filtering panel

	 J.-Y. Tinevez and S. Herbert

75 4

Move on to the next panel by clicking Next . We are now presented with another fil-
tering panel. As we already had one before (the initial filtering panel), it is worth mention-
ing the differences.
	1.	 Spots have numerical features attached to them. A feature is a numerical scalar value

that reports a quantitative information on the object it represents. For instance, the
mean intensity around a spot location is a numerical feature. Features are calculated
after the initial thresholding step. The filters you set in this panel are based on
features that are not available before this step and the initial filtering can only be
done on the quality value.

	2.	 These filters are reversible. The spots are not deleted from the data, but hidden. So
when you remove a filter, the spots it discarded reappear. This is useful if you realize
later that the filters were inadequate and too stringent and preventing proper linking.
To adjust the filters later, you can navigate back to this panel by pressing the left
green arrow on the GUI. In contrary, when using the initial thresholding, the spots
are deleted, which is useful to save memory but is irreversible. If you want to
retrieve the spots you discarded in the initial thresholding step, you must re-run the
detection step.

Filters are added by clicking on the green button. A small panel appears that lets you
choose the feature you want to set the filter on, with what value and whether we should
retain spots with feature values above or below the threshold. The panel also displays
the histogram of the feature values collected for all spots, and has an Auto button that

.      . Fig. 4.5  The HyperStack Displayer with detection results

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

76

4

automatically determines a threshold value using Otsu method (.   Fig. 4.6). The red
button removes the last filter. Also note that you can use the feature values to color the
spots, using the drop-down list at the bottom of the filtering panel. Filters are com-
bined by taking the intersection of the spots they yield. On .   Fig. 4.6 for instance, we
retain the spots that have contrast values above 0.07 and whose X position are above
20.85 µm.

?? Exercise 4.2
Find a combination of filters that remove all spurious spots and keep the true ones.

vv Solution
Such a combination is hard if not impossible to find in our case. Thankfully, we do not
mind a few spurious spots as we will be analyzing tracks. We will later filter out tracks
made of spurious spots.

Remove all filters, set the color-by option to Uniform color and click the Next button.

4.5.4	 �Step 4: Particle-Linking

Now that we have spots, we want to link them over time and build tracks. The tracks
will be what we will analyze in the section dedicated to motion analysis, and we
will do it in MATLAB. But for now we need to generate these tracks. In TrackMate,
particle-linking happens similarly to the detection step. You are now presented with a

.      . Fig. 4.6  Filtering panel with
two filters on contrast and X
position, additionally setting the
spot color by contrast value

	 J.-Y. Tinevez and S. Herbert

77 4

panel that lets you select the particle-linking algorithm (or “tracker”) to be used for
the next step.

TrackMate ships several trackers, but the most useful ones fall in two main categories:
55 The LAP-based trackers. LAP stands for Linear Assignment Problems. There are two

trackers named Simple LAP tracker and LAP tracker that implement a stripped version of
an algorithm published by Jaqaman et al. (2008). They are configured to deal well
with objects that diffuse or move randomly.

55 The Kalman-filter based trackers. We have only one, called Linear motion LAP tracker . It is
based on what is called a Kalman-filter3 introduced in the 1960s by R.E. Kalman
(Kalman (1960)). Our implementation is well suited to particles that have a nearly-
constant velocity vector. That is: particles that move by roughly the same amount
between each frame and do not change direction too fast. Of course it can accommo-
date some changes of velocity provided they are modest.

Choosing the right tracker is critical. In Chenouard et al. (2014), the performance of 14 dif-
ferent single-particle tracking methods were assessed. One of the main conclusions of this
work is that there is not a universally good tracker for all bio-imaging problems. A tracking
algorithm has to be chosen depending on the motion model of the objects to be tracked. For
instance, the LAP trackers of TrackMate are well suited for objects that are freely diffusing or
bound. The Linear motion tracker is well suited for objects that are transported.

This causes a chicken-and-egg problem in our case, since we actually want to determine
what is the motion model of the NEMO dots by analyzing tracks. Practically, we carefully
looked at the movies and and assessed whether it was plausible for the dots to be transported.
Their motion seemed erratic, and so we started with the LAP tracker. As we will see later, we
found that the dots have a motion type for which the LAP trackers are well suited, so our
choice appears valid a posteriori. This is close to having a circular reasoning fallacy. However,
we must temper this criticism. The choice of the right tracker is important to yield accurate
tracks that faithfully follow the true particles over time. The analysis of tracks is a subsequent
step. So first, an inadequate choice of a tracker can be detected by checking the tracks manu-
ally, following a dozen of them and looking for jumps to another particles or early breaks.
And second, we can be in a situation where the particle density and the detection quality is
such that the choice of the tracker will not matter. This is the subject of an exercise below.

In TrackMate, the trackers suited for non-transported motion are the LAP trackers.
They are based on minimizing the total cost to link a set of spots in one frame to the spot
in the next frame, or the cost to link track segments together. We have the LAP tracker and
its Simple LAP tracker version. They actually wrap the same algorithm, but the latter offers
fewer configuration options. The LAP tracker can be configured to generate tracks that are
splitting (as for cell division) or merging. The cost to link one spot to another one can be
altered by differences in spots features values, such as intensity, radius, … The
Simple LAP tracker only offers to bridge gaps in tracks caused by missed detections, and the

linking costs are simply based on distance. It results in tracks being linear, that is without
merges or splits, and at most one spot per frame. We observe that the NEMO dots do not
merge or split, so this is the right tracker to pick.

3	 Kalman filter on Wikipedia: 7 https://en.wikipedia.org/wiki/Kalman_filter.

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

https://en.wikipedia.org/wiki/Kalman_filter

78

4

?? Exercise 4.3
The Simple LAP tracker has 3 parameters to configure it, that set

55 the maximal distance to link from one frame to the next;
55 the maximal frame gap to bridge over missing detections;
55 the maximal distance to bridge over missing detections.

Try and find a suitable parameter set that yields acceptable results, based on you checking
the tracks.

vv Solution
As explained in Jaqaman et al. (2008), this tracker performs spatially global
optimization, and therefore is rather robust against a lot of variation in parameter
values. You should find acceptable results for a wide range of parameters, provided
they are not aberrant. Try some of them and click the Next button to get the tracking

results displayed on the image. Click on the Previous button to change parameters

and start again. Check .   Fig. 4.7 for values that work.

.      . Fig. 4.7  Configuring the
Simple LAP tracker

	 J.-Y. Tinevez and S. Herbert

79 4

4.5.5	 �Step 5: Filtering Tracks

The image should be updated with tracks, as shown in .   Fig. 4.8. We note that there are
about 3 tracks that seem to display a large excursion in the cell. Also, there are many tracks
that are very short and are probably made of spurious spots. We want to filter them out.
Move on to the next panel.

?? Exercise 4.4
The track filtering panel works like for the spot filtering panel. Find a combination of
filters that can remove tracks originating from spurious spots.

vv Solution
Spurious spots arise from noise in the image. As long as there are only a few of them, it is
therefore very unlikely that spurious spots appear many times consecutively in the vicinity
of the same location. If they are ever linked in a track, it will be short compared to tracks
originating from true spots, that can be followed over many frames. A good strategy is
therefore to filter tracks based on the number of spots they contain. It has a side benefit:
the MSD analysis we will perform later in this chapter requires the tracks to be long for
accuracy. Since the histogram for the number of spots in tracks have a large peak at low
values that precede a gap at N = 20, we can use this value as a threshold (.   Fig. 4.9).

So we are now left with a small number of long tracks (.   Fig. 4.10).

?? Exercise 4.5
Go back 3 steps and try to perform tracking with the Linear motion LAP tracker . As we said,

it is not the optimal tracker for the motion type we suspect the NEMO dots have.
Check whether the tracking results differ from those of the LAP tracker .

.      . Fig. 4.8  Raw tracking results

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

80

4

vv Solution
Even though we do not have many tracks in our case, visual inspection is not enough.
A good approach for a first comparison of tracking results is to compare tracks based
on the feature values that are calculated for them. To do this, once the TrackMate GUI

shows the Display options panel (.   Fig. 4.10), click on the Analysis button.

Three tables should appear, and we just want to retain the Track statistics one.

Duplicate it (File Duplicate when the table is active) and give it a name like Track

statistics-LAP. Then go back 3 steps, select the Linear motion LAP tracker and

perform tracking as before. Regenerate the Track statistics table and compare
with the previous one. You will find that we have identical tracks. The track labels will
be different because they are regenerated every-time we perform tracking, but you
will see they are made of the same spots.

.      . Fig. 4.9  Filtering tracks
based on the number of spots
they contain

	 J.-Y. Tinevez and S. Herbert

81 4

This worked in our case only because we have an easy case for tracking: the spots that
remain after filtering are few and well spaced. The density is so low that the motion type
of the tracker does almost not matter. As shown in Chenouard et al. (2014), at high
density the difference of performance among trackers is exacerbated.

4.5.6	 �Step 6: Export Results

We want now to export the track results in a format that can easily be re-imported in
MATLAB. The XML file that is generated when you press the Save button in the GUI
contains all the information to restore a tracking session: settings, parameter values, path
to images, etc. It is probably not well suited to the simple track import we want to perform.

Move to the last panel of the TrackMate GUI called Select an action. It offers a
selection of miscellaneous actions that do not fit in other panels. In the list, one action
called Export tracks to XML will generate the format we want. It is a simple format derived
from the one used in the ISBI single-particle tracking challenge (whose results are the
subject of Chenouard et al. (2014)) and suited for tracks that do not have split nor fusion
events. Execute the action and a new file called Cell_02_Tracks.xml should be gen-
erated. Its content looks like this:

.      . Fig. 4.10  The final tracking results

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

82

4

<?xml version="1.0" encoding="UTF-8"?>
<Tracks nTracks="22" spaceUnits="um" frameInterval="0.5" timeUnits="s"
generationDateTime="Wed, 5 Sep 2018 14:11:51" from="TrackMate v3.8.0">
<particle nSpots="112">
<detection t="0" x="53.66873043851335" y="11.384524705860331" z="0.0" />
<detection t="1" x="53.6447201035091" y="11.417907762121915" z="0.0" />
<detection t="3" x="53.565164363562936" y="11.45756457406076" z="0.0" />
...

This is what we will use in MATLAB later. You can see that each track is represented by a
particle section, containing several detection items, with t, x, y and z. In our case,
z is always 0 since we have 2D time-series.

?? Exercise 4.6
Perform tracking and exports for all the other movies included in the dataset. Then
move on to the next section.

4.6	 �Motility Analysis with Mean-Square Displacement

Tracking is almost never the last step of an analysis workflow. Tracking tools such as
TrackMate produce tracks and their role stops there. But tracks are just an intermediate
data structure in the workflow. Their subsequent analysis will produce the numbers upon
which we will draw a scientific conclusion. Because this track analysis is specific to the
scientific question to be addressed, tracking tools remain generic and seldom include
specialized analysis modules. Another toolset is required for track analysis, and in this
module we will focus on using MATLAB. The main reason for this choice is that there
exist ready-to-use functions to import the XML files we produced in the previous section,
which underlies the importance of interoperability.

There are other alternatives however. For instance, KNIME provides excellent tools to
read XML, and things such as MSD of coordinates of any dimensionality can easily be
computed. See for instance Hauer et al. (2017).

4.6.1	 �Step 1: Importing Tracks into MATLAB

Close Fiji and launch MATLAB. We want to import the tracks generated above into
the MATLAB workspace. Rather than writing our own XML importer, we can use
one that was made specifically for TrackMate, and that is distributed with Fiji. It is
called importTrackMateTracks and you can find it in the scripts folder
of Fiji:

	 J.-Y. Tinevez and S. Herbert

83 4

tinevez@lilium:~/Development/Fiji.app/scripts$ ls
ImageJ.m copytoImg.m
InstallJava3D.m copytoImgPlus.m
IsJava3DInstalled.m copytoMatlab.m
Matlab3DViewerDemo_1.m importTrackMateTracks.m
Matlab3DViewerDemo_2.m trackmateEdges.m
Matlab3DViewerDemo_3.m trackmateFeatureDeclarations.m
Matlab3DViewerIntroduction.m trackmateGraph.m
Miji.m trackmateImageCalibration.m
Miji_Test.m trackmateSpots.m
bfopen.m

To make these scripts usable from MATLAB, open the path editor, and add the scripts
folder to the path (.   Fig. 4.11).

This can also be achieved using addpath('./path/to/your/Fiji.app/
scripts'); in the MATLAB prompt.

Once this is done, the functions in this folder are visible and can be called from
MATLAB. For instance, we can now get the help of the function we want to use in
MATLAB:

>> help importTrackMateTracks
 |importTrackMateTracks| Import linear tracks from TrackMate
 �This function reads a XML file that contains linear tracks gener-
ated by TrackMate (http://fiji.sc/TrackMate). Careful: it does not
open the XML TrackMate session file, but the track file exported in Track-
Mate using the action 'Export tracks to XML file'. This file format
contains less information than the whole session file, but is enough fo
r linear tracks

 (tracks that do not branch nor fuse).
...

.      . Fig. 4.11  Add the Fiji script folder to the MATLAB path

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

84

4

?? Exercise 4.7
Read the help section of the function and try to find the correct syntax to import the
tracks in a desirable way. For instance, we do not need the Z coordinates, since we
dealt with a 2D dataset, and we do not need the time to be scaled by a physical units.

vv Solution
The proper syntax is something along the lines of:

>> track_file = '/Users/tinevez/Desktop/Tracking-NEMO-movies_subset/
 NEMO-IL1/Cell_02_Tracks.xml';
>> tracks = importTrackMateTracks(track_file, true, false);

You need of course to specify the path to the XML file we saved in the previous section.
The first flag true is used to specify that we do not need to import the Z coordinates,
and the second flag false is used to specify that we want a time interval in integer
units of frames.
The imported content is made of a cell list of several N × 3 arrays:

>> tracks
tracks =
 22x1 cell array
 112x3 double
 268x3 double
 159x3 double
...

And each array contains 3 columns with the frame, X and Y coordinates, one line per
time point of a complete track:

>> tracks1
 ans =
 0 53.6687 11.3845
 1.0000 53.6447 11.4179
 3.0000 53.5652 11.4576
 4.0000 53.6317 11.3376
 5.0000 53.6501 11.3377
 6.0000 53.5482 11.4344
...

From it, we can plot an example trajectory:

>> x = tracks1(:,2);
>> y = tracks1(:,3);
>> plot(x,y, 'ko-', 'MarkerFaceColor', 'w'), axis equal, box off

	 J.-Y. Tinevez and S. Herbert

85 4

4.6.2	 �Step 2: Create and Add Data to the MSD Analyzer

As stated above, @msdanalyzer is a MATLAB class. If you do not know what is a class,
you can think of it roughly as a collection of functions organized around a common and
clearly defined data structure. The functions of a class are called methods and we will use
this denomination in the following. If you followed the instruction of 7   Sect. 4.3, the
@msdanalyzer should be on the MATLAB path. You should be able to access the help
for the class and the help for the constructor of the class:

>> help msdanalyzer
>> help msdanalyzer.msdanalyzer

The first instruction gives help about the class itself and the second syntax gives you help
about the syntax to use when creating an analyzer. You can retrieve the list of methods
defined for this class with

>> methods('msdanalyzer')

and the help for a method called addAll is obtained via:

>> help msdanalyzer.addAll

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

86

4

We need to create an analyzer first, before giving it data. This is done like this:

>> ma = msdanalyzer(2, 'um', 'frames')

Now ma is an empty msdanalyzer object, set to operate for 2D data (this is the meaning
of the ‘2’ as first argument), using µm as spatial units (‘um’ because MATLAB does not
handle UTF8 characters very well) and frames as time units.

As stated above, this object is empty, and we have to feed it the tracks with the
addAll() method. Luckily for us, as you can read in the help of the addAll method,
it expects the tracks to be formatted exactly in the shape we have. So we can run directly:

>> ma = ma.addAll(tracks)
 ma =
 msdanalyzer with properties:
 TOLERANCE: 12
 tracks: 22x1 cell
 n_dim: 2
 space_units: 'um'
 time_units: 'frames'
...

Note that for now, it just has the 22 tracks of the first movie we analyzed. We want to add
the tracks coming from the other movies in the same category. For instance, we will later
add to the same msdanalyzer object all the tracks coming from all the movies of the
NEMO-IL1 folder. But for now, we can use some of the methods of the msdanalyzer to
have a nice track overview:

>> ma.plotTracks % Plot the tracks.
>> ma.labelPlotTracks % Add labels to the axis.
>> set(gca, 'YDir', 'reverse')
>> set(gca, 'Color', [0.5 0.5 0.5])
>> set(gcf, 'Color', [0.5 0.5 0.5])

In .   Fig. 4.12, the results of these commands are displayed next to the TrackMate results.
The track colors happen to be the same, but this is by chance. As a side note, look at the
line 3 in the above snippet. When displaying images, the Y axis runs from top to bottom.

.      . Fig. 4.12  TrackMate tracks displayed in MATLAB

	 J.-Y. Tinevez and S. Herbert

87 4

But MATLAB displays data in plots where it runs in the other direction, so we had to
invert it here to make the tracks look like their Fiji counterparts.

?? Exercise 4.8
Repeat this procedure to add all the tracks to the same msdanalyzer object. Be
careful to use the ma = ma.addAll() syntax each time.

vv Solution
Supposing we continue with the msdanalyser object we created above (and using
the XML files that are already distributed with the dataset…):

>> �tracks2 = importTrackMateTracks('/Users/tinevez/Desktop/Track-
ing-NEMO-movies_subset/NEMO-IL1/ Cell_03_Tracks.xml', true, false);

>> ma = ma.addAll(tracks2);
>> �tracks3 = importTrackMateTracks('/Users/tinevez/Desktop/Tracking-

NEMO-movies_subset/NEMO-IL1/ Cell_04_Tracks.xml', true, false);
>> ma = ma.addAll(tracks3);
>> ma
 ma =
 msdanalyzer with properties:
 TOLERANCE: 12
 tracks: 614x1 cell
 n_dim: 2
 space_units: 'um'
 time_units: 'frames'
...

4.6.3	 �Interlude: A Short Word About Mean-Square
Displacement Analysis

Let’s consider particles undergoing Brownian motion. Let’s suppose that all the parti-
cles were released from a single point at t = 0, that r is the distance to this point, and that
D is the diffusion coefficient of all these particles in the medium they diffuse in. We can
find the equation for their density for instance in one of Einstein’s historical papers
(Einstein (1905)):

r r(,) expr t r
Dt

= -
æ

è
ç

ö

ø
÷0

2

4

Using this formula, one can derive the mean square displacement (MSD) for such parti-
cles. After a delay τ, the mean-square displacement of the particle ensemble is:

MSD()t t= =r dD2 2
	

(4.1)

We see that the plot of the MSD value as a function of time delay τ should be a straight line
in the case of simple freely diffusing movement. We therefore have a way to check what is
the motion type of the particles. If the MSD is a line, then it is diffusing, and the slope gives
us the diffusion coefficient. If the MSD saturates and has a concave curvature, then
its movement is impeded: it cannot freely diffuse away from its starting point. On the

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

88

4

contrary, if the MSD increases faster than at linear rate, then it must be transported,
because Brownian motion could not take it away that fast. See Qian et al. (1991) for a first
application to biological data.

This is great, because to decide whether the erratic movement of a particle that you are
observing is freely diffusive, impeded, or transported, you would only have to follow the
particle for a finite amount of time. This equation can be evaluated to check what the
particle movement type is. So we just need a way to evaluate it practically.

Experimentally, the MSD for a single particle is also taken as a mean. If the process is
stationary (that is: the “situation”, experimental conditions, etc… do not change over time)
and spatially homogeneous, the ensemble average can be taken as a time average for a
single trajectory, and MSD for a single particle i can be calculated as

r t r t r ti i i
2 2(,) () ()t t= + -()

We then average over overall possible t for a given delay τ to yield MSDi (),t and then
average the resulting MSDi over all particles. This is exactly what the @msdanalyzer
class was built for, as we will see now.

We note that for finite trajectories, the smaller delays τ will be more represented in the
average than longer delays. For instance, if a trajectory has N points in it, the delay corre-
sponding to one frame will have N − 1 points in the average, and the delay corresponding
to N frames will only have one. This has major consequences on measurement certainty,
see Michalet (2010). This is one of the reason why we insisted above on having tracks that
were not too short. Additionally, one has to keep in mind that processes are rarely station-
ary over long period of times and anomalous diffusion (any case when the MSD is not a
line) processes are families of various origins which can have more specific effects on MSD.

4.6.4	 �Step 3: Compute the Mean-Square Displacement

The @msdanalyzer automates the calculation. Using the object we prepared in step 2,
calculating MSD is as simple as:

>> ma = ma.computeMSD
 Computing MSD of 614 tracks... Done.
 ma =
 msdanalyzer with properties:
 TOLERANCE: 12
 tracks: 614x1 cell
 n_dim: 2
 space_units: 'um'
 time_units: 'frames'
 msd: 614x1 cell
...

Notice that now the msd field of the object has some content. However interpreting it is
not trivial. The plot of the individual MSD curves look like this:

>> ma.plotMSD

	 J.-Y. Tinevez and S. Herbert

89 4

0
0 200 400 600

Delay (frames)

M
SD

 (u
m

2)

800 1000

10

20

30

40

50

60

70

80

90

We can plot the ensemble-mean MSD, averaged over all particles:

>> ma.plotMeanMSD

0
0 200 400

Delay (frames)

600 800 1000

0.5

1

1.5

M
SD

 (u
m

2)

2

0
0 10 20

Delay (frames)

30 40 50

0.02

0.04

0.06

M
SD

 (u
m

2)

0.14

0.12

0.1

0.08

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

90

4

Apart from the bumps beyond a delay of 200 frames, the ensemble curve looks like a
straight line. However, looking at smaller delays, we see that this curve displays a slight
concavity.

4.6.5	 �Step 4: Log-Log Fit of the Mean-Square Displacement

This is not enough for us to conclude. A cell is a complex environment and each particle
might have different properties that are confused in the ensemble mean plotted above. We
therefore turn to another strategy.

Let’s consider a single particle that diffuses freely. In that case Eq. 4.1 holds. The MSD
as a function of delay τ is a straight line. If we compute the logarithm of Eq. 4.1 we get:

MSD
MSD
diff

diff

()
log () log()

t t
t t

=
() = +

2dDi


	

(4.2)

that we can write y x= ´ +1  if y is (log)MSD and x is (log).t

Let us now consider a particle that moves with a nearly constant velocity vector. In that
case, r varies linearly with τ and MSD varies with the square of τ. We then can write:

MSD
MSD

trans

trans

()
log () log()

t t
t t

µ
() = ´ +

2

2 
	

(4.3)

 or y x= ´ +2  .

So in a log-log plot, the MSD curves can be approximated by straight lines of slope 1
for diffusion motion, 2 for transported motion, and less than 1 for constrained motion.
We can therefore turn this into a test to determine the motion type of our dots. We will fit
the log-log plot of the MSD curve by a line for each particle, and measure its slope alpha.
The distribution of all slopes for a given condition will yield the motion type. We can also
use the fitting approach to add an automated quality check. For instance, we can decide
not to include slope values for fits with an R2 lower than 0.5.

Again, there is a method that does all of this for us in the @msdanalyzer class:

% Get the description of the log-log fit function.
>> help ma.fitLogLogMSD
% Perform the fit:
>> ma = ma.fitLogLogMSD
Fitting 614 curves of log(MSD) = f(log(t)), taking only the first 25
% of each curve... Done.
% Note that now the loglogfit field of the analyzer is not empty any-
more:
>> ma.loglogfit
ans =
 struct with fields:
 alpha: [614x1 double]
 gamma: [614x1 double]

	 J.-Y. Tinevez and S. Herbert

91 4

 r2fit : [614x1 double]
 alpha_lci: [614x1 double]
 alpha_uci: [614x1 double]

We are interested in the slope alpha, but first we want to remove all fits that had an R2 value
lower than 0.5. The R2 values are stored in the ma.loglogfit.r2fit field.

% Logical indexing:
>> valid = ma.loglogfit.r2fit > 0.5;
>> fprintf('Retained %d fits over %d.\n', sum(valid), numel(valid))
Retained 461 fits over 614.

Now we can plot the histogram of slopes:

>> histogram(ma.loglogfit.alpha(valid), 'Normalization', 'probability')
>> box off
>> xlabel('Slope of the log-log fit.')
>> ylabel('p')
>> yl = ylim;
>> line([1 1], [yl(1) yl(2)], 'Color', 'k', 'LineWidth', 2)

0
0.2 0.4

Slope of the log-log fit
0.6 0.8 1 1.2 1.4 1.81.6

0.02

0.04

0.06

p

0.14

0.12

0.1

0.08

4.6.6	 �Step 5: Analysis of the Log-Log Fit

The histogram displayed above shows a peak around a slope of 1, and several other peaks
below 1, around 0.4 and 0.8 judged from its shape. This suggests that there are mixed
populations in our dataset, with some particles freely diffusing and others, the majority,
probably constrained.

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

92

4

The population average behavior can be assessed by computing the mean of this distri-
bution and checking whether it is significantly lower than 1 based on a t-test evaluation.

>> fprintf('Mean slope in the log-log fit: alpha = %.2f +/- %.2f
(N = %d).\n', ...
mean(ma.loglogfit.alpha(valid)), std(ma.loglogfit.alpha(valid)),
sum(valid))
>> if (h)
 fprintf('The mean of the distribution IS significantly lower than
1 with P = %.2e.\n', p)
else
 fprintf('The mean of the distribution is NOT significantly
lower than 1. P = %.2f.\n', p)
end
Mean slope in the log-log fit: alpha = 0.73 +/- 0.31 (N = 461).
The mean of the distribution IS significantly lower than 1 with
P = 4.79e-57.

This ensemble analysis is not perfectly relevant however. The t-test we ran at the end
gives a conclusion on the mean of the slope value, which is not exactly what we want to
know. We know that there are likely to be a mixed population of particles with different
motility. We expect for instance some non-specific particles to be freely diffusing or com-
pletely stuck to the substrate.

We may ask how many particles have a constrained motility and if they are the major-
ity. A way to assess this at the single particle level is to check the confidence interval for the
value of the slope in the fit. We state that if the confidence interval of the slope value is
below 1, then the particles have a constrained motility. Again, things are made easy to us,
as the confidence interval is also stored in the @msdanalyzer instance:

cibelow = ma.loglogfit.alpha_uci(valid) < 1;
ciin = ma.loglogfit.alpha_uci(valid) >= 1 & ma.loglogfit.
alpha_lci(valid) <= 1;
ciabove = ma.loglogfit.alpha_lci(valid) > 1;
fprintf('Found %3d particles over %d with a confidence interval for t
he slope value below 1.\n', ...
 sum(cibelow), numel(cibelow))
fprintf('Found %3d particles over %d with a slope of 1 inside the
confidence interval.\n', ...
 sum(ciin), numel(ciin))
fprintf('Found %3d particles over %d with a confidence interval for t
he slope value above 1.\n', ...
 sum(ciabove), numel(ciabove))
Found 345 particles over 461 with a confidence interval for the
slope value below 1.
Found 36 particles over 461 with a slope of 1 inside the confidence
interval.
Found 80 particles over 461 with a confidence interval for the
slope value above 1.

	 J.-Y. Tinevez and S. Herbert

93 4

This allowed us to conclude that the majority of the dots that were tracked have a con-
strained or sub-diffusive motility at the time-scale of their appearance. A reasonable
hypothesis is that they are anchored to some static structure in the cell.

?? Exercise 4.9
Would the conclusion have been very different if we had been much more stringent on
the R2 value we used to filter out bad tracks? For instance, with R2 = 0.8?

vv Solution
The distribution of alpha changes. The peak centered around 0.4 disappears, and the
histogram takes the shape of a large and wide peak centered at 0.8, with a secondary,
small peak around 1. The mean slope value changes accordingly, however the
conclusion on the motility type is still valid.

>> valid = ma.loglogfit.r2fit > 0.8;
>> fprintf('Retained %d fits over %d.\n', sum(valid), numel(valid))
Retained 317 fits over 614.
>> fprintf('Mean slope in the log-log fit: alpha = %.2f +/- %.2f
(N = %d).\n', ...
mean(ma.loglogfit.alpha(valid)), std(ma.loglogfit.alpha(valid)),
sum(valid))
>> if (h)
 fprintf('The mean of the distribution IS significantly lower than
1 with P = %.2e.\n', p)
else
 fprintf('The mean of the distribution is NOT signifi-
cantly lower than 1. P = %.2f.\n', p)
end
Mean slope in the log-log fit: alpha = 0.86 +/- 0.28 (N = 317).
The mean of the distribution IS significantly lower than 1 with
P = 2.31e-17.

?? Exercise 4.10
Redo all the analysis for the control condition. In our case, the control condition
corresponds to cells that were not stimulated. The dots we observed then were
permanent instead of being transient when the cells were stimulated. They probably
correspond to some spurious particles.

vv Solution
We can re-execute the whole approach displayed above on the two movies in the
Control folder:

clear all
close all
clc
tracks1 = importTrackMateTracks('/Users/tinevez/Desktop/Tracking-
NEMO-movies_subset/NEMO-Ctrl/ Cell_01_Tracks.xml', true, false);
tracks2 = importTrackMateTracks('/Users/tinevez/Desktop/Tracking-
NEMO-movies_subset/NEMO-Ctrl/ Cell_02_Tracks.xml', true, false);
ma = msdanalyzer(2, 'um', 'frames');

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

94

4

ma = ma.addAll(tracks1);
ma = ma.addAll(tracks2);
ma = ma.computeMSD;
ma = ma.fitLogLogMSD;
valid = ma.loglogfit.r2fit > 0.8;
fprintf('Retained %d fits over %d.\n', sum(valid), numel(valid))
fprintf('Mean slope in the log-log fit: alpha = %.2f +/- %.2f (N = %d).
\n', ...
 mean(ma.loglogfit.alpha(valid)), std(ma.loglogfit.alpha(valid)), sum
(valid))
[h, p] = ttest(ma.loglogfit.alpha(valid), 1, 'tail', 'left');
if (h)
 fprintf('The mean of the distribution IS signifi-
cantly lower than 1 with P = %.2e.\n', p)
else
 fprintf('The mean of the distribution is NOT signifi-
cantly lower than 1. P = %.2f.\n', p)
end

And the output is:

Computing MSD of 19 tracks... Done.
Fitting 19 curves of log(MSD) = f(log(t)), taking only the first 25%
of each curve... Done.
Retained 13 fits over 19.
Mean slope in the log-log fit: alpha = 0.87 +/- 0.24 (N = 13).
The mean of the distribution IS significantly lower than 1 with
P = 3.41e-02.

The majority of non-specific particles appears to also be stuck. So what is the difference
with the IL1-stimulation condition? In this case, the conclusion on motility is the same
but it does not apply to the same particles. The control condition movies are made of the
few cells we could find that had fluorescent dots that were visible without stimulation.
What matters is that there are few of them and that their number is not enough to change
the scientific conclusion on the dots that appear transiently upon stimulation, regardless
of their motility.

4.7	 �Results and Conclusion

This module is one part of the work that helped us conclude on the NEMO dot motility.
The MSD analysis indicated that the dots made of NEMO-eGFP proteins that appear
upon stimulation by IL1 are anchored to some static structure of the cell during the little
time they are visible.

We then turned to investigate what this static structure could be. So we repeated the
analysis you just did on cells for which we depolymerized actin filaments and microtu-
bules. The conclusion did not change. There was still the same proportion of NEMO dots
with the same constrained motility type.

	 J.-Y. Tinevez and S. Herbert

95 4

We then led other investigations, relying on biochemistry and confocal imaging, and
concluded that NEMO dots are anchored at the cell membrane. The membrane is fluid
and the anchor point might be diffusing, but we do not see this behavior on the time-scale
of the live-imaged NEMO dots. The whole story and more can be found in the original
paper Tarantino et al. (2014).

Take Home Message

We hope this module serves as an example and shows that biophysics and image
analysis can provide new approaches to a scientific question that would otherwise
solely rely on biochemistry. The original paper contains quite some heavy biochemistry
studies, but their results are reinforced by the orthogonal approach presented here.

We relied on mean-squared-displacement analysis to reach a conclusion on the
motility type. This is the historical method and the first to have been applied on
biological data Qian et al. (1991). Its main drawback is that the tracks need to be long
and the detections accurate to have a decent accuracy on the quantities MSD analysis
yields. Good, accurate tracks are especially difficult to obtain in many life-science
cases, so several research labs have been working on developing new methods
improving on MSD. We can cite for instance the work of Hansen et al. (2018) based on
analyzing step distributions, or Briane et al. (2018) that relies on a statistical approach.

Acknowledgements  We are very grateful to Emmanuel Laplantine and Nadine Tarantino,
our fellow authors on the paper, that agreed to make the raw data publicly available. We thank
Jan Eglinger (Friedrich Miescher Institute for Biomedical Research, Basel) for reviewing this
chapter.

Bibliography

Briane V, Kervrann C, Vimond M (2018) Statistical analysis of particle trajectories in living cells. Phys Rev E
97:062121 https://doi.org/10.1103/PhysRevE.97.062121. https://link.aps.org/doi/10.1103/PhysRevE.
97.062121

Chenouard N, Smal I, de Chaumont F, Mas ̆ka M, Sbalzarini IF, Gong Y, Cardinale J, Carthel C, Coraluppi S,
Winter M, Cohen AR, Godinez WJ, Rohr K, Kalaidzidis Y, Liang L, Duncan J, Shen H, Xu Y, Magnusson KE,
Jalden J, Blau HM, Paul-Gilloteaux P, Roudot P, Kervrann C, Waharte F, Tinevez JY, Shorte SL, Willemse
J, Celler K, van Wezel GP, Dan HW, Tsai YS, Ortiz de Solorzano C, Olivo-Marin JC, Meijering E (2014)
Objective comparison of particle tracking methods. Nat Methods 11(3):281–289

Einstein A (1905) Investigations on the theory of the brownian movement. Ann der Physik. http://www.
physik.fu-berlin.de/~kleinert/files/eins_brownian.pdf

Hansen AS, Woringer M, Grimm JB, Lavis LD, Tjian R, Darzacq X (2018) Robust model-based analysis of
single-particle tracking experiments with spot-on. eLife 7:e33125. ISSN: 2050-084X. https://doi.
org/10.7554/eLife.33125

Hauer MH, Seeber A, Singh V, Thierry R, Sack R, Amitai A, Kryzhanovska M, Eglinger J, Holcman D, Owen-
Hughes T, Gasser SM (2017) Histone degradation in response to DNA damage enhances chromatin
dynamics and recombination rates. Nat Struct Mol Biol 24(2):99–107

Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G (2008) Robust single-
particle tracking in live-cell time-lapse sequences. Nat Methods 5(8):695–702

Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng
82(Series D):35–45

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

https://doi.org/10.1103/PhysRevE.97.062121
https://link.aps.org/doi/10.1103/PhysRevE.97.062121
https://link.aps.org/doi/10.1103/PhysRevE.97.062121
http://www.physik.fu-berlin.de/~kleinert/files/eins_brownian.pdf
http://www.physik.fu-berlin.de/~kleinert/files/eins_brownian.pdf
https://doi.org/10.7554/eLife.33125
https://doi.org/10.7554/eLife.33125

96

4

Michalet X (2010) Mean square displacement analysis of single-particle trajectories with localization error:
Brownian motion in an isotropic medium. Phys Rev E Stat Nonlin Soft Matter Phys 82(4 Pt 1):041914

Qian H, Sheetz MP, Elson EL (1991) Single particle tracking. analysis of diffusion and flow in two-dimensional
systems. Biophys J 60(4):910–921. ISSN: 0006-3495. https://doi.org/10.1016/S0006-3495(91)82125-7.
http://www.sciencedirect.com/science/article/pii/S0006349591821257

Tarantino N, Tinevez J-Y, Crowell EF, Boisson B, Henriques R, Mhlanga M, Agou F, Israël A, Laplantine E
(2014) TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO–IKK supramolecular
structures. J Cell Biol 204(2):231–245. ISSN: 0021-9525. https://doi.org/10.1083/jcb.201307172. http://
jcb.rupress.org/content/204/2/231

Tinevez J-Y, Dragavon J, Baba-Aissa L, Roux P, Perret E, Canivet A, Galy V, Shorte S (2012) A quantitative
method for measuring phototoxicity of a live cell imaging microscope, chap 15. In: Michael Conn P
(ed) Imaging and spectroscopic analysis of living cells. Methods in enzymology, vol 506, pp 291–309.
Academic. https://doi.org/10.1016/B978-0-12-391856-7.00039-1. http://www.sciencedirect.com/sci-
ence/article/pii/B9780123918567000391

Tinevez J-Y, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri
KW (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:
80–90. ISSN: 1046-2023. https://doi.org/10.1016/j.ymeth.2016.09.016. http://www.sciencedirect.
com/science/article/pii/S1046202316303346 Image Processing for Biologists

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (7  http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not included in
the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

	 J.-Y. Tinevez and S. Herbert

https://doi.org/10.1016/S0006-3495(91)82125-7
http://www.sciencedirect.com/science/article/pii/S0006349591821257
https://doi.org/10.1083/jcb.201307172
http://jcb.rupress.org/content/204/2/231
http://jcb.rupress.org/content/204/2/231
https://doi.org/10.1016/B978-0-12-391856-7.00039-1
http://www.sciencedirect.com/science/article/pii/B9780123918567000391
http://www.sciencedirect.com/science/article/pii/B9780123918567000391
https://doi.org/10.1016/j.ymeth.2016.09.016
http://www.sciencedirect.com/science/article/pii/S1046202316303346
http://www.sciencedirect.com/science/article/pii/S1046202316303346
http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2020
K. Miura, N. Sladoje (eds.), Bioimage Data Analysis Workflows, Learning Materials in Biosciences,
https://doi.org/10.1007/978-3-030-22386-1_5

97

Introduction to MATLAB
Image Analysis and Brownian Motion

Simon F. Nørrelykke

5.1	 �Tools – 99
5.1.1	 �MATLAB – 99
5.1.2	 �Image Processing Toolbox – 99
5.1.3	 �Statistics and Machine Learning Toolbox,

Curve Fitting Toolbox – 99

5.2	 �Getting Started with MATLAB – 99
5.2.1	 �Baby Steps – 99
5.2.2	 �Plot Something – 101
5.2.3	 �Make it Pretty – 104
5.2.4	 �Getting Help – 104

5.3	 �Automating It: Creating Your Own Programs – 104
5.3.1	 �Create, Save, and Run Scripts – 105
5.3.2	 �Code Folding and Block-Wise Execution – 106
5.3.3	 �Scripts, Programs, Functions: Nomenclature – 106

5.4	 �Working with Images – 107
5.4.1	 �Reading and Displaying an Image – 108
5.4.2	 �Extracting Meta-Data from an Image – 108
5.4.3	 �Reading and Displaying an Image-Stack – 110
5.4.4	 �Smoothing, Thresholding and All That – 113

5.5	 �Time-Series Analysis – 116
5.5.1	 �Simulating a Time-Series of Brownian Motion

(Random Walk) – 117
5.5.2	 �Plotting a Time-Series – 118
5.5.3	 �Histograms – 119
5.5.4	 �Sub-Sampling a Time-Series

(Slicing and Accessing Data) – 119

5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22386-1_5&domain=pdf

5.5.5	 �Investigating How “Speed” Depends on Δt – 120
5.5.6	 �Investigating How “Speed” Depends on Subsampling – 121
5.5.7	 �Simulating Confined Brownian Motion – 122
5.5.8	 �Simulating Directed Motion with Random

Tracking Error – 122
5.5.9	 �Loading Tracking Data from a File – 123
5.5.10	 �Smoothing (Filtering) a Time-Series – 124

5.6	 �MSD: Mean Square Displacement – 124
5.6.1	 �Creating a Function That Calculates MSDs – 125
5.6.2	 �MSD: Linear Motion – 127
5.6.3	 �MSD: Brownian Motion – 127
5.6.4	 �MSD: Averaged Over Several 2-Dim Tracks – 129
5.6.5	 �Further Reading About Diffusion, the MSD,

and Fitting Power-Laws – 129

�Appendix: MATLAB Fundamental Data Classes – 130
�MATLAB Documentation Keywords for Data Classes – 131

�Appendix: Do I Have That Toolbox? – 131

�Appendix: HTML and Live Scripts – 133
�Publish Your Script to HTML – 133
�Working with Live Scripts – 133

�Appendix: Getting File and Folder Names
Automatically – 133
�Read from a Folder – 133
�Path and File Names – 135

�Appendix: Codehygiene – 137

�Appendix: MATLAB Cheat Sheet – 138

�Bibliography – 141

99 5

What You Learn from This Chapter
You will be introduced to some of the powerful and flexible image-analysis methods native
to MATLAB. You will also learn to use MATLAB to simulate a time-series of Brownian motion
(diffusion), to analyse time-series data, and to plot and export the results as pretty figures
ready for publication. If this is the first time you code, except from writing Macros in ImageJ,
then this will also serve as a crash course in programming for you.

5.1	 �Tools

We shall be using the commercial software package MATLAB as well as some of its prob-
lem specific toolboxes, of which there are currently more than 30.

5.1.1	 �MATLAB

Don’t panic! MATLAB is easy to learn and easy to use. But you do still have to learn it.
MATLAB is short for matrix laboratory, hinting at why MATLAB is so popular in the
imaging community—remember that an image is just a matrix of numbers. MATLAB is
commercial software for numerical, as opposed to symbolic, computing. This material was
developed and tested using versions R2015b, R2016a, R2017a, and R2018a of MATLAB.

5.1.2	 �Image Processing Toolbox

Absolutely required if you want to use MATLAB for image analysis.

5.1.3	 �Statistics and Machine Learning Toolbox,
Curve Fitting Toolbox

Somewhat necessary for data-analysis, though we can get quite far with the core function-
alities alone.

5.2	 �Getting Started with MATLAB

That is what we are doing here! However, if you have to leave now and still want an interac-
tive first experience: Head over here, sign up, and take a free, two hour, interactive tutorial
that runs in your web-browser and does not require a MATLAB license (they also have paid
in-depth courses).

5.2.1	 �Baby Steps

Start MATLAB and lets get going! When first starting, you should see something similar
to .  Fig. 5.1

Introduction to MATLAB

https://matlabacademy.mathworks.com
https://matlabacademy.mathworks.com

100

5

First we are just going to get familiar with the command line interface. To reduce clutter,
double-click on the bar (grey or blue) saying Command Window. This will, reversibly,
maximize that window.

Now, let us add two numbers by typing 5+7, followed by return. The result should
look like in .  Fig. 5.2

Next, let us define two variables a and b and add them to define a third variable c

1  >> a=5
2 
3  a =
4 
5  5
6 
7  >> b=7
8 
9  b =
10 
11  7
12 
13  >> c=a+b
14 
15  c =
16 
17  12

Tool-strip

Script-editor

Command-line

Variables

Directory

.      . Fig. 5.1  The full MATLAB window with default layout of the windows. Some preset layouts are
accessible in the tool-strip, under the HOME tab, in the Layout pull-down menu. Double-click on the
top-bar of any sub-window to maximize it, double-click again to revert

	 S. F. Nørrelykke

101 5

This time, we notice that the result of our operation are no longer stored in the variable
ans but in the variable with the name we gave it, i.e., a, b, and c.

Finally, let us change one of the variables and see how the other two change in response
to this.

1  >> a=10
2 
3  a =
4 
5  10
6 
7  >> c
8 
9  c =
10 
11  12
12 
13  >> c=a+b
14 
15  c =
16 
17  17

Here, you should notice that the value of c does not change until we have evaluated it
again—computers are fast, but they cannot not read our minds (most of the time), so we
have to tell them exactly what we want them to do.

Ok, that might have been somewhat underwhelming. Let us move on to something
slightly more interesting and that you can probably not so easily do on your phone.

5.2.2	 �Plot Something

Here are the steps we will take:
	1.	 Create a vector x of numbers
	2.	 Create a function y of those numbers, e.g. the cosine or similar
	3.	 Plot y against x
	4.	 Label the axes and give the plot a title
	5.	 Save the figure as a pdf file

.      . Fig. 5.2  The command
window in MATLAB after
entering 5+7 and hitting the
return key. The result, 12, is
displayed and stored in the
variable ans

Introduction to MATLAB

102

5

First we define the peak-amplitude (half of the peak-to-peak amplitude)

1  >> A = 10
2 
3  A =
4 
5  10

Then we define a number of discrete time-points

1  >> x = 0 : 0.01 : 5*pi;

Notice how the input we gave first, the A, was again confirmed by printing (echoing) the
variable name and its value to the screen. To suppress this, simply end the input with a
semicolon, like we just did when defining x. The variable x is a vector of numbers, or
time-points, between 0 and 5π in steps of 0.01. Next, we calculate a function y(x) at each
value of x

1  >> y = A * cos(x);

Finally, we plot y versus x1

1  >> figure;plot(x,y)

To make the figure a bit more interesting we now add one more plot as well as legend,
labels, and a title. The result is shown in .  Fig. 5.3.

1  >> y2 = y .* x;
2  >> hold on
3  >> plot(x, y2, ’--r’)
4  >> legend(’cos(x)’, ’x * cos(x)’)
5  >> xlabel(’Time (AU)’)
6  >> ylabel(’Position (AU)’)
7  >> title(’Plots of various sinusoidal functions’)

Here, hold on ensures that the plots already in the figure are “held”, i.e., not erased,
when the next function is plotted in the same figure window. We specify the use of a
dashed red line, for the new plot, by the ’--r’ argument in the plot function. You

1	 By now, you have probably noticed that some words are typeset like this. Those are words
that MATLAB recognize as commands (excluding commands that are specific to toolboxes).

	 S. F. Nørrelykke

103 5

will also have noticed that we multiplied using . ∗ and not just ∗—this is known as
element-wise multiplication, as opposed to matrix or vector multiplication (more on
that in a little while).

After having created a figure and adjusted it to your liking, you may want to export it
for use in a paper or presentation. This can be done either via the pull-down menus, if you
only need to do it once, or via the command line if it is a recurrent job:

1  >> print(’-dpdf’, ’/Users/simon/Desktop/cosineFigure.pdf’)

Here, the first argument, -dpdf’, specifies the output file format; whereas the second
argument specifies where (/Users/simon/Desktop/) the output file should be
saved and with what name (cosineFigure.pdf). The print function is not con-
fined to the pdf format but can also export to png, tiff, jpeg, etc. On a Windows machine,
the path to the desktop is something like c:Users$username)Desktop, though it
will depend on the version of Windows you run.

0
–100

–80

–60

–40

Po
si

tio
n

(A
U

)

Plots of various sinusoidal functions

–20

0

20

40

60

80

1 2 3 4 5
Time (AU)

6 7 8 9 10

cos(x)
x * cos(x)

.      . Fig. 5.3  Two sinusoidal plots with legend, axes labels, and title

Introduction to MATLAB

104

5

5.2.3	 �Make it Pretty

We have a large degree of control over how things are rendered in MATLAB. It is possible
to set the typeface, font, colors, line-thickness, plot symbols, etc. Don’t overdo this! The
main objective is to communicate your message, and that message is rarely “look how
many colors I have”—if you only have two graphs in the same figure, gray-scale will likely
suffice. Strive for clarity!

5.2.4	 �Getting Help

At this point you might want to know how to get help for a specific command. That is easy,
simply type help and then the name of the command you need help on. Example, for the
xlabel command we just used:

1  >> help xlabel
2  xlabel X-axis label.
3  � xlabel(’text’) adds text beside the X-axis on the current axis.
4 
�5    � xlabel(’text’, ’Property1’,PropertyValue1, ’Property2’,

PropertyValue2 ,...)
6  sets the values of the specified properties of the xlabel.
7 
8  xlabel(AX,...) adds the xlabel to the specified axes.
9 
10    � H = xlabel(...) returns the handle to the text object

used as the label.
11 
12  See also ylabel, zlabel, title, text.
13 
14  Reference page for xlabel

If you click the link on the last line it will open a separate window with more information
and graphical illustrations. Alternatively, simply go directly to that page this way

1  >> doc xlabel

Expect to spend substantial time reading once you start using more of the options avail-
able. MATLAB is a rich language and most functions have many properties that you can
tune to your needs, when these differ from the default.

5.3	 �Automating It: Creating Your Own Programs

The command-line is a wonderful place to quickly try out new ideas—just type it in and
hit return. Once these ideas become more complex we need to somehow record them in
one place so that we can repeat them later without having to type everything again. You
know what we are getting to: The creation of computer programs.

	 S. F. Nørrelykke

105 5

In the simplest of cases we can take a series of commands, that were executed in the com-
mand line, and save them to a file. We could then, at a later stage, open that file and copy these
lines into the command line, one after the other, and press return. This is actually a pretty
accurate description of what takes place when MATLAB runs a script: It goes through each
line of the script and tries to execute it, one after the other, starting at the top of the file.

5.3.1	 �Create, Save, and Run Scripts

You can use any editor you want for writing down your collection of MATLAB statements.
For ease of use, proximity, uniformity, and because it comes with many powerful extra fea-
tures, we shall use the editor that comes with MATLAB. It will look something like in
.  Fig. 5.4 for a properly typeset and documented program. You will recognize most of the

.      . Fig. 5.4  The editor window. The script is structured for easy human interpretation with clear blocks
of code and sufficient documentation. Starting from the percent sign all text to the right of it is
“outcommented” and appears green, i.e., MATLAB does not try to execute it. A double percent-sign
followed by space indicates the beginning of a code-block that can be folded (command-.), un-folded
(shift-command-.) and executed (command-enter) independently. The currently active code-
block is yellow. The line with the cursor in it is pale-green. Notice the little green square in the upper
right corner, indicating that MATLAB is happy with the script and has no errors, warnings, or suggestions

Introduction to MATLAB

106

5

commands from when we plotted the sinusoidsal functions earlier. But now we have also
added some text to explain what we are doing.

A script like the one in .  Fig. 5.4 can be run in several ways: (1) You can click on the
big green triangle called “run” in Editor tab; (2) Your can hit F5 when your cursor is in the
editor window; or (3) You can call the script by name from the command line, in this case
simply type myFirstScript and hit return. The first two options will first save any
changes to your script, then execute it. The third option will execute the version that is
saved to disk when you call it. If a script has unsaved changes an asterisk appears next to
its name in the tab.

When you save a script, please give it a meaningful name—“untitled.m” or “script5.m”
are not good names even if you intend to never use them again (if it is temporary call it
“scratch5.m” or “deleteMe5.m” so that if you forget to delete it now, you will not be in
doubt when you rediscover it weeks from now). Make it descriptive and use underscores
or camel-back notation as in “my_first_script.m” or “myFirstScript.m”. The same goes for
variable names.

5.3.2	 �Code Folding and Block-Wise Execution

As you will have noticed, in the screenshot of the editor, the lines of codes are split into para-
graphs separated by lines that start with two percent signs and a blank space. All the code
between two such lines is called a code-block. These code-blocks can be folded by clicking on
the little square with a minus in it on the left (or use the keyboard shortcut command-., to
unfold do shift-command-.). This is very useful when your code grows.

You can quickly navigate between code-blocks with command-arrow-up/down
and once your cursor is in a code-block you are interested in you can execute that entire
block with command-enter. Alternatively, you can select (double-click or click-drag)
code and execute it with shift-F7. For all of these actions you will see the code appear-
ing and attempting to execute in the command window.

A list of keyboard shortcuts as well as settings for code-folding can be found in the
preference settings (can you find the button?), via the command-, shortcut, as always, on
a mac. What is it on a PC?

5.3.3	 �Scripts, Programs, Functions: Nomenclature

Is it a script or a program? It depends! Traditionally, only compiled languages like C, C++,
Fortran, and Java are referred to as programming languages and you write programs.
Languages such as JavaScript and Perl, that are not compiled, were called scripting lan-
guages and you write scripts. Then there is Python, sitting somewhere in between.
MATLAB also is in between, here is what MathWorks have to say about it;

»» When you have a sequence of commands to perform repeatedly or that you want to
save for future reference, store them in a program file. The simplest type of MATLAB
program is a script, which contains a set of commands exactly as you would type them
at the command line.

Ok, so when we save our creations to an m-file (a file with extension .m) we call it a program
file (it is a file and it is being used by the program MATLAB). But the thing we saved could

	 S. F. Nørrelykke

https://ch.mathworks.com/help/matlab/programming-and-data-types.html

107 5

be either a script or a function, or perhaps a new class definition. We shall use the word
“program” to refer to both scripts and functions, basically whatever we have in the editor,
but may occasionally specify which of the two we have in mind if it makes things clearer.

5.4	 �Working with Images

Because MATLAB was designed to work with matrices of numbers it is particularly well-
suited to operate on images. Recently, Mathworks have also made efforts to become more
user-friendly. Let’s demonstrate (.  Figs. 5.5 and 5.6):
	1.	 Save an image to your desktop, e.g. “Blobs (25K)” from ImageJ as “blobs.tif ” (also

provided with material)

.      . Fig. 5.5  Access to various apps in the tool-strip of MATLAB. The apps accessible will depend on the
tool-boxes you have installed

.      . Fig. 5.6  The “blobs” from ImageJ displayed without (left) and with (right) scaling of intensity and size

Introduction to MATLAB

108

5

	2.	 Open the MATLAB app Image Viewer either from the tool-strip or by typing
imtool

	3.	 From the Image Viewer go to File > Open ... and select an image
	4.	 Adjust the contrast, inspect the pixels, measure a distance, etc, using the tool-strip

shortcuts

5.4.1	 �Reading and Displaying an Image

This, however, is not much different from what we can do in ImageJ. The real difference
comes when we start working from the command-line and making scripts—while this is
also possible in ImageJ, it is a lot easier in MATLAB. Assuming you have an image named
“blobs.tif ” on your desktop, try this

1  >> cd /Users/simon/Desktop
2  >> myBlobs = imread(’blobs.tif’);
3  >> figure(1); clf
4  >> imshow(myBlobs)
5  >> figure(2); clf
6  >> imshow(myBlobs, ’displayrange’, [10 200], ...
7  ’initialmagnification’, ’fit’)

Here is what we just did: (1) We navigated to the directory holding our image; (2) Read the
image into the variable myBlobs using the imread command; (3) Selected figure num-
ber 1 (or created it if it didn’t exist yet) and cleared it; (4) Displayed the content of our
variable myBlobs in figure 1; (5) Selected, or created, figure number 2 and cleared it; (6)
Again displayed the content of myBlobs but now with the displayed gray-scale confined
(especially relevant for 16bit images that otherwise appear black), and the displayed image
fitted to the size of the window.

5.4.2	 �Extracting Meta-Data from an Image

Because we are becoming serious image-analysts we also take a look at the meta-data that
came with the image.

1  >> blobInfo = imfinfo(’blobs.tif’);
2  >> whos blobInfo
3  Name Size Bytes Class Attributes
4 
5  blobInfo 1x1 5908 struct
6 
7  >> blobInfo
8 
9  blobInfo =
10 

	 S. F. Nørrelykke

109 5

11  Filename: ’/Users/simon/Desktop/blobs.tif’
12  FileModDate: ’05-Jun-2016 09:45:04’
13  FileSize: 65172
14  Format: ’tif’
15  FormatVersion: []
16  Width: 256
17  Height: 254
18  BitDepth: 8
19  ColorType: ’grayscale’
20  FormatSignature: [77 77 0 42]
21  ByteOrder: ’big-endian’
22  NewSubFileType: 0
23  BitsPerSample: 8
24  Compression: ’Uncompressed’
25  PhotometricInterpretation: ’WhiteIsZero’
26  StripOffsets: 148
27  SamplesPerPixel: 1
28  RowsPerStrip: 254
29  StripByteCounts: 65024
30  XResolution: []
31  YResolution: []
32  ResolutionUnit: ’Inch’
33  Colormap: []
34  PlanarConfiguration: ’Chunky’
35  TileWidth: []
36  TileLength: []
37  TileOffsets: []
38  TileByteCounts: []
39  Orientation: 1
40  FillOrder: 1
41  GrayResponseUnit: 0.0100
42  MaxSampleValue: 255
43  MinSampleValue: 0
44  Thresholding: 1
45  Offset: 8
46  ImageDescription: ’ImageJ=1.50b...’

After your experience with ImageJ you should have no problems understanding this
information. What is new here, is that the variable blobInfo that we just created is of
the type struct. Elements in such variables can be addressed by name, like this:

1  >> blobInfo.Offset
2 
3  ans =
4 
5  8
6 
7  >> blobInfo.Filename
8 
9  ans =
10 
11  /Users/simon/Desktop/blobs.tif

Introduction to MATLAB

110

5

If you want to add a field, or modify one, it is done like this:

1  >> blobInfo.TodaysWeather = ’rainy, sunny, whatever’
2 
3  blobInfo =
4 
5  TodaysWeather: ’rainy, sunny, whatever’

Note, that we are modifying the content of the variable inside of MATLAB—the informa-
tion in the “blobs.tif ” file sitting on your hard-drive was not changed. If you want to save
the changes you have made to an image (not including the metadata) you need the com-
mand imwrite. If you want to also save the metadata, and generally want more detailed
control of your tif-image, you need the Tiff command.

When addressing an element by name, you can reduce typing by hitting the TAB-key
after entering blobInfo.—this will display all the field-names in the structure.

It is important to realize that imread will behave different for different image for-
mats. For example, the tiff format used here supports the reading of specific images from
a stack via the ’index’ input argument (illustrated below) and extraction of pixel
regions via the ’pixelregion’ input argument. The latter is very useful when images
are large or many as it can speed up processing not having to read the entire image image
into memory. On the other hand, jpeg2000 supports ’pixelregion’ and ’reduc-
tionlevel’, but not ’index’.

5.4.3	 �Reading and Displaying an Image-Stack

Taking one step up in complexity we will now work with a stack of tiff-files instead. These
are the steps we will go through
	1.	 Open “MRI Stack (528K)” in ImageJ (File > Open Samples)—or use the copy

provided
	2.	 Save the stack to your desktop, or some other place where you can find it

(File > Save)
	3.	 Load a single image from the stack into a two-dimensional variable
	4.	 Load multiple images from the stack into a three-dimensional variable
	5.	 Browse through the stack using the implay command
	6.	 Create a montage of all the images using the montage command

After performing the first two steps in ImageJ, we switch to MATLAB to load a single
image-plane (we will work in the editor, use Live Script if you feel like it) and display
it (see. result in .  Fig. 5.7):

1  %% --- INITIALIZE ---
2  clear variables % clear all variables in the workspace
3  close all % close all figure windows
4  clc % clear the command window
5  cd(’~/Desktop’) % change directory to desktop

	 S. F. Nørrelykke

111 5

6 
7  %% --- load single image and display it ---
8  mriImage = imread(’mri-stack.tif’, ’index’, 7);
9  imshow(mriImage)

To build a stack in MATLAB we need the extra argument ’index’ to specify which
single image to read and where in the stack to write it, here we chose image number 7:

1  mriStack(: , : , 7) = imread(’mri-stack.tif’, ’index’,7);

Next, we load the entire mri-stack one image at a time. This is done by writing into the
three-dimensional array (data-cube) mriStack using a for-loop (this concept should
already be familiar to you from the ImageJ macro sections). We use the colon-notation to
let MATLAB know that it should assign as many rows and columns as necessary to fit the
images. We also take advantage of already knowing that there are 27 images.

1  for imageNumber = 1 : 27
2 � mriStack(: , : , imageNumber) = imread(’mri-stack.tif’,

’index’, imageNumber);
3  end

.      . Fig. 5.7  Slice number 7 from
mri-stack.tif

Introduction to MATLAB

112

5

We can use the whos command to inspect our variables and the implay command to
loop through the stack (command line):

1  >> whos
2  Name Size Bytes Class Attributes

3 
4  imageNumber 1x1 8 double
5  mriImage 226x186 42036 uint8
6  mriStack 226x186x27 1134972 uint8
7  >> implay(mriStack)

Finally, we want to create a montage. This requires one additional step because we are
working on 3-dimensional single-channel data as opposed to 4-dimensional RGB images
(the fourth dimension is color)—the montage command assumes/requires 4D data (that
is just how it is):

1  mriStack2 = reshape(mriStack, [226 186 1 27]);
2  map = colormap(’copper’); % or: bone, summer, hot
3  montage(mriStack2, map, ’size’, [3 9])

The reshape command is used to, well, reshape data arrays and here we used it to simply
add one more (empty) dimension so that montage will read the data. The result is shown
in .  Fig. 5.8.

We can again inspect the dimensions and data-types using the whos command,
this time with an argument that restricts the result to any variable beginning with
mriStack

.      . Fig. 5.8  A montage of the 27 images in the MRI stack, arranged as 3 × 9 and displayed with the
colormap “copper”

	 S. F. Nørrelykke

113 5

1  >> whos mriStack*
2  Name Size Bytes Class Attributes

3 
4  mriStack 226x186x27 1134972 uint8
5  mriStack2 4-D 1134972 uint8

To get the dimensions of the 4D mristack2 variable we use the command size

1  > size(mriStack2)
2 
3  ans =
4 
5  226 186 1 27

Here, the third dimension is the color channel.

5.4.4	 �Smoothing, Thresholding and All That

Yes, of course we can perform all these operations and here is a small taste of how it is
done. We are going to
	1.	 Load an image and invert it
	2.	 Create a copy of it that has been smoothed with a Gaussian kernel
	3.	 Determine the Otsu threshold for this copy
	4.	 Create a binary image based on the smoothed copy
	5.	 Display the mask on the original
	6.	 Apply this mask (binary image) to the original and make measurements through it
	7.	 Display measurements directly on the original (inverted) image

In the editor, we first initialize, then load, invert, and display the result:

1  %% --- INITIALIZE ---
2  clear variables
3  close all
4  clc
5  tfs = 16; %title font size
6 
7  %% --- load image ---
8  cd ~/Desktop
9  blobs = imread(’blobs.tif’); % read tif
10 blobs_inv = 255 - blobs; %invert 8bit image
11 
12 %% --- display the inverted image ---
13 figure(1)
14 imshow(blobs_inv, ’initialmagnification’, ’fit’)
15 title(’Inverted’, ’fontsize’, tfs)

Introduction to MATLAB

114

5

Next, we smooth the inverted image with a Gaussian kernel, detect the Otsu threshold,
apply it, and display the result:

1  %% --- Gaussian smooth and Otsu threshold ---
2  blobs_inv_gauss = imgaussfilt(blobs_inv, 2); % sigma = 2 pixels
3  OtsuLevel = graythresh(blobs_inv_gauss); % find threshold
4 � blobs_bw = imbinarize(blobs_inv_gauss, OtsuLevel); % apply

threshold
5 
6  %% --- display the thresholded image ---
7  figure(2)
8  imshow(blobs_bw, ’initialmagnification’, ’fit’)
9  title(’Inverted, Smoothed, Thresholded’, ’fontsize’, tfs)

To illustrate, on the grayscale image, what we have determined as foreground, we mask it
with the binary image blobs_bw by multiplying pixel-by-pixel:

1  %% --- mask the inverted image with the thresholded image ---
2  blobs_bw_uint8 = uint8(blobs_bw); % convert logical to integer
3  blobs_masked = blobs_inv .* blobs_bw_uint8; % mask image
4 
5  %% --- display the masked image ---
6  figure(3)
7  imshow(blobs_masked, ’initialmagnification’, ’fit’)
8  title(’Inverted and Masked’, ’fontsize’, tfs)

As an alternative to showing the masked image we can choose to show the outlines of the
connected components (the detected blobs):

1  %% --- find perimeter of connected components ---
2 � blobs_perimeter = bwperim(blobs_bw); % perimeter of white con-

nected components
3 � blobs_summed = blobs_inv + 255 * uint8(blobs_perimeter); % convert,

scale, and overlay perimeter on image
4 
5  %% --- display image with perimeter overlaid ---
6  figure(4)
7  imshow(blobs_summed, ’initialmagnification’, ’fit’)
8  title(’Inverted, Masked, Outlines’, ’fontsize’, tfs)

In step two we convert the logical variable blobs_perimeter to an 8-bit unsigned
integer on the fly (and multiplied it by 255 to increase the intensity), before adding it to the
image. If you wonder why we do this conversion, just try to omit it and read the error-
message from MATLAB.

	 S. F. Nørrelykke

115 5

Now, let’s make some measurements on the b/w image and display them on the blobs_
summed image from above:

1  %% --- measure areas etc on b/w image ---
2 � stats = regionprops(blobs_bw, ’area’, ’perimeter’, ’centroid’);

% extract features from thresholded image
3 � centroids = cat(1, stats.Centroid); % reformat the centroid data

to array
4 
5 � %% --- display centroid positions overlaid on grayscale with out-

lines ---
6  figure(4) % this figure already exists, we are now adding to it
7  hold on % tell MATLAB too keep what is already in the figure
8  plot(centroids(:, 1), centroids(:, 2), ’*r’) % use red asteriks
9  title(’Inverted, Masked, Outlines, Centroids’, ’fontsize’, tfs)

The result of this step is shown in .  Fig. 5.9.
Finally, we measure the gray-scale image using the masks—this should remind you of

the “Redirect to:” option in ImageJ (Analyze > Set Measurements …):

1  %% --- measure grayscale values ---
2  labels = bwlabel(blobs_bw); % get identifier for each blob
3 � statsGrayscale = regionprops(labels, blobs_inv, ’meanInten-

sity’); % measure pixel-mean for each blob

Inverted, Masked, Outlines, Centroids.      . Fig. 5.9  “Blobs” shown with
outlines of threshold-based
segmentation overlaid. The
centroid of each connected
component is marked with a red
asterisk

Introduction to MATLAB

116

5

4  � meanIntensity = cat(1, statsGrayscale.MeanIntensity); % reformat
the extracted date

5 
6  %% --- display measurements on image ---
7  % again, we add to an already existing image
8   figure(3); hold on
9  xOffset = 10; % number of pixels to shift the text to the left
10 � text(centroids(:, 1) - xOffset, centroids(:, 2),

num2str(meanIntensity, 4), ’color’, ’blue’, ’fontsize’, 10)

Here, we subtracted 10 from the x-coordinate to shift the text ten pixels to the left and
thereby centering it a bit better on the detected blobs. We also indicate that we want at
most four digits displayed.

The result is shown in .  Fig. 5.10.
Exercise: Do this and understand each step! The code shown above is available in

blobAnalysis.m.

5.5	 �Time-Series Analysis

MATLAB has a dedicated data type called simply timeseries. We shall not be using this
class here as it is too specialized for what we want to do. At a later stage in your research you
might find it useful, but be warned that is was developed probably more with the financial
sector in mind and may not support quite the kind of analysis you need to perform.

Whether or not you actually have a time-series or simply an ordered list of data often
does not matter. Many of the tools are the same but were indeed developed by people doing
signal-processing for, e.g., telephone companies, i.e., they worked on actual time-series data.

Inverted, Masked, mean intensity displayed.      . Fig. 5.10  Masked version of
“blobs” with the measured mean
intensity for each connected
component shown

	 S. F. Nørrelykke

117 5

5.5.1	 �Simulating a Time-Series of Brownian Motion
(Random Walk)

Physical example: Diffusing molecule or bead. A particle undergoing Brownian motion
(read Brown’s paper Brown et al. (1828), it is delightful!) is essentially performing a
random walk: In one dimension, each step is equally likely to be to the right or left. If,
in addition, we make the size of the step follow a Gaussian distribution, we essentially
have Brownian motion in one dimension, also known as diffusion. Here, we will sim-
plify a bit and set a number of physically relevant constants to one, just to keep the code
simpler.

The code for generating the random numbers goes something like this (see entire
script of name simulateAndPlotBrownianMotion.m):

1  %% --- INITIALIZE ---
2   clear variables
3   close all
4   clc
5 
6  % --- simulation settings ---
7   dt = 1; % time between recordings
8   t = (0 : 1000) * dt; % time
9 
10  %% --- GENERATE RANDOM STEPS ---
11  stepNumber = numel(t); % number of steps to take
12  seed = 42; % "seed" for the random number generator
13  rng(seed); % reset generator to postion "seed"
14 � xSteps = randn(1, stepNumber) * sqrt(dt); % Gaussian dis-

tributed steps of zero mean

At this stage you do not have to understand the function of the sqrt(dt) command—
with dt = 1 it is one anyway—it is here because this is how Brownian motion actually
scales with time. The seed variable and the rng command together control the state in
which the (pseudo-)random number generator is started—with a fixed value for seed we
will always produce the same random numbers (take a moment to ponder the meaning of
randomness when combined with a computer).

After this, we calculate the positions of the particle and the experimentally determined
speeds (we will return to these in detail below):

1  %% --- CALCULATE POSITIONS AND SPEEDS ---
2  xPos = cumsum(xSteps); % positions of particle
3  varSteps = var(xSteps); % variance of step-distribution
4 
5  xVelocity = diff(xPos) / dt; % "velocities"
6  xSpeed = abs(xVelocity); % "speeds"
7 
8  meanSpeed = mean(xSpeed);
9  stdSpeed = std(xSpeed);
10 

Introduction to MATLAB

118

5

11  %% --- DISPLAY NUMBERS ---
12  disp([’VAR steps = ’ num2str(varSteps)])
13  disp([’Average speed = ’ num2str(meanSpeed)])
14  disp([’STD speed = ’ num2str(stdSpeed)])

In the last three lines we used the command disp that displays its argument in the com-
mand window. It takes as argument variables of many different formats, incl. numerical
and strings. Here, we gave it a string variable that was concatenated from two parts, using
the [and] operators (other options are to use the commands cat, strcat, or horz-
cat). The first part is an ordinary string of text in single quotes, the second part is also a
string but created from a numeric variable using the command num2str.

The other MATLAB commands cumsum, diff, mean, and std do what they say
and calculate the cumulative sum, the difference, the mean, and the standard deviation,
respectively. Look up their documentation, using the doc command, for details and addi-
tional input arguments.

5.5.2	 �Plotting a Time-Series

Ok, now let us plot some of these results:

1  %% --- PLOT STEPS VERSUS TIME ---
2  figure; hold on; clf
3  plot(t, xSteps, ’-’, ’color’, [0.2 0.4 0.8])
4  xlabel(’Time [AU]’)
5  ylabel(’Step [AU]’)
6  title(’Steps versus time’)

The output of these lines, and a similar pair for the positions, is shown in .  Fig. 5.11. See
the script simulateAndPlotBrownianMotion.m to learn how to tweak plot
parameters.

0 200 400 600 800 1000

St
ep

 [A
U

]

Steps versus time
4

3

2

1

–1

–2

–3

–4

0

Time (AU)

Po
si

tio
n

[A
U

]

Position versus time (Trajectory)30

20

10

–10

–20

–30

0

0 200 400 600 800 1000
Time (AU)

.      . Fig. 5.11  Steps (left) and positions (right) as a function of time for a one-dimensional random walk

	 S. F. Nørrelykke

119 5

5.5.3	 �Histograms

Let us now examine the distribution of step-sizes. We do that by plotting a histogram:

1  %% --- PLOT HISTOGRAM OF STEPS ---
2  figure; hold on
3  binNumber = floor(sqrt(stepNumber));
4  histHandle = histogram(xSteps, binNumber)
5  xlabel(’Steps [AU]’)
6  ylabel(’Count’)
7  title(’Histogram of step-sizes’)

.  Figure 5.12 show the resulting plot. The command histogram was introduced in
MATLAB R2014b and replaces the previous command hist—they are largely similar
but the new command makes it easier to create pretty figures and uses the color-scheme
introduced in MATLAB R2014b: Since version R2014b, MATLAB’s new default colormap
is called “parula” and replaces the previous default of “jet”.

5.5.4	 �Sub-Sampling a Time-Series (Slicing and Accessing Data)

Sometimes we can get useful information about our time-series by sub-sampling it. An
example could be a signal x, that is corrupted by nearest-neighbor correlations: To remove
this, simply remove every second data-point, like this:

1  x = 0 : 0.1 : 30;
2  xSubsampled = x(1 : 2 : end);

Step [AU]
0

C
ou

nt

Histogram of step-sizes

0

20

40

60

80

100

4–4 –2 2

.      . Fig. 5.12  Histogram of step sizes for a random walk. The steps were generated with the command
randn that creates pseudo-random numbers from a Gaussian distribution

Introduction to MATLAB

120

5

Or, if you wanted only every third data-point from the first 200 entries:

1  xSubsampled = x(1 : 3 : 200);

What we just illustrated, was how to read only selected entries from a vector; in the first
example we read every second entry from the beginning (the first element in a vector in
MATLAB has index 1, not 0), in steps of 2, until the end. The same idea holds for arrays of
arbitrary dimension in MATLAB; each dimension is treated independently.

If we wanted, we could also have given a list of indices to read, like this:

1  readThese = [2 5 7 88 212]; % data-points to read
2  xSubsampled = x(readThese);

Alternatively, if we only wanted to replace a single element, say in entry 7, with the num-
ber 3; or find all entries larger than 0.94, then set them to 1:

1  % --- replace single element ---
2  x(7) = 3; % overwrite/add the 7th element with "3"
3 
4  % --- replace several elements ---
5  xIndex = find(x > 0.94);
6  x(xIndex) = 1; % write "1" in positions from xIndex

The find command is very useful for data-wrangling and thresholding. Combined with
the query command isNaN (asking if something “is not-a-number”) you will certainly
find yourself applying it once working with real-world data.

5.5.5	 �Investigating How “Speed” Depends on Δt

After having carefully examined the steps and trajectories we may get the idea of also
looking into the velocities and their sizes (speeds). Velocities can be calculated from posi-
tions by differentiation wrt. time. Since we have a discrete time-series, we do that by form-
ing the difference and dividing by the time-interval Δt—this is what we did above with the
help of the diff command.

And this is where it gets interesting: When we vary Δt, our estimate of the speed also
changes! Does this make sense? Take a minute to think about it: What we are finding is
that, depending on how often we determine the position of a diffusive particle, the esti-
mated speed varies. Would you expect the same behavior for a car or a plane? Ok, if this
has you a little confused you actually used to be in good company, that is, until Einstein
explained what is really going on, back in 1905—you might know the story.

	 S. F. Nørrelykke

121 5

The take-home message is that speed is ill-defined as a measure for Brownian motion.
This is because Brownian motion is a fractal, so, just like when you try to measure the
length of Norway’s coast-line, the answer you get depends on how you measure. If you are
wondering what we can use instead, read on, the next section, on the mean-squared-dis-
placement, has you covered.

5.5.6	 �Investigating How “Speed” Depends on Subsampling

Another way of investigating the fractal nature of Brownian motion is to directly sub-
sample the already recorded (simulated) time-series of positions. That is, we create a new
time-series from the existing one by only reading every second, or third, or fourth etc.
time and position data, and then calculate the speed for this new time-series:

1  %% --- SUBSAMPLE THE POSITIONS ---
2  % --- Re-sample at every fourth time-point ---
3  t_subsampled_4 = t(1 : 4 : end);
4  xPos_subsampled_4 = xPos(1 : 4 : end);
5  meanSpeed4 = mean(abs(diff(xPos_subsampled_4)/dt/4));
6 
7  % --- Re-sample at every eighth time-point ---
8  t_subsampled_8 = t(1 : 8 : end);
9   xPos_subsampled_8 = xPos(1 : 8 : end);
10  meanSpeed8 = mean(abs(diff(xPos_subsampled_8)/dt/8));

Notice how we used, hard to read, compact notation by chaining several commands to
calculate the mean speed in a single line—this is possible to do, but usually makes the code
harder to read.

Let us now plot these new time-series on top of the original

1  %% --- ZOOMED PLOT SUBSAMPLED POSITION VERSUS TIME ---
2  figure; hold on;
3  plot(t, xPos, ’-k.’, ’markersize’, 16)
4  plot(t_subsampled_4, xPos_subsampled_4, ’--or’, ’markersize’, 6)
5  plot(t_subsampled_8, xPos_subsampled_8, ’:sb’, ’markersize’, 10)
6 � legend(’Every position’, ’Every fourth position’, ’Every eighth

position’)
7  set(gca, ’xlim’, [128 152])
8 
9  xlabel(’Time [AU]’)
10  ylabel(’Position [AU]’)
11  title(’Position versus time’)

This code, where we added a few extras such as control of the size of markers, should
generate a plot like the one shown in .  Fig. 5.13

Introduction to MATLAB

122

5

5.5.7	 �Simulating Confined Brownian Motion

Brownian motion doesn’t have to be free. The observed particle could be trapped in a
small volume or elastically tethered to a fixed point. To be specific, let us choose as physi-
cal example a sub-micron sized bead in an optical trap, in water. This turns out to be just
as easy to simulate as pure Brownian motion. Writing down the equations of motion and
solving them (or using intuition) we see that the observed positions are simply given by
random numbers from a Gaussian distribution. The width of the distribution is deter-
mined by the strength of the trap (size of the confinement, stiffness of tether). Importantly,
we are not sampling the position of this bead very often, only every millisecond or so,
rarely enough that it has time to “relax” in the trap between each determination.

1  sampleNumber = 1001; % number of position determinations
2  xTrapped = randn(1, sampleNumber); % position of bead in trap

What do we get if we repeat the above analysis? Try it.

5.5.8	 �Simulating Directed Motion with Random Tracking Error

We may also want to create a time-series that is a hybrid: We have a particle that moves
with constant speed in one direction, but the position determination is contaminated with
random tracking errors. The simulation, again, is simple:

Time [AU]

140

Po
si

tio
n

[A
U

]

Position versus time

–11

–10

–9

–8

–7

–6

–5

150130 135 145

Every position
Every fourth position
Every eighth position

.      . Fig. 5.13  Position as a function of time for a one-dimensional random walk. Black dots show the
original time-series. If we had only recorded this trajectory at 1/4 or 1/8 the sampling frequency we would
have found the positions indicated by red circles and blue squares, respectively. If we were to estimate the
speed for each of these three time-series we would find that the red trace has half (1 4/) the speed of
the black, and the blue has 1 8 0 35/ . that of the black. Conclusion: The “speed” depends on how often
we measure and is therefore clearly an ill-defined parameter for Brownian motion

	 S. F. Nørrelykke

123 5

1  %% --- INITIALIZE ---
2  dt = 1; % time between recordings
3  t = 0 : dt : 1000 * dt; % time
4  v = 7; % constant translation speed
5 
6  %% --- GENERATE POSITIONS ---
7  xPos = v*t + randn(1, sampleNumber); % position of bead in trap

Repeat the above analysis for this new time-series. How does the speed determination
depend on the degree of smoothing, sub-sampling, or Δt? Here, the concept of speed does
make sense, and averaging over time (smoothing) should give a better determination, see
7  Sect. 5.5.10.

5.5.9	 �Loading Tracking Data from a File

Instead of analyzing simulated data we often want to work on actual experimental data. If
your data was generated in ImageJ with the TrackMate plugin, the output (when
exporting tracks) would be an XML file and we would need a parser (reader) for it called
importtrackmatetracks.m in order to get the data into MATLAB. See introduc-
tion here and code here. This function will return a cell-array of tracks consisting of time,
x, y, and z positions (the concept of a function is explained below in 7  Sect. 5.6.1.1):

1  �function [tracks, metadata] = importTrackMateTracks
(file, clipz, scalet)

2  %%IMPORTTRACKMATETRACKS Import linear tracks from TrackMate
3  %
4  % �This function reads a XML file that contains linear tracks gen-

erated by
5  �% �TrackMate (http://fiji.sc/TrackMate). Careful: it does not open

the XML
6  �% �TrackMate session file, but the track file exported in Track-

Mate using
7  �% �the action ’Export tracks to XML file’. This file format con-

tains less
8  �% �information than the whole session file, but is enough for lin-

ear tracks
9  % (tracks that do not branch nor fuse).
10  %
11  % SYNTAX
12  %
13  �% tracks = IMPORTTRACKMATETRACKS(file) opens the track file ’file’ and
14 � % �returns the tracks in the variable ’tracks’. ’tracks’ is a

cell array,
15 � % �one cell per track. Each cell is made of 4xN double

array, where N is the
16 � % �number of spots in the track. The double array is organized

as follow:

Introduction to MATLAB

https://imagej.net/Analyzing_TrackMate_results_with_MATLAB
https://imagej.net/Analyzing_TrackMate_results_with_MATLAB
https://github.com/fiji/TrackMate/blob/master/scripts/importTrackMateTracks.m

124

5

17 � % �[Ti, Xi, Yi, Zi ; ...] where T is the index of the frame the s
pot has been

18 � % detected in. T is always an integer. X, Y, Z are the spot spatial
19  % coordinates in physical units.
20  .
21  .
22  .

To get a feeling for the data: Pick a few individual tracks and submit them to the same
analysis as above. Try a few from the different experimental conditions (try both long and
short tracks). Do you notice any difference?

5.5.10	 �Smoothing (Filtering) a Time-Series

If you suspect that some of the jitter in your signal is simply noise, you can smooth the
signal. This is very much the same procedure as when smoothing an image. The relevant
command is smooth (requires the Curve Fitting Toolbox) and it has several options for
adaptation to your needs:

1  % --- simple smoothing ---
2 � xPosSmoothed = smooth(xPos); % defaults to moving average over 5

data points
3 
4  % --- sophisticated smoothing ---
5  span = 7; % number of data points to average over
6  method = ’sgolay’ ; % Savitsky-Golay filter
7  degree = 3; % the order of the s-g filter
8 
9  xPosSmoothed = smooth(xPos, span, method, degree);

5.6	 �MSD: Mean Square Displacement

Motivated by the shortcomings of the speed as a measure for motion, we try our hands at
another measure. This measure, while a bit more involved, does not suffer the same prob-
lems as the speed but takes a little getting used to. Without further ado:

The mean square displacement for a one-dimensional time-series x(t), sampled con-
tinuously, is defined as

msd() () () ,t tº á + -[] ñx t x t 2

	
(5.1)

where 〈⋅〉 is the expectation value of the content, either in the ensemble sense or with respect
to t (same thing if the system is ergodic)—think of it as the average over all time-points. It
measures how far a particle has moved, in an average sense, in a time-interval of size τ.

	 S. F. Nørrelykke

125 5

In practice, we need to replace the expectation-value-operation 〈⋅〉, with something we
can calculate based on our data. There are several ways of doing this, see Qian et al. (1991),
and the following is one of the more popular and meaningful ones, for time-lag τ = k Δt:

msdk
M k

n

n k nM k
x x k M=

-
å -[] = ¼ -
-

=

+
1 1 2 1

1 2 , , ,
	

(5.2)

where M is the number of postion-determinations of x. Please note, that we are averaging
over the track itself using a sliding window: This means that our estimates for the MSD are
not independent for consecutive values of the time-lag τ—this is the price we pay for
reducing noise and using all the data.

.  Figure 5.14 shows theoretical and simulated results for the MSD for three different
types of motion: (1) Brownian motion (free diffusion); (2) Brownian motion in an optical
trap (confined diffusion); and (3) Random motion with finite persistence (Ornstein-
Uhlenbeck process)

5.6.1	 �Creating a Function That Calculates MSDs

One of the great thing about the MSD is that there are no approximations when moving
from continuous to discrete time: There are no sampling artifacts. For a fixed time-lag, the
MSD can be calculate in MATLAB by defining a function like this:

0.1 1 10
1

100

1000

Time lag (ms)

M
ea

n–
sq

ua
re

d
di

sp
la

ce
m

en
t (

nm
2)

EB, simulation
OT, simulation
OU, simulation
EB, theory
OT, theory
OU, theory
Continuous recording, theory

.      . Fig. 5.14  Mean-squared displacement for the Ornstein-Uhlenbeck process (persistent random
motion), Brownian motion in an optical trap (confined diffusion), and Brownian-motion proper (free
diffusion). Straight lines show slopes of one (green) and two (blue), for comparison to the cases of
Brownian motion and linear motion. Green points: Freely diffusing massless particle (Einstein’s Brownian
motion); red points: trapped massless particle (OT limit, or OU velocity process); and blue points: freely
diffusing massive particles (time integral of OU process). This is .  Fig. 8 in Nørrelykke and Flyvbjerg
(2011)

Introduction to MATLAB

126

5

1  function msd_tau = fun_msd_at_tau_1dim(x,tau)
2 
3  % fun_msd_at_tau_1dim FUNCTION
4  % GIVEN INPUT DATA ’X’ THIS FUNCTION RETURNS THE
5  % MEAN-SQUARED-DISPLACEMENT CALCULALTED IN OVERLAPPING WINDOWS
6  % FOR THE FIXED TIMELAG VALUE ’tau’
7  �% NB: THIS IS FOR A SINGLE TIMELAG ONLY BUT AVERAGED OVER

THE ENTIRE TRACK
8 
9  % 2016-06-03, sfn, created
10  % 2016-06-10, sfn, modified for one dimension
11  % 2017-05-15, sfn, nomenclature changes
12 
13  %% --- INITIALIZE ---
14  M = length(x); % number of postions determined
15  dr2 = zeros(1, M - tau); % initialize and speed up procedure
16 
17  %% --- CALCULATE THE MSD AT A SINGLE TIMELAG ---
18  for k = 1 : M - tau
19  dx2 = (x(k + tau) - x(k)).^2; % squared x-displacement
20 
21  � dr2(k) = dx2; % store the squared x-displacement for each pos-

tion of the sliding window
22  end
23 
24 � msd_tau = mean(dr2); % The mean of the squared displace-

ments calculated in sliding windows

In this code-example you should notice that we declared a function, used the com-
mand zeros to pre-allocate memory hence speed up the procedure, and squared each
element in a vector with the .̂ operator which should not be confused with the ̂ opera-
tor that would have attempted to form the inner product of the vector with itself (and fail).
If your function-call fails, you might have to tell MATLAB where to find the function
using the addpath command or by clicking on “set path” in the HOME tab and then
pointing to the folder that holds the function.

5.6.1.1	 �About Functions and How to Call Them
A function is much like a normal script except that it is blind and mute: I doesn’t see the
variables in your workspace and whatever variables are defined inside of the function are
not visible from the workspace either. One way to get data into the function is to feed it
explicitly as input, here as x and tau. The only data that gets out is that explicitly stated as
output, here msd_tau. This is how you call the function msd_tau, ask it to calculate the
mean square displacement for the time-series with coordinates (x, y), for a single time-lag
of τ = 13 and return the result in the variable dummy:

1  >> dummy = fun_msd_at_tau_1dim(x, 13);

	 S. F. Nørrelykke

127 5

Having learnt how to do this for a single time-lag, we can now calculate the MSD for a
range of time-lags using a for loop:

1  for tau = 1 : 10
2  msd(tau) = fun_msd_at_tau_1dim(x, tau);
3  end

After which we will have a vector of length ten holding the MSD for time-lags one through
ten. If the physical time-units are non-integers you simply plot MSD against these, do not
try to address non-integer positions in a vector or matrix, they do not exist. This will
become clear the first time you try it.

To build some further intuition for how the MSD behaves, let us calculate it analyti-
cally for a couple of typical motion patterns.

5.6.2	 �MSD: Linear Motion

By linear motion we mean

x t vt() ,= 	 (5.3)

where v is a constant velocity and t is time. That is, the particle was at position zero at time
zero, x(t = 0) = 0, and moves to the right with constant speed. The MSD then becomes

msd() ,t t t= á + -[] ñ =vt v vt v2 2 2
	

(5.4)

i.e., the MSD grows with the square of the time-lag τ. In a double-logarithmic (log-log)
plot, the MSD would show as a straight line of slope 2 when plotted against the time-lag τ:

log () log logmsd t t= +v2 2 	 (5.5)

5.6.3	 �MSD: Brownian Motion

By Brownian motion we mean

x t a t() (),= h 	 (5.6)

where . means differentiation wrt. time, a D= 2 , D is the diffusion coefficient and η is
a normalised, Gaussian distributed, white noise

á ñ = á ¢ ñ = - ¢h h h d() , () () (),t t t t t0 	 (5.7)

where δ is Dirac’s delta function. See Wikipedia for an animation of Brownian motion:
7  https://en.wikipedia.org/wiki/Brownian_motion

Introduction to MATLAB

https://en.wikipedia.org/wiki/Brownian_motion

128

5

With this equation of motion we can again directly calculate the MSD:

msd d d() () ()t t= á ò ¢ ¢ - ò ¢ ¢éë ùû ñ-¥
+

-¥
t tt x t t x t 

2

	
(5.8)

= =a D2 2t t , 	 (5.9)

a result that should be familiar to some of you.
Apart from prefactors, that we do not care about here, the crucial difference is that the

MSD now grows linearly with the time-lag τ, and in a log-log plot it would hence be a
straight line with slope one when plotted against τ.

We are much more interested in the mathematical properties of this motion than in
the actual thermal self-diffusion coefficient D: The temporal dynamics of this equation
can be used to model systems that move randomly, even if not driven by thermal agitation.
So, when we say Brownian motion, from now on, we mean the mathematical definition,
not the physical phenomenon.

For those interested in some mathematical details, Brownian motion can be described
via the Wiener process W, with the white noise being the time-derivative of the Wiener
process h = W . The Wiener process is a continuous-time stochastic process and is one of
the best known examples of the broader class of Levý processes that can have some very
interesting characteristics such as infinite variance and power-law distributed step-sizes.
These processes come up naturally in the study of the field of distributions, something you
can think of as being a generalization of ordinary mathematical functions, and also
requires an extension of normal calculus to what is known as Itô calculus. If you are into
mathematical finance or stochastic differential equations you will know all of this already.

5.6.3.1	 �MSD: Simulated Random Walk
We can also calculate the MSD for the discrete random walk that we simulated earlier.
There, we simplified our notation by setting 2D = 1 but otherwise the random walk was a
mathematically exact representation of one-dimensional free diffusion. Here is the calcu-
lation, for a time-lag of τ = k Δt and explicitly including the 2D prefactor; you should
already have all the ingredients to understand each step:

msdk n k nx x= á -[] ñ+
2

	
(5.10)

= á å - åé

ëê
ù

ûú
ñ = á åé

ëê
ù

ûú
ñ

+

= =

+

= +

n k

i

i
n

i

i
n k

i n

ix x x
1 1 2 1 2

D D D
	

(5.11)

= á åé

ëê
ù

ûú
ñ = á å å

é

ë
ê

ù

û+

= +

+

= +

+

= +

n k

i n

i
n k

i n

i
n k

j n

jD t D t
1 2 1 1

2 2z z zD D úúñ
	

(5.12)

= å á ñ = =
+

= +
2 2 2

1
2D t D k t D

n k

i n

iD Dz t
	

(5.13)

	 S. F. Nørrelykke

129 5

here we used that the position at time n Δt is the sum of the steps before then:

x x x D tn
n

i

i i i= å =
=1

2D D D, z
	

(5.14)

where ζ are Gaussian distributed random numbers of zero mean, unit variance, and
uncorrelated:

á ñ = á ñ =z z d zi j i j i, , 0
	

(5.15)

with δi,j Kronecker’s delta: Zero for i and j different, unity if they are the same. These
ζ-values are the ones we created with the randn command in MATLAB. Again, we see
that the MSD is linear in the time-lag τ = k Δt.

5.6.4	 �MSD: Averaged Over Several 2-Dim Tracks

To start quantifying the motion of multiple tracks, in two spatial dimensions, we first
calculate the mean-squared-displacement for an individual track m

msdk m
m M k

i

i k i i k iM k
x x y y

m
, () () ,=

-
å - + -()
-

=

+ +
1 1

2 2

	

(5.16)

where k = 1, 2, …, Mm − 1 is the time-lag in units of Δt and Mm is the number of positions
determined for track m. Notice, that we use a sliding window so that the Mm − k determi-
nations of the MSDs at time-lag k Δt are not independent; this introduces strong correla-
tions between the MSD calculated at neighboring time-lags by trading independence for
smaller error-bars Wang et al. (2007).

One way to calculate the sample-averaged MSD is to weigh each MSD by the number
of data-points used to calculated it

MSD msdk
m m m

m k mM k
M k=

å -
å -

1
()

() ,,
	

(5.17)

where the sums extend over all time-series with Mm > k. Here, the weights are chosen as
equal to the number of intervals that was used to calculate the MSD for a given time-lag
and track.

5.6.5	 �Further Reading About Diffusion, the MSD, and Fitting
Power-Laws

Papers dealing with calculation of the MSD: Qian et al. (1991) and under conditions with
noise: Michalet (2010). Analytically exact expressions for several generic dynamics cases
(free diffusion, confined diffusion, persistent motion both free and confined): Nørrelykke
and Flyvbjerg (2011). Determining diffusion coefficients when this or that moves or not,
this is an entire PhD thesis compressed to one long paper: Vestergaard et al. (2014). How
to fit a power-law correctly and what can happen if you do it wrong like most people
do—an absolute must-read: Clauset et al. (2009).

Introduction to MATLAB

130

5

Acknowledgements  We thank Ulrike Schulze (Wolfson Imaging Centre–MRC Weatherall
Institute of Molecular Medicine, Micron Oxford Advanced Bioimaging Unit, University of
Oxford) for reviewing this chapter.

�Appendix: MATLAB Fundamental Data Classes

All data stored in MATLAB has an associated class. Some of these classes have obvious
names and meanings while others are more involved, e.g. the number 12 is an integer,
whereas the number 12.345 is not (it is a double), and the data-set {12, 'Einstein',
7+6i, [1 2 ; 3 4]} is of the class cell. A short video (5min) about MATLAB funda-
mental classes and data types.

Here are some of the classes that we will be using, sometimes without needing to know
it, and some that we won’t:

single, double - 32 and 64 bit floating number, e.g. 1’234.567 or -0.000001234. The default is
double.

int8/16/32/64, uint8/16/32/64 - (unsigned-)integers of 8/16/32/64 bit size, e.g. -2 or 127

logical - Boolean/binary values. Possible values are TRUE, FALSE shown as 1,0

char - characters and strings (largely the same thing), e.g. ’hello world!’. Character arrays are
possible (all rows must be of equal length) and are different from cell arrays of characters.

cell - cell arrays. For storing heterogeneous data of varying types and sizes. Very flexible. Great potential
for confusion. You can have cells nested within cells, nested within cells …

struct - structure arrays. Like cell arrays but with names and more structure; almost like a spreadsheet.

Take Home Message

Ok, good, you made it to here. Congratulations!
If this was your first encounter with coding, MATLAB, or numerical simulations you

may feel a bit overwhelmed at this point—don’t worry, coding isn’t mastered in one
day; put in the hours and you will learn to master MATLAB, like many have before you.
If you already knew MATLAB you probably skipped this chapter.

Here is what you just learned how to do in MATLAB:
55 Create a plot and save it to a file in pdf, png, or other formats
55 Load an image and process it (smoothing, thresholding)
55 Perform measurements on an image and overlay those measurements on the

image
55 Read and modify the meta-data in an image file
55 Simulate a random walk as a model for free diffusion (Brownian motion),

confined/tethered motion, and directed motion with tracking error
55 Calculate and display the mean square displacement (MSD)—a robust measure

of motion
55 Spot when “speed” is a flawed measure for motion (the mean will depend on

the sampling interval)—when there is a random component, it is always a
flawed measure

55 Structure and document your code, keeping good code hygiene

	 S. F. Nørrelykke

https://ch.mathworks.com/videos/introducing-matlab-fundamental-classes-data-types-101503.html
https://ch.mathworks.com/videos/introducing-matlab-fundamental-classes-data-types-101503.html

131 5

table - tables of heterogeneous but tabular data: Columns must have the same number of rows. Think
“spreadsheet”. Supports useful commands such as summary. New data format from 2013b.

categorical - categorical data such as ’Good’, ’Bad’, ’Horrible’, i.e., data that take on a
discrete set of possible values. Plays well with table. New data format from 2013b.

�MATLAB Documentation Keywords for Data Classes

The following is a list of search terms related to the cell, struct, and table data
classes. They are titles of individual help-documents and are provided here because the
documentation of MATLAB is vast and it can take some time to find the relevant pages.
Simply copy and paste the lines into MATLAB’s help browser in the program or on the web

Access Data in a Cell Array
Cell Arrays of Character Vectors
Multilevel Indexing to Access Parts of Cells
Access Data in a Structure Array
Cell vs. Struct Arrays
Create and Work with Tables
Access Data in a Table

Here is a link to a video about tables and categorical arrays.

�Appendix: Do I Have That Toolbox?

To find out which toolbox a particular command requires simply search for it in the docu-
mentation and notice the path. Alternatively, use the which command:

1  >> which(’graythresh’)
2 � /Applications/MATLAB_R2015b.app/toolbox/images/images/

graythresh.m

Any path to a function, as found with the which command, that includes .../tool-
box/matlab/... does not require a specific toolbox as it is part of the core MATLAB
distribution. It is also possible to use the matlab.codetools.requiredFile-
sAndProducts command:

1  �>> �[fileList,productList] = matlab.codetools.requiredFilesAndProd-
ucts(’graythresh’);

2  >> productList.Name
3 
4  ans =
5  MATLAB
6 
7  ans =
8  Image Processing Toolbox

Introduction to MATLAB

https://ch.mathworks.com/videos/tables-and-categorical-arrays-in-release-2013b-101607.html

132

5

To find out which toolboxes you have installed, say doc to start the help-browser and
click “All Products”, see .  Fig. 5.15.

Alternatively, navigate to the folder where MATLAB is installed, via command line or
MATLAB or Finder. Example for an installation on a Mac, getting the list in iTerm (bash):

1 � [simon@SimonProRetina ~]$ ls -lho /Applications/MATLAB_R2015b.app/
toolbox/ | head

2  total 0
3  drwxr-xr-x 5 simon 170B Oct 13 2015 aero
4  drwxr-xr-x 7 simon 238B Oct 13 2015 aeroblks
5  drwxr-xr-x 12 simon 408B Oct 13 2015 bioinfo
6  drwxr-xr-x 23 simon 782B Oct 13 2015 coder
7  drwxr-xr-x 11 simon 374B Oct 13 2015 comm
8  drwxr-xr-x 40 simon 1.3K Oct 13 2015 compiler
9  drwxr-xr-x 8 simon 272B Oct 13 2015 compiler_sdk
10 drwxr-xr-x 8 simon 272B Oct 13 2015 control
11 drwxr-xr-x 8 simon 272B Oct 13 2015 curvefit
12 [simon@SimonProRetina ~]$

Here, you need to be able to recognize that the toolbox names are abbreviated, so that, e.g.,
the Aerospace Toolbox is referred to simply as aero.

.      . Fig. 5.15  Truncated view of Help window showing “All Products” which includes all the toolboxes
you have installed—if it doesn’t say “toolbox” it is something else

	 S. F. Nørrelykke

133 5

�Appendix: HTML and Live Scripts

�Publish Your Script to HTML

If you want to show your code and it’s output to someone, without running MATLAB, you
can do it with the PUBLISH feature. Running this command on your script will execute
it and create a folder called “html” in the same place as your script. Inside of this folder you
will find a single .html file and perhaps a number of .png files for the figures that your
script created. .  Figure 5.16 shows the result of publishing to HTML the same code as was
shown in .  Fig. 5.4.

�Working with Live Scripts

Live Script is a new feature in MATLAB R2016a. You can think of it as something in
between publishing to HTML and working directly in the script editor. Existing scripts can
be converted to live scripts and the other way around! .  Figure 5.17 shows the same code as
in .  Fig. 5.4, but converted to the live script format (extension mlx). If you have seen iPy-
thon notebooks or Mathematica you might see what the inspiration is. Try it out, you might
like it! Just keep in mind that it is a new feature and that you cannot share your live-scripts
with anyone using an older version than R2016a (unless you convert to standard m-file first).

�Appendix: Getting File and Folder Names Automatically

�Read from a Folder

To get a list of files in a folder you have several options: (1) Navigate MATLAB to the
folder (by clicking or using the cd command) and type ls or dir; (2) Give the ls or
dir command followed by the path to the folder, like this

1  >> ls /Users/simon/Desktop/
2  blobs.tif mri-stack.tif
3 
4  >> dir /Users/simon/Desktop/
5 
6  . blobs.tif
7  .. mri-stack.tif

We can also assign the output to variables:

1  >> lsList = ls(’/Users/simon/Desktop/’);
2  >> dirList = dir(’/Users/simon/Desktop/’);

What is the difference between the two variables dirList and lsList?

Introduction to MATLAB

134

5

Contents

--- INITIALIZE ---

--- FUNCTIONS OF X ---

--- PLOTS ---

--- save to file ---

--- INITIALIZE ---

--- FUNCTIONS OF X ---

--- PLOTS ---

--- save to file ---

0
–100

–80

–60

–40

Po
si

tio
n

(A
U

)

Plots of various sinusoidal functions

–20

0

20

40

60

80

1 2 3 4 5
Time (AU)

6 7 8 9 10

cos(x)
cos(x)/x

.      . Fig. 5.16  Example of publishing code to HTML. This is the same code as in the m-script shown in
.  Fig. 5.4. Notice how the output of the script is included with the code. This is an HTML file and therefor
easy to share, but you cannot execute it in MATLAB

	 S. F. Nørrelykke

135 5

�Path and File Names

To illustrate how to work with and combine file-names and path-names we will introduce
the dialogue window (again assuming we are in the /Users/simon/Desktop/ direc-
tory and have a file called “blobs.tif ” there):

--- INITIALIZE ---

--- FUNCTIONS OF X ---

--- PLOTS ---

--- save to file ---

0
–100

–80

–60

–40

Po
si

tio
n

(A
U

)

Plots of various sinusoidal functions

–20

0

20

40

60

80

1 2 3 4 5
Time (AU)

6 7 8 9 10

cos(x)
cos(x)/x

.      . Fig. 5.17  Example of Live Script, a new feature in MATLAB R2016a. This is the same code as in
the m-script shown in .  Fig. 5.4. Notice how the output of the script is included with the code. This script
can be edited and executed in MATLAB

Introduction to MATLAB

136

5

1  >> fileName = uigetfile(’.tif’)

In response to which we should see a dialogue window similar to .  Fig. 5.18.
We should also be told the name of the file we selected:

1  fileName =
2 
3  blobs.tif

If we want more information, such as the location of the file we do:

1  >> [fileName, pathName] = uigetfile(’.tif’)
2 
3  fileName =
4 
5  blobs.tif
6 
7  pathName =
8 
9  /Users/simon/Desktop/

.      . Fig. 5.18  The dialogue window, in OS X, that appears in response to the uigetfile command

	 S. F. Nørrelykke

137 5

From the file- and path-name we can now create the full file-name, incl. the path, using the
command fullfile:

1  >> fullFileName = fullfile(pathName, fileName)
2 
3  fullFileName =
4 
5  /Users/simon/Desktop/blobs.tif

Obviously, if you are working on a different system you file-separator might look different.
However, that is because fullfile inserts platform-dependent file separators. If you
want more control over this aspect you should look into the filesep command.

Reversely, if you had the full name of a file and wanted to extract the file-name or the
path-name, you could do this:

1  >> [pathstr,name,ext] = fileparts(fullFileName)
2 
3  pathstr =
4 
5  /Users/simon/Desktop
6  
7  name =
8  
9  blobs
10 
11  ext =
12 
13  .tif

Alternatively, if all we wanted was the name of a directory we would use the command
uigetdir—you can guess what it does.

Why did we just do all this? We did it because we often have to spend a lot of time on
data-wrangling before we can even get to the actual data-analysis. Knowing how to easily
extract file and path names for your data allows you automate many later steps. Example:
You might want to open each image in a directory, crop it, scale it, smooth it, then save the
results to another directory with each modified image given the same name as the original
but with “_modified” appended to the name.

�Appendix: Codehygiene

It is important for your future self, not to mention collaborators, that you keep good prac-
tices when coding.

55 The actual code should be easy to read, not necessarily as compact as possible
55 Use descriptive names
55 Document the code
55 Insert plenty of blank spaces: Let your code breathe!

Introduction to MATLAB

138

5

.  Figure 5.19 is and example of how your code could look, when folded, if you take care
to structure it nicely—notice how easy it to figure out what goes on where, without having
to read a single line of actual code.

�Appendix: MATLAB Cheat Sheet

Here are two compact pages that you are encouraged to print separately and keep around
when using MATLAB—at least initially. They outline most of the syntax and also list the
most commonly used commands. This version (you can find several online) was compiled
by Thor Nielsen (thorpn86@gmail.com) 7  http://www.econ.ku.dk/pajhede/.

.      . Fig. 5.19  Screenshot of code that is clearly structured and folded. The currently active code-block is
highlighted in yellow

	 S. F. Nørrelykke

http://www.econ.ku.dk/pajhede/

139 5
Introduction to MATLAB

140

5

	 S. F. Nørrelykke

141 5

Bibliography

Brown R, Hon FRS, MRSE, Acad RI, VPLS (1828) XXVII. A brief account of microscopical observations made
in the months of June, July and August 1827, on the particles contained in the pollen of plants; and
on the general existence of active molecules in organic and inorganic bodies. Philos Mag 4(21):
161–173. https://doi.org/10.1080/14786442808674769

Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev 51(4):
661–703

Michalet X (2010) Mean square displacement analysis of single-particle trajectories with localization error:
Brownian motion in an isotropic medium. Phys Rev E Stat Nonlin Soft Matter Phys

Nørrelykke SF, Flyvbjerg H (2011) Harmonic oscillator in heat bath: exact simulation of time-lapse-
recorded data and exact analytical benchmark statistics. Phys Rev E Stat Nonlin Soft Matter Phys
83(4):041103

Qian H, Sheetz MP, Elson EL (1991) Single particle tracking. Analysis of diffusion and flow in two-
dimensional systems. Biophys J 60(4):910–921

Vestergaard C, Blainey PC, Flyvbjerg H (2014) Optimal estimation of diffusion coefficients from single-
particle trajectories. Phys Rev E Stat Nonlin Soft Matter Physics

Wang YM, Flyvbjerg H, Cox EC, Austin RH (2007) When is a distribution not a distribution, and why would
you care: single-molecule measurements of repressor protein 1-D diffusion on DNA. In: Controlled
nanoscale motion: nobel symposium, vol 131, pp 217–240. Springer, Berlin/Heidelberg. ISBN: 978-3-
540-49522-2. https://doi.org/10.1007/3-540-49522-3_11

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (7  http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not included in
the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Introduction to MATLAB

https://doi.org/10.1080/14786442808674769
https://doi.org/10.1007/3-540-49522-3_11
http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2020
K. Miura, N. Sladoje (eds.), Bioimage Data Analysis Workflows, Learning Materials in Biosciences,
https://doi.org/10.1007/978-3-030-22386-1_6

143

Resolving the Process
of Clathrin Mediated
Endocytosis Using
Correlative Light and
Electron Microscopy (CLEM)
Martin Schorb and Perrine Paul-Gilloteaux

6.1	 �Introduction  –  144

6.2	 �Data Presentation – 145

6.3	 �Overview of Data Processing – 146

6.4	 �Tools Description – 146

6.5	 �Application to a CLEM Experiment – 147
6.5.1	 �CLEM Workflow Overview and Preparation – 147
6.5.2	 �Labeling of Landmark Pairs – 148
6.5.3	 �Generating the Transformation – 152
6.5.4	 �Applying the Transformation to Image and Coordinate

Data – 152
6.5.5	 �Registering the Low-Magnification and the High-Magnification

EM Data – 154

6.6	 �Accuracy Estimation and Improvements – 155

�Appendix: Image Transformations – 159
�Basic Similarity and Affine Transformations – 159
�Higher-Order Transformations – 162
�Generating Transformations from Image Coordinates – 164

�Bibliography – 166

6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22386-1_6&domain=pdf

144

6

What You Learn from This Chapter
This chapter will present the computational approach of registering images from different
modalities based on manual selection of matching pairs of landmarks. Here we will present
an image registration workflow based on MATLAB’s image processing toolbox using the
identification of sites of clathrin-mediated endocytosis by correlative light electron micros-
copy (CLEM) as an example. In the Appendix section, we will discuss the concept of image
transformations and how to generate them based on pairs of landmarks. We will also learn
how to fit a 2D Gaussian for a more accurate positioning of the landmarks.

6.1	 �Introduction

The purpose is to use Fluorescence Microscopy (FM) to localize clathrin vesicles, and to
correlate it with Electron Microscopy (EM) to identify their ultrastructure (.  Fig. 6.1),
based on the use of beads, as it was done in Avinoam et al. (2015). We will introduce the
basic concept of image registration and dedicated MATLAB image processing commands
to register light microscopy images of clathrin-mediated endocytosis and corresponding
electron microscopy images to reveal the underlying ultrastructure (Avinoam et al. 2015).
We will also discuss how enhancing the localization accuracy of fluorescence signals will
improve the registration accuracy.

The first task in a typical CLEM experiment is to identify the two image datasets to be
registered. The data from the second image modality (in the CLEM case this is EM) will
likely be acquired in a targeted approach using the previous light microscopy observa-
tions. For a good review about different approaches of targeting the same area, the reader
can be referred to de Boer et al. (2015).

Cytoplasm

50nm

.      . Fig. 6.1  Clathrin in conjunction with other proteins involved in endocytosis forms a lattice that can
dramatically change the shape of the plasma membrane to form a vesicle. Top row: electron microscopy
(EM) image. Bottom row: schematic of top row, with the plasma membrane in black and clathrin and
associated proteins in red. (Image provided by Ori Avinoam, EMBL and Weizmann Institute of science,
from the data published in Avinoam et al. 2015)

	 M. Schorb and P. Paul-Gilloteaux

145 6

6.2	 �Data Presentation

All data used are available using the DOI:
7  http://doi.org/10.5281/zenodo.1473535

The data we will use here were acquired using the protocol described in Avinoam et al.
(2015). In order to obtain a higher-resolution insight into the ultrastructure underlying
a fluorescence signal, we acquired images at high magnification (pixel size ≈ 1 nm, FOV
2 μm). The field of view at this magnification however is too small to contain enough
landmark beads for a direct registration of the FM data. Therefore we need to first register
to a lower magnification EM overview and then to the final high-resolution EM data (see
.  Figs. 6.2 and 6.6 for an overview of datasets and scales).

Important note: on EM images the polystyrene beads appear as extended gray circles,
not as black spots. The small black spots spread across the EM image are gold particles
used to register EM data on itself for tilt correction (tomographic reconstruction) or align-
ment. We will use these gold beads as landmarks to accurately register the EM images of
different magnifications.

The MATLAB functions described here will all handle 2D image data. Therefore we
need to reduce the EM source data from the tomographic volumes. We can either choose
single slices or an average of a small subset (5–10) slices from the source volumes. This
can easily be done in Fiji (Schindelin et al. 2012), Icy (de Chaumont et al. 2012) or similar
software. Here we could also adjust the contrast/brightness of the images to facilitate rec-
ognition of landmark features later in the process.

We already have prepared the matching images from FM and EM and made them
available in the data directory. Ideally, we could now run an automated routine that would
provide us with appropriate landmark features in both images. However, as the image data
from FM and EM are intrinsically complementary and thus very different, in most of the
cases the landmarks need to be selected manually.

.      . Fig. 6.2  We will register the fluorescent image ex1_FM.tif on the EM data ex1_EM.tif using beads
visible in both modalities. We will then register ex1_EM.tif on ex1_highmag.tif which is acquired at the
same depth of the sample using black gold particles. The position of interest showing clathrin is deeper
in the cell, and appears as the other non black slice in this figure in the high mag EM stack. It is named
ex1_highmag_poi.tif in this chapter

Resolving the Process of Clathrin Mediated Endocytosis Using Correlative…

http://doi.org/10.5281/zenodo.1473535

146

6

We can find the respective preprocessed files for the 2D registration work flow in the
data directory:

55 FM data: multi-color wide-field fluorescence acquisition in these channels: (red: RFP,
green: GFP, blue: 380 nm emission for beads) ex1_FM.tif

55 EM data low-magnification: we usually acquire a tomographic tilt series of images
that after reconstruction results in a three-dimensional image stack. As the beads are
located on top of the specimen, they can be identified in this stack. Usually we use an
average of about 5 slices to have the best signature of the beads for the 2D registra-
tion. ex1_EM.tif

55 EM data high-magnification: this comes from a high-resolution tomographic stack.
For the 2D registration, we use a single slice that resembles the section selected
for the low-mag registration, at the top of the tomogramm where the beads are.
ex1_highmag.tif

55 EM data high-magnification point of interest: this is a single slice from the same
tomogramm that contains the structure of interest (here potential clathrin vesicles).
ex1_highmag_poi.tif

An example of expected result navigating between these scales and images is shown on
.  Fig. 6.9, where the red fluorescent spots are associated with specific ultrastructures.

6.3	 �Overview of Data Processing

55 Step 1: Read and display EM and FM images
55 Step 2: Manually identify landmarks pairs
55 Step 3: Refine localisation by Gaussian fitting of the landmarks beads localization
55 Step 4: Compute the rigid transform + scale from the list of paired landmarks localization.
55 Step 5: Apply the Transformation (and discuss interpolation and potential artifacts)
55 Step 6: Evaluate the confidence in structure matching

6.4	 �Tools Description

All codes are available here:
7  http://doi.org/10.5281/zenodo.1473535

We will use the commercial software package MATLAB as well as its Image Processing
and Optimization toolboxes (alternatively to the optimization toolbox, we can use the
CurveFitting toobox; both versions of the code are provided). MATLAB provides a set of
registration tools, gathered under the topic “image registration” in the MATLAB docu-
mentation (mat).

In particular, we will use:
55 cpselect: built-in function from MATLAB Image Processing Toolbox allowing to

provide a user interface for the selection of landmarks pairs.These are called control
points in MATLAB language.

55 fitgeotrans: built-in function from MATLAB Image processing toolbox allowing
to fit a defined geometric transform matching pairs of landmarks (control points in
Matlab language).

	 M. Schorb and P. Paul-Gilloteaux

http://doi.org/10.5281/zenodo.1473535
https://mathworks.com/help/images/ref/cpselect.html
https://mathworks.com/help/images/ref/fitgeotrans.html

147 6

To refine the localisation of fluorescent spots correponding to the landmark beads, we
will fit a 2D Gaussian to the beads’ signal in a cropped image (see .  Fig. 6.11). For this
procedure, there are two possible toolboxes in MATLAB: the Curve Fitting Toolbox, or
the Optimization Toolbox. In particular, we will use:

55 if we use the curve fitting toolbox we can use fit: built-in function from MATLAB
Curve Fitting Toolbox allowing to find the parameters of a function which best fits
given data. The advantage is that it provides also confidence intervals in fitting.

55 if we use the optimization toolbox we can use lsqnonlin: built-in function from
MATLAB Optimization Toolbox allowing to find the parameters of a function which
best fits given data by least square fitting.

In our case, the function will be a 2D Gaussian equation and the data will be the pixels
values of the cropped image around the manually selected landmarks.

As usual with Matlab, after downloading the code and data, we need to update our mat-
lab path to include the code directory. The code directory contains files with the cascade of
code used, as a correction or catch-up hint. It also contains the 2D Gaussian fitting functions.

6.5	 �Application to a CLEM Experiment

6.5.1	 �CLEM Workflow Overview and Preparation

The procedure of registering light microscopy data to electron microscopy data requires
the landmarks to be clearly visible in both imaging modalities. We found fluorescently
labelled polystyrene beads to match these criteria best (Kukulski et al. 2011). We do not
want their signal to interfere with the fluorescence signal of interest, therefore the beads
need to fluoresce in another channel. When using beads that only fluoresce in a different
channel, shifts between the channels due to optical aberrations or stage instabilities dur-
ing the acquisition will deteriorate the registration accuracy of our signal of interest. We
either need to correct for these shifts or choose fluorescence beads that are both visible
in the channel of interest and in another channel in order to be able to distinguish them
from the real feature we want to localize. This is the case for our test dataset (Avinoam
et al. 2015). The beads will be our landmarks (or control points in Matlab language). The
typical feature of interest, an intracellular structural or morphological feature would have
a size of about 100 nm. This is way beyond the diffraction limit of conventional fluores-
cence microscopy. The typical pixel size of FM data is on the order of 80–100 nm, so a
single pixel difference in localization in the FM image could distort the registration of our
feature by 100%. Therefore it is necessary to perform a precise sub-pixel localization not
only on the fluorescent signal of interest but also on those of the landmarks.

The workflow to register the light microscopy data onto the EM data will be the
following:

55 identify the area of interest based on the target fluorescence signal (step 1)
55 identify the locations of the surrounding fluorescent beads using the different channels
55 identify the location of the beads visible in the EM image
55 mark the matching landmark pairs in both images (step 2)
55 precisely determine their localization in the FM image (step 3)
55 calculate the image transformation (step 4)
55 evaluate the confidence in structure matching (step 5)

Resolving the Process of Clathrin Mediated Endocytosis Using Correlative…

https://www.mathworks.com/help/curvefit/fit.html
https://www.mathworks.com/help/optim/ug/lsqnonlin.html

148

6

55 mark the coordinate of the feature of interest
55 precisely determine its localization in the FM image
55 apply the coordinate transformation
55 create the output data (image overlays, coordinate lists, …)

The field of view in which we observe the EM features is not sufficiently large to capture
enough landmark beads. Therefore, we need to perform an initial registration of the FM
data with a lower-magnification overview and then a second registration to the higher
magnification EM data. This second registration can be done in an automated fashion,
as it is basically just a change in magnification and thus the image features are the same.

6.5.2	 �Labeling of Landmark Pairs

MATLAB’s Image Processing Toolbox offers a selection of graphical tools to mark posi-
tions in an image. The command to mark coordinates in a displayed image is be ginput.
However, we would like to assign coordinate pairs in the two image modes simultane-
ously. Therefore, the tool of choice is cpselect. This function expects the two images to
be displayed as input and will give us two coordinate lists as a result of the point selection.
The first image and associated coordinates are referred-to as “moving” and the second as
“fixed”. This means that the first image is the one whose coordinate system will be trans-
ferred onto the second. Note: Moving image is also sometimes called source image, and
fixed image called target image.

6.5.2.1	 �Correlation from Low Magnification Tomogram
to High Magnification EM Image

In order to locate the feature of interest in or high-resolution dataset, we need to regis-
ter the low-magnification EM data, where we will map the FM data onto, to the high-
magnification images. We can do this using the exact same tools as for registering the FM
data with the low-magnification EM data. We will do this procedure first to get familiar
with the tools, as we have very similar features in both images. We will use the gold beads
(black spots) present on the specimen as common landmarks to register the EM images of
different resolutions (.  Fig. 6.3).

.      . Fig. 6.3  The different images used in the registration of low-magnification to high-magnification EM
data. Left: low-mag image (em), middle: high-mag image at the same z-height containing the gold beads
as landmarks (hm), right: the slice of interest (sm)

	 M. Schorb and P. Paul-Gilloteaux

https://mathworks.com/help/matlab/ref/ginput.html
https://mathworks.com/help/images/ref/cpselect.html

149 6

First, we want to load our images. em is the overview (low-magnification) EM image, hm
is the high-magnification image at the same z-height that also contains the gold beads we will
use as landmarks. The slice of interest that contains the ultrastructure is also loaded (sm).

1  hm = imread(’ex1_highmag_1.tif’);
2  sm = imread(’ex1_highmag_poi.tif’);
3  em = imread(’ex1_EM.tif’);

We can display either of the images using the imshow command.

1  imshow(sm);

Now, we can open the two images next to each other in cpselect. The coordinates of
landmark beads from the low-magnification image will be stored in c_lm, and those
from the high-magnification EM image in c_hm. We have to make sure that we always
click the corresponding landmark pairs in an alternating fashion between the two images
to keep their correct association. The UI offers the option to use the already determined
pairs (> 2) for a prediction of the corresponding point for each new clicked spot. Simply
activate the second “Add point and Predict Match” toggle button on the top left of the
images (.  Fig. 6.4). Because we would like to store the clicked coordinates in two variables

.      . Fig. 6.4  The manual selection process of landmark pairs in MATLAB’s cpselect tool showing EM
images at different magnifications. The “Add point and Predict Match” tool is selected and the predicted
position for point 4 is indicated in the right panel in yellow

Resolving the Process of Clathrin Mediated Endocytosis Using Correlative…

https://mathworks.com/help/images/ref/imshow.html
https://mathworks.com/help/images/ref/cpselect.html
https://mathworks.com/help/images/ref/cpselect.html

150

6

directly, we need to provide the ’Wait’,true option to cpselect to prevent MAT-
LAB from running other processes while we pick the coordinates.

1  [c_hm,c_lm] = cpselect(hm,em,’Wait’,true);

Once done, simply close the cpselect window. The two output variables c_hm and
c_lm contain the two coordinate lists of the landmark pairs that we need to generate our
transformation.

We will generate the transformation that best relates these two sets of coordinates in
the 7  Sect. 6.5.5.

Now that we have seen the cpselect tool, we can use it to defind the landmark pairs
for aligning the light-microscopy data to the low-magnification EM data.

First, we want to load our images. fm is the fluorescence image (FM), em will be the
overview image from EM.

1  fm = imread(’ex1_FM.tif’);

We can display either of the images using the imshow command and automatically adjust
the image contrast with imadjust. The FM image is a 16 bit 3-channels image. In order
to work with it using the described Matlab tools, we need to choose a single channel to
work with. In order to avoid chromatic aberrations in the registration process, and as the
beads are visible in this channel, we use the channel of interest (Red, i.e. first channel) to
mark the beads. Note that the blue channel (channel 3) contains only the beads, and could
be used later one to differentiate beads and Clathrin.

1  fm1 = fm(:,:,1); % select red channel
2  imshow(imadjust(fm1));

Open the two images next to each other in cpselect. The coordinates of landmark
beads from the FM image will be stored in c_fm, those from the EM image in c_em. We
need to make sure that we always click the corresponding landmark pairs in an alternating
fashion between the two images to keep their correct association. The UI offers the option
to use the already determined pairs (>2) for a prediction of the corresponding point for
each new clicked spot. Simply activate the second “Add point and Predict Match” toggle
button on the top left of the images to use this option.

1  [c_fm,c_em] = cpselect(em,imadjust(fm1),’Wait’,true);

	 M. Schorb and P. Paul-Gilloteaux

https://mathworks.com/help/images/ref/cpselect.html
https://mathworks.com/help/images/ref/imshow.html
https://mathworks.com/help/images/ref/imadjust.html
https://mathworks.com/help/images/ref/cpselect.html

151 6

Because the polystyrene beads we use as landmark markers are very difficult to identify
on the EM data (position of beads in EM data are shown in .  Fig. 6.10, some initialization
points are provided for the ease of this demonstration. Let’s load their coordinates (this
file is in the code directory):

1  load(’preselectedpoints.mat’);

This mat-file contains two variables:
em_cp_preselected and fm_cp_preselected.

1  [c_fm,c_em] = cpselect(em,imadjust(fm1),em_cp_preselected,fm_cp_
preselected,’Wait’,true);

The cpselect window should now look like on .  Fig. 6.5.
Try to add a point using the “Add point and Predict Match” toggle button.
Once we are done with selecting landmark pairs, close the cpselect window. The

two output variables c_fm and c_em contain the two coordinate lists, in pixels, that we
need in order to generate our transformation.

.      . Fig. 6.5  The manual selection process of landmark pairs in light (right) and electron microscopy (left)
images using MATLAB’s cpselect tool

Resolving the Process of Clathrin Mediated Endocytosis Using Correlative…

https://mathworks.com/help/images/ref/cpselect.html

152

6

6.5.3	 �Generating the Transformation

In the case of a similarity, we would like to solve for the transformation matrix T in the
system of equations described in equation 6.14. The lists of coordinates now consist of row
vectors instead of the required column vectors, so we need to transpose them before the
calculation:

1  T = c_em’ / [c_fm’;ones(1,length(c_fm))];

with the result giving us a transformation matrix like this:

1  T =
2 
3  1.0e+03 *
4 
5  0.0125 -0.0038 -5.2820
6  0.0040 0.0125 -9.1019

If we compare the (1,2) and (2,1) entries of the matrix, i.e. 0.0040 and −0.0038 (the coef-
ficient b from Eq. 6.10), we notice that the solution does not exactly fulfill the prerequisites
of a similarity (same magnitude in scaling in both axes). Let’s check what the transforma-
tion matrix looks like that we generate with fitgeotrans:

1  structT = fitgeotrans(c_fm,c_em,’similarity’);
2  T = structT.T’;
3 
4  T =
5 
6  1.0e+03 *
7 
8  0.0124 -0.0040 -5.1138
9  0.0040 0.0124 -9.0235
10  0 0 0.0010

This matrix resembles the one generated before, but now describes a true similarity.

6.5.4	 �Applying the Transformation to Image and Coordinate Data

6.5.4.1	 �Transforming Images
We now would like to apply the transformation to find out where our fluorescent signal
of interest is located within the EM image/volume. In order to transform an image we can
use the MATLAB function imwarp. Obviously our initial FM image covers a much larger

	 M. Schorb and P. Paul-Gilloteaux

https://mathworks.com/help/images/ref/fitgeotrans.html
https://mathworks.com/help/images/ref/imwarp.html

153 6

field of view than the EM image (.  Fig. 6.6). We therefore need to provide the function
with the scale and dimension of the target image. This is done using imref2D.

In order to generate the pair of registered images, we will now apply the transforma-
tion in the structured variable strucT computed by fitgeotrans, using imwarp.

1  em_geom = imref2d(size(em));
2  fm_trans = imwarp(fm1,structT,’OutputView’,em_geom);
3  figure(1);imshowpair(em,fm_trans,’montage’);
4  %shows the images side-by-side
5  figure(2); imshowpair(em,fm_trans,’blend’);
6  %shows them merged

The result of these commands is shown in .  Fig. 6.7 (for one channel only).

.      . Fig. 6.6  Illustration of the relative size of EM and FM images. The EM images (low mag and high
mag, size: 2048 × 2048 pixel) are overlaid for comparison of scale, after registration. Red: red channel
(showing clathrin and beads) from FM, Gray: low mag EM. Yellow: High Mag EM after registration on
the low mag EM

.      . Fig. 6.7  The final result of the image registration (left and center: ‘montage’ parameter) together
with the overlay using the ‘blend’ option (right) for imshowpair

Resolving the Process of Clathrin Mediated Endocytosis Using Correlative…

https://mathworks.com/help/images/ref/imref2D.html
https://mathworks.com/help/images/ref/imshowpair.html

154

6

6.5.4.2	 �Transforming Coordinates
In order to accurately transfer a set of coordinates we can use ginput on the fluorescence
image to select points of interest on the FM image. Several points can be entered. Do not
forget to press the return key when done to quit ginput mode. We then transform the
obtained coordinate list using transformPointsForward and display the resulting
coordinates on top of the EM image.

1  figure(3);
2  imshow(imadjust(fm1));
3  [x,y] = ginput;
4  [u,v] = transformPointsForward(structT,x,y);
5  figure(2), hold on, plot(u,v, ’*r’);

6.5.5	 �Registering the Low-Magnification and the High-
Magnification EM Data

Now that we have transformed the pixel coordinates of the feature(s) of interest from the
FM image onto the low-magnification EM image, we need to perform a second transfor-
mation in order to map these coordinates to the high-magnification data. Let’s use the
landmark lists that we have generated in the beginning (of 7  Sect. 6.5.2) and calculate the
second registration between low and high EM magnifications.

1  lm2hm = fitgeotrans(c_lm,c_hm,’similarity’);

In order to test whether the transformation is correct, we would like to display the high-
mag image in the context of the lower-mag overview. Therefore we need to warp it using
the inverse transform.

1  hm2lm = invert(lm2hm);
2  hm_trans = imwarp(hm,hm2lm,’OutputView’,em_geom);
3  imshowpair(em,hm_trans);

The function imshowpair without options will display the result of the registration in
a color overlay (.  Fig. 6.8).

Let’s now apply the transformation to the high-magnification data to our target coor-
dinates of the features of interest. We have already found their coordinates in the low-mag
EM (u,v), so we need to apply our transformation lm2hm to these.

1  [x_final,y_final] = transformPointsForward(lm2hm,u,v);
2  figure;imshow(sm);hold all
3  scatter(x_final,y_final,100, ’go’);
4  %this code generates the lowest panel in the results figure

	 M. Schorb and P. Paul-Gilloteaux

https://mathworks.com/help/matlab/ref/ginput.html
https://mathworks.com/help/images/ref/affine2d.transformpointsforward.html
https://mathworks.com/help/images/ref/imshowpair.html

155 6

The scatter function here will draw green circles on top of the existing figure (high-mag
EM) at the coordinates of the transformed positions (.  Fig. 6.9).

Exercise: Try to re-create the top panel of .  Fig. 6.9.

6.6	 �Accuracy Estimation and Improvements

With the transformation matrix we obtained, we can calculate the transformed coordi-
nates of our landmarks from FM to EM and compare them with the clicked positions.

.      . Fig. 6.8  The color overlay
produced by imshowpair allows
to check successful registration
of the high-mag image to the
low-mag

.      . Fig. 6.9  Left: Clathrin signal identified by FM (green circles), note the bright signal of a polystyrene
bead on the right; Middle: High mag EM top slice showing the gold beads and the polystyrene bead
(right) on the surface of the specimen; Right: High mag EM slice some nm below in the tomogram
showing the signal originating from complete vesicles (left, right) and from a forming invagination
(center). This panel is generated by the example code

Resolving the Process of Clathrin Mediated Endocytosis Using Correlative…

https://mathworks.com/help/images/ref/imshowpair.html

156

6

1  c_em1 = T * [c_fm’;ones(1,length(c_fm))];
2  % identical alternative: c_em1 = transfromPointsForward(a,c_fm);
3  figure; imshow(em);
4  hold all;
5  scatter(c_em(:,1),c_em(:,2),70, ’r+’);
6  scatter(c_em1(1,:),c_em1(2,:),70, ’bo’);
7  �% determine the deviation for the predicted points and get

average and standard deviation
8  pos_diff = c_em1(1:2,:)’ - c_em;
9  [mu,sig] = normfit(pos_diff);

This will give us an idea about the deviation of the landmark positions from their predic-
tions in EM pixels (.  Fig. 6.10). Optionally, we can try different types of transformations
and compare the resulting deviations.

It is advised to check what happens to the matrix when the control points are moved
to slightly different positions (using cpselect).

In the example we skipped step 3, the refining of FM coordinates using a Gaussian fit.
In order to improve the accuracy of the registration, both the localization of the fluores-
cence signal of interest and of the landmark beads can be improved using a fit of the peak
with sub-pixel accuracy. This fit can be performed directly in MATLAB during the work-
flow. We are going to add this step, just after the manual selection, for the FM fluorescent
signal of the beads (Step 6.5.2).

For this we can use the provided script called GaussianFit_... that corresponds
to the Toolbox available on our computer (either optimization or curve fitting Matlab
toolbox). We should start by removing the suffix of the file needed such that it is called
GaussianFit.m alone. To know which toolbox is available, type ver. The principle is
the following:

55 Input parameters are the original FM image (fm1), the list of selected control points
(or landmarks) on FM (c_fm), and a parameter in pixels that will give the crop size,
called N.

55 For each control point
55 Crop the original image around the control point position, plus and minus N.
55 Try to fit a 2D Gaussian (we are assuming that the Gaussian is symmetric,

i.e σx = σy = σ)

G x y Ae
x x y y

(,)
() ()

=
-

- + -æ

è
çç

ö

ø
÷÷

0
2

0
2

22s
	 (6.1)

55 Visually check the quality of the fit in a plot.
55 The parameters of this Gaussian will give us: A the amplitude of the Gaussian

(peak height), σ its width, and (x0, y0) the central point of the Gaussian (peak
position). Here we do not really care about the first two parameters, but (x0, y0)
will allow us to correct the original position of the control point (x, y). Note that
in a more advanced script, A and σ could be used for discriminating bad fitting
automatically.

	 M. Schorb and P. Paul-Gilloteaux

157 6

After having read the script, run it. N = 5 pixels will create a crop area of 11 × 11, which
should be sufficient in our case.

1  corrected_positions = GaussianFit(fm, c_fm, 5);

It should display the fitting and the original data as shown in .  Fig. 6.11. Press any key to
process the next control point (this is achieved by a pause command in the MATLAB
script).

Check the results visually with cpselect, now showing the corrected positions on
top of the image.

1  [c_fm,c_em] = cpselect(imadjust(fm1),em,corrected_positions,c_em,
’Wait’,true);

Exercise: Complete SimpleCLEMworkfow.m by placing the accuracy refinement by
Gaussian fitting. Add also a plot of the relative position of FM control points to matching
control points in EM: it can indicates a bias such as a small drift if it is not centered around
0. We can use normfit to study their distribution. One could also add an histogram of the
distance by using hist. Solution is provided in CLEMworkflowwithstep3andsimp
leerrorstudy.m.

.      . Fig. 6.10  Comparison of the
coordinate predictions for the
landmark points (blue circles)
with their initial clicked positions
(red crosses)

Resolving the Process of Clathrin Mediated Endocytosis Using Correlative…

https://mathworks.com/help/matlab/ref/pause.html
https://mathworks.com/help/images/ref/cpselect.html
https://mathworks.com/help/matlab/ref/normfit.html
https://mathworks.com/help/matlab/ref/hist.html

158

6

Take Home Message

In this chapter we have shown the basic principle of post-acquisition coordinate reg-
istration. We have seen how to express linear transforms with matrices, and how to
compute them from pair of coordinates. We have registered the FM image showing
polystyrene beads to an EM image at a low magnification, with enough beads visible in
the field of view. We have then registered the low magnification EM to an higher mag-
nification EM. Transforms can then be combined by simply multiplying them to position
the fluorescence image on the high magnification EM image. The code as described
here was used for a number of CLEM studies in the recent years (Kukulski et al. 2012;
Schellenberger et al. 2014; Avinoam et al. 2015; Hampoelz et al. 2016; Curwin et al.
2016), but accuracy estimation was computed using another more effective approach
than in this module. In this chapter, the localization error was computed only for the
control points. Investigating only the error for the predicted landmark coordinates (as
in 6.6) leads to an underestimation of the error for the points of interest. These might be
located distant to landmarks and therefore behave differently under the transformation.

The accuracy of a registration also strongly depends on the accuracy of the local-
ization of the landmarks. The Gaussian fitting can help to to reduce the resulting
error. When an accurate localisation is not possible, another way of reducing registra-
tion inaccuracy is to increase the number of landmark points, and to make sure that

0

50

5 5
0

Local cropped image Y Local cropped image X

0
-5-5

100

150

C
or

re
ct

ed
 In

te
ns

ity 200

250

300

.      . Fig. 6.11  Example of correction of manual selection based on Gaussian fitting. The mesh is the
Gaussian fit, the red dots are the original pixel intensities in the cropped image (corrected by their base
value), the blue star is the original clicked position, the green star is the corrected position. Note that
here the clicked values were already very good, but remember that 1 pixel correction is about 100 nm
correction, i.e. about 100 pixels in the high magnification EM image

	 M. Schorb and P. Paul-Gilloteaux

159 6

Acknowledgements  We thank Marion Louveaux (Heidelberg University) for reviewing this
chapter.

�Appendix: Image Transformations

�Basic Similarity and Affine Transformations

The position of each pixel and each object inside an image is given by its two coordinates

 to which an intensity value is associated.

they surround the point of interest (see Paul-Gilloteaux et al. (2017) for a theoretical
description of accuracy in registration).

The registration workflow demonstrated in this chapter is applied in 2D, but the 3D
workflow can be constructed in a similar way by adding the z dimension to both the
coordinates and the transformation matrix.

There are alternative tools that perform similar tasks include ec-clem (Paul-Gillo-
teaux et al. 2017), which also supports 3D registration and propose some automatic
registration options, as well as an estimation of error in any points of the image. In
addition, it can help selecting the type of transformation needed, in particular it can
automatically detect if a elastic transformation is needed, e.g. if the sample underwent
deformations due to the fixation process for example. As it was demonstrated in Paul-
Gilloteaux et al. (2017), selecting an elastic transformation when not needed will actu-
ally augment the error in other points of the images than the landmarks (.  Fig. 6.12).

.      . Fig. 6.12  The source image
we will use to demonstrate the
transformations. Microscope
pictograph adapted from ant
(2013)

Resolving the Process of Clathrin Mediated Endocytosis Using Correlative…

160

6

Any linear transformation can be written as the multiplication by a matrix T that
describes the transformation applied to the the image vectors.

x
y

T
x
y

a b
c d

x
y

ax by
cx dy

¢
¢

æ

è
ç

ö

ø
÷ = *

æ

è
ç

ö

ø
÷ =

æ

è
ç

ö

ø
÷*

æ

è
ç

ö

ø
÷ =

+
+

æ

è
ç

ö

ø
÷

	

(6.2)

Any linear transformation (i.e translations, rotations, scaling, etc…) can be seen as a
combination of elementary transformations that can be represented as sequential matrix
multiplications.

x
y

T U V
x
y

¢
¢

æ

è
ç

ö

ø
÷ = * * * *

æ

è
ç

ö

ø
÷

	

(6.3)

The simplest possible transformation is the uniform scaling with a constant s (.  Fig. 6.13).
The transformation can then simply be described as the Identity matrix multiplied by this
constant. This means, that in order to obtain this matrix from image data, we need to find
one parameter (s).

x
y

s
x
y

s
x
y

¢
¢

æ

è
ç

ö

ø
÷ = *

æ

è
ç

ö

ø
÷*

æ

è
ç

ö

ø
÷ = *

æ

è
ç

ö

ø
÷

1 0
0 1

	

(6.4)

In this scaling example, if we take a scaling of s = 0.5 (i.e. reducing the image size by
2), if a pixel was at position (2,2) in the original image it would then move to position
(2*0.5,2*0.5)=(1,1) in the new scaled image (see left panel of .  Fig. 6.13)

Another basic transformation is a rotation (.  Fig. 6.13). Here the rotation matrix T,
given a rotation angle θ, takes the form:

T =
-æ

è
ç

ö

ø
÷

cos sin
sin cos

q q
q q

	

(6.5)

This means, that in order to obtain the rotation matrix from a pair of images, we need to
find one parameter (θ).

Another elementary step that can happen when multi-modal images are compared
is that the images are flipped with respect to each other. The transformation matrix to
describe the swapping of the two coordinate axes looks like this:

T =
æ

è
ç

ö

ø
÷

0 1
1 0

	

(6.6)

Why?

x
y

T
x
y

y
x

¢
¢

æ

è
ç

ö

ø
÷ = *

æ

è
ç

ö

ø
÷ =

æ

è
ç

ö

ø
÷

	

(6.7)

	 M. Schorb and P. Paul-Gilloteaux

161 6

Coordinates swapped!
Another elementary image transformation—the translation of coordinates—cannot

be described using the aforementioned very elegant concept of nested matrix multiplica-
tions. So how can the following translation

x
y

x
y

t
t
x

y

¢
¢

æ

è
ç

ö

ø
÷ =

æ

è
ç

ö

ø
÷ +

æ

è
ç

ö

ø
÷

be written as a multiplication?
In order to represent a translation as a matrix multiplication we have to add an

extra dimension to our description that does not correspond to a real coordinate
dimension in our image data but only plays a role during the calculations. An image

coordinate would then be written like this: . The matrix describing a translation is

obtained by adding the column of the translation vector

to the two-dimensional

Identity matrix.

x
y

t
t

x
y

x y t
x

x

y

x¢
¢

æ

è
ç

ö

ø
÷ =

æ

è
ç

ö

ø
÷*

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
=

* + * + *
* + *

1 0
0 1

1

1 0 1
0 1 yy t

x t
y ty

x

y+ *
æ

è
ç

ö

ø
÷ =

+
+

æ

è
ç

ö

ø
÷1

	

(6.8)

The combination of rotation and translation with an optional flip of coordinate axes is
called rigid transformation. A rigid transformation conserves all geometrical properties
of the original structure, such as areas and relative orientations.

.      . Fig. 6.13  The test image scaled by a factor of s = 0.5 (left) or rotated by 130∘ (right). The origin of the
coordinate system is at the center of the image

Resolving the Process of Clathrin Mediated Endocytosis Using Correlative…

162

6

When adding a uniform scaling, the transformation is called similarity (.  Fig. 6.14).
Under a similarity, parallel lines remain parallel and angles are conserved. This implies
that all shapes stay the same.

A general similarity can be written as:

x
y

s s t
s s t

x
yx

y

¢
¢

æ

è
ç

ö

ø
÷ =

* - * *
* * *

æ

è
ç

ö

ø
÷*

æ

è

ç
ç

cos sin
sin cos

q s q
q s q

1çç

ö

ø

÷
÷
÷

	

(6.9)

In order to find a similarity matching two coordinate systems, the four unknown param-
eters s, θ, tx and ty have to be determined. The additional parameter σ which is ± 1 deter-
mines whether a coordinate flip is included or not.

When we allow a non-uniform scaling that affects the coordinate axes differently, the
resulting transformation is called affine (.  Fig. 6.15) and no longer preserves angles and
shapes, but parallel lines. The representation of an affine transformation requires to define
all six matrix components.

x
y

a b t
c d t

x
yx

y

¢
¢

æ

è
ç

ö

ø
÷ =

æ

è
ç

ö

ø
÷*

æ

è

ç
ç
ç

ö

ø

÷
÷
÷1

	

(6.10)

�Higher-Order Transformations

When a coordinate frame is registered onto another coordinate system, the scaling factors
that determine the stretching can be defined to vary in a linear fashion. Transformations

.      . Fig. 6.14  The test image is
transformed using a similarity:
a linear combination of scaling,
translation and rotation

	 M. Schorb and P. Paul-Gilloteaux

163 6

that add this flexibility to affine transformations are called projections (.  Fig. 6.16) and
are described by a general 3 × 3 matrix with 9 unknown parameters. After a projection,
straight lines will remain straight.

x
y

a b c
d e f
g h i

x
y

¢
¢

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
=
æ

è

ç
ç
ç

ö

ø

÷
÷
÷
*
æ

è

ç
ç
ç

ö

ø

÷
÷
÷1 1

	

(6.11)

Instead of applying a single matrix multiplication to the coordinates, an other way of
mathematically describing such coordinate transformation would be to have the result
depend on higher polynomial orders of the input.

For the second order

x
y

T

x

y
x y
x
y

¢
¢

æ

è
ç

ö

ø
÷ = * *

æ

è

ç
ç
ç
ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷
÷
÷
÷

2

2

1
	

(6.12)

T is a 6 × 2 matrix with 12 unknown coefficients. With higher order polynomials or groups
of transformations, where each only matches a local set of coordinates, any degree of flex-
ibility can be achieved (.  Fig. 6.16). However, the higher the complexity of the approach,

.      . Fig. 6.15  The test image is
transformed using an affine
transformation. The stretch in
one coordinate direction causes
a distortion in shape

Resolving the Process of Clathrin Mediated Endocytosis Using Correlative…

164

6

the higher the risk of generating an overfitting that only represents the priors but not the
true state of the entire system.

�Generating Transformations from Image Coordinates

The goal of a post-acquisition correlative experiment is to localize of a feature from available
image data inside a second, different image dataset that provides complementary informa-
tion. In order to find the transformation that registers the coordinate frame from the first
imaging modality to the second, we need to define the unknown parameters. In a typical
CLEM experiment, the information from the light microscopy data and those obtained
by EM are fundamentally different, so an automated feature detection will most likely fail
due to the lack of common structures. We therefore rely on a generic approach and on the
availability of landmark pairs that the user can manually position in both image modalities.

Let’s assume we want to find the parameters of a similarity without reflection. We thus
need to define the four coefficients for

x
y

a b t
b a t

x
yx

y

¢
¢

æ

è
ç

ö

ø
÷ =

-æ

è
ç

ö

ø
÷*

æ

è

ç
ç
ç

ö

ø

÷
÷
÷1

	

(6.13)

with a s= *cosq and b s= *sin .q This notation represents a set of two linear equations.
Since each known coordinate pair will solve one set, we need three pairs of landmarks to
solve all unknown pairs.

The higher the flexibility of the desired transformation, the higher the number of
unknowns in the equations and therefore the more defined landmark pairs need to be
provided.

.      . Fig. 6.16  Examples of a projection (left) and a non-linear image transformation (right). Note the loss
of straight lines in the non-linear example image

	 M. Schorb and P. Paul-Gilloteaux

165 6

The system of equations can thus be written as:

x x x
y y y

a b t
b a t

x x x
y y yn

n

x

y

n

n
¢ ¢ ¢
¢ ¢ ¢

æ

è
ç

ö

ø
÷ =

-æ

è
ç

ö

ø
÷*

1 2

1 2

1 2

1 2

1









11 1

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

	

(6.14)

or in MATLAB code

1  V = T * [U;ones(1,size(U,2))];
2  �V = [x1, x2, x3; y1, y2, y3]; % x,y landmark coordinates in target

frame

with the matrices U containing the source and V the target coordinates.

1  U = [x1, x2 ,x3; y1, y2, y3];

In order to solve for the matrix coefficients in T, we simply need to invert this matrix
multiplication. In general, matrix multiplications are not commutative, so the order of the
factors matters. In our case, we want to determine the left factor, therefore we can apply
MATLAB’s “/” operator (identical to the function mrdivide).

1  T = V / [U;ones(1,size(U,2))];

However, this approach will solve the general matrix parameters and will not take into
account the restrictions on our transformation matrix, such as the number of free param-
eters depending on the chosen type of transformation. It will simply determine a matrix
that solves this set of equations. Moreover, if the number of provided landmark pairs
exceeds the number of constraints necessary to solve the equations, MATLAB will find
the matrix coefficients using a least-squares approach. In order to restrict the solution to
a specific transformation type, we will use the MATLAB function fitgeotrans. It pro-
duces a MATLAB transformation structure that contains the matrix and some metadata.
It requires the coordinate data in columns, so we transpose U and V.

1  Transformation_Type= ’nonreflectivesimilarity’;
2  structT=fitgeotrans(U’,V’,Transformation_Type);
3  T=structT.T’

The script code for these 2 methods can be found in Background_Finding
Transformations.m.

Resolving the Process of Clathrin Mediated Endocytosis Using Correlative…

https://mathworks.com/help/matlab/ref/mrdivide.html
https://mathworks.com/help/matlab/ref/mrdivide.html
https://mathworks.com/help/images/ref/fitgeotrans.html

166

6

Bibliography

Antibiotic Resistance Threats in the United States (2013) Technical report, CDC—National Center for
Health Statistics. https://www.cdc.gov/drugresistance/threat-report-2013/

Avinoam O, Schorb M, Beese CJ, Briggs JAG, Kaksonen M (2015) Endocytic sites mature by continuous
bending and remodeling of the clathrin coat. Science (New York, NY) 348(6241):1369–1372. ISSN:
1095-9203. https://doi.org/0.1126/science.aaa9555

Curwin AJ, Brouwers N, Alonso Y Adell M, Teis D, Turacchio G, Parashuraman S, Ronchi P, Malhotra V (2016)
ESCRT-III drives the final stages of CUPS maturation for unconventional protein secretion. eLife. ISSN:
2050-084X. https://doi.org/10.7554/eLife.16299

de Boer P, Hoogenboom JP, Giepmans BNG (2015) Correlated light and electron microscopy: ultrastruc-
ture lights up! Nat Methods 12(6):503–513. ISSN: 1548-7105. https://doi.org/10.1038/nmeth.3400

de Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, Provoost T, Meas-Yedid V, Pankajakshan P,
Lecomte T, Le Montagner Y, Lagache T, Dufour A, Olivo-Marin J-C (2012) Icy: an open bioimage infor-
matics platform for extended reproducible research. Nat Methods 9(7):690–696. ISSN: 1548-7105.
https://doi.org/10.1038/nmeth.2075

Hampoelz B, Mackmull M-T, Machado P, Ronchi P, Huy Bui K, Schieber N, Santarella-Mellwig R, Necakov A,
Andrés-Pons A, Philippe JM, Lecuit T, Schwab Y, Beck M (2016) Pre-assembled nuclear pores insert into
the nuclear envelope during early development. Cell 166(3):664–678. ISSN: 1097-4172. https://doi.
org/10.1016/j.cell.2016.06.015

Image Registration. https://www.mathworks.com/discovery/image-registration.html
Kukulski W, Schorb M, Welsch S, Picco A, Kaksonen M, Briggs JAG (2011) Correlated fluorescence and 3D

electron microscopy with high sensitivity and spatial precision. J Cell Biol 192(1):111–119. ISSN: 1540-
8140. https://doi.org/10.1083/jcb.201009037

Kukulski W, Schorb M, Kaksonen M, Briggs JAG (2012) Plasma membrane reshaping during endocytosis is
revealed by time-resolved electron tomography. Cell 150(3):508–520. ISSN: 1097-4172. https://doi.
org/10.1016/j.cell.2012.05.046

Paul-Gilloteaux P, Heiligenstein X, Belle M, Domart M-C, Larijani B, Collinson L, Raposo G, Salamero J
(2017) eC-CLEM: flexible multidimensional registration software for correlative microscopies. Nat
Methods 14(2):102–103. ISSN: 1548-7105. https://doi.org/10.1038/nmeth.4170

Schellenberger P, Kaufmann R, Siebert CA, Hagen C, Wodrich H, Grünewald K (2014) High-precision cor-
relative fluorescence and electron cryo microscopy using two independent alignment markers.
Ultramicroscopy 143:41–51. ISSN: 879-2723. https://doi.org/10.1016/j.ultramic.2013.10.011

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S,
Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-
source platform for biological-image analysis. Nat Methods 9(7):676–682. ISSN: 1548-7105. https://
doi.org/10.1038/nmeth.2019

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (7  http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not included in
the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

	 M. Schorb and P. Paul-Gilloteaux

https://www.cdc.gov/drugresistance/threat-report-2013/
https://doi.org/0.1126/science.aaa9555
https://doi.org/10.7554/eLife.16299
https://doi.org/10.1038/nmeth.3400
https://doi.org/10.1038/nmeth.2075
https://doi.org/10.1016/j.cell.2016.06.015
https://doi.org/10.1016/j.cell.2016.06.015
https://www.mathworks.com/discovery/image-registration.html
https://doi.org/10.1083/jcb.201009037
https://doi.org/10.1016/j.cell.2012.05.046
https://doi.org/10.1016/j.cell.2012.05.046
https://doi.org/10.1038/nmeth.4170
https://doi.org/10.1016/j.ultramic.2013.10.011
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
http://creativecommons.org/licenses/by/4.0/

© The Editor(s) (if applicable) and The Author(s) 2020
K. Miura, N. Sladoje (eds.), Bioimage Data Analysis Workflows, Learning Materials in Biosciences,
https://doi.org/10.1007/978-3-030-22386-1

167167

Supplementary
Information
Index – 169

https://doi.org/10.1007/978-3-030-22386-1

A–N169

Index

A
Accuracy estimation  155–159
Affine transformation  159–163
Alignment  145
Array  22, 23, 49–52, 56, 57, 61–63, 84,

111, 112, 115, 120, 123, 130, 131

B
Beads  37, 117, 122, 123, 144–151, 153,

155, 156, 158
Bioimage analyst  4, 5
Bioimage informatics search engine

(BISE)  5
Blobs  107–110, 113–116, 133, 135–17
Brownian motion  87, 88, 99, 117, 118,

121, 122, 125, 127–130

C
CellProfiler  2, 3, 35
Channel  2, 4–8, 10, 13, 15–18, 20, 36,

37, 39–43, 45–51, 53, 54, 57, 59–65,
113, 146, 147, 150, 153

Cheat sheet  138
Code folding  106
Code hygiene  130, 157–158
Collection  2–5, 37, 85, 105
Co-localisation  33–65
Command recorder  2, 4, 6, 8, 13, 14
Comma-separated values (CSV)  21
Component  1–8, 38, 44, 68, 114–116,

130, 162
Connexity analysis  43
Correlative microscopy  143–165
Cytoplasmic  2

D
DAPI  2
Data classes  130–131
Data table  131
Dialog box  6, 43, 46, 57, 58, 63
Diffusion  87, 88, 90, 99, 125, 127–130
Dilation  9, 23
Docker  5

E
EDAM Bioimaging Ontology  5
Editor  8, 14, 83, 105–107, 110, 113, 133
Electron microscopy  144–165
ELIXIR  5
Endoplasmic reticulum (ER)  2
Erosion  5, 9, 23

F
Fiji  3, 36, 38, 39, 41, 44, 45, 69–71, 82,

83, 87, 145
For-loop  16, 17, 52, 56, 111, 127
Function  3, 5–8, 12–17, 19–24, 36,

41–65, 68, 83, 87, 90, 99–102, 117,
118, 122, 123, 125–127, 131,
146–148, 152–155, 165

G
Gaussian fit  156, 158
Github  3
Graphical user interface (GUI)  3–5,

8, 11, 13, 57–60, 63, 65, 71, 72,
75, 80, 81

H
H2B-mCherry  4
Hela cells  4
Histograms  119
Histone  2, 19, 20

I
ICY  2, 35
Image file formats  103
Image ID  7, 8, 20
ImageJ  2, 3, 6, 8, 17, 21, 38, 39, 41,

43–45, 47, 54, 61–63, 70, 71, 73, 83,
99, 107–111, 115, 123

ImageJ macro  2, 3, 8, 17, 21, 63, 111
Image subtraction  9
ImgLib2  2
Inner nuclear membrane  2

Intensity  1–24, 34, 36, 40, 43–45, 47,
50, 51, 53–55, 59–65, 73, 75, 77, 107,
114, 116, 150

Intensity changes  2–4, 16
Iterations  9–12, 19, 21, 37
ITK  2

L
Lamin B receptor  2, 4
Landmarks  144–151, 154–159, 165
Linear Kuwahara  3
Live scripts  110, 133–135
Loading data  3, 71–72, 123–124
Loop  2, 16, 51, 55, 111, 112, 127
LUT  9–12, 18, 21

M
Macro  2–13, 17–19, 21, 34, 40–46,

49–51, 53–65, 99, 111
Mask  2, 4, 9–13, 18, 19, 21, 23, 40, 44,

47–49, 51, 53, 56, 59–62, 65, 113–116
Mathematical morphology  2, 23
MATLAB  2, 69, 70, 76, 82–86, 99–139,

145–150, 152, 156, 157, 165
Matrix  99, 103, 127, 152, 155,

159–163, 165
Mean squared-displacement

analysis  95
Mean square displacement (MSD)  68–70,

79, 82, 85, 87–90, 94, 95, 128–130
Merge channels  13
Meta-data  71–72, 108–110, 123, 130, 165
Montage  110, 112, 153
MosaicSuite  3
Motility analysis  82–94
Multimodal imaging  160

N
NEMO  67–95
The Network of European Bioimage

Analyst (NEUBIAS)  5
Non-linear transformation  164
Nuclear envelope  2, 3
Nucleus  1–24, 68, 69
Nucleus rim  4–17, 19–21

170

O
Object  34–65, 68, 72, 73, 75, 77, 86–88,

104, 159
OpenCV  2
Organelle  3, 68
Otsu intensity thresholding  5–10, 12,

18, 21, 76, 113, 114
Output  4–5, 9, 15, 18, 19, 21, 40, 52–56,

58–60, 62, 64, 65, 68, 94, 103, 118, 123,
126, 133–135, 148, 150, 151, 153, 154

Overlap  34–37, 39, 40, 45, 47, 48, 50,
53, 54, 59–62, 65, 126

P
Plasma membrane  3, 144
Plotting  19, 22, 23, 118
Post-processing  2, 3
Power-laws  128, 129
Pre-processing  5, 18, 36–41
Projection  163, 164
Protein relocalization  2

R
Random walk  117–119, 122, 128, 130
Registration  144–150, 153–156, 158, 159

Reproducibility  4
Results table  14, 19, 22, 54–56, 59
Rigid transformation  161

S
Saving images, figures, and data  119
Scaling  59, 107, 152, 160, 162
Scikit-image  2
Scripting  41, 106
Scripts  2, 4, 5, 8, 24, 82, 83, 105–108,

110, 117, 118, 126, 133–135, 156,
157, 165

Similarity  152, 154, 162, 164, 165
Simulating  117–118, 122
Single-particle tracking  68–95
Smoothing  113–116, 123, 124, 130
Software package  2, 36, 99, 146
Software tools  2, 5, 21
Speed  10, 110, 117–124, 126, 127
Split channel  5–10, 13–17, 19, 20, 41
Sub-sampling  119–123

T
Three-dimensional (3D) Suite  3
Three-dimensional (3D) volumes  3
Thresholding  4, 5, 42, 43, 47, 50, 75,

109, 113–116, 120, 130

Time-series analysis  116–124
Tissue boundaries  3
Toolbox  70, 99–102, 107, 124, 131–132,

144, 146–148, 156
Total fluorescence intensity  21, 22, 60
Tracking data  123–124
TrackMate  3, 69–73, 76, 77, 80–84, 86,

87, 93, 123
Transformation  144, 146–148,

150–156, 158–165

U
User-defined function  17, 18, 41, 43,

46, 47, 49, 53, 59, 60, 65

V
Volume  3, 36, 39, 40, 45, 47, 50–56,

59–61, 63–65, 122, 145, 152
VTK  2

W
Workflow  1–24, 38–41, 43–45, 51, 55,

57, 59, 60, 65, 66, 70, 71, 82, 144,
147, 156, 159

Workflow template  3

	 Index

	Preface
	Acknowledgements
	Contents
	Contributors
	1: Workflows and Components of Bioimage Analysis
	1.1	 Introduction
	1.2	 Types of Bioimage Analysis Software
	Bibliography

	2: Measurements of Intensity Dynamics at the Periphery of the Nucleus
	2.1	 Introduction
	2.2	 Tools
	2.3	 Dataset
	2.4	 Workflow
	2.4.1	 Segmentation of Nucleus Rim
	2.4.1.1	 Block 1: Splitting Channels
	2.4.1.2	 Block 2: Segmentation of Nucleus Rim
	2.4.1.3	 Block 3: Intensity Measurement Using Mask

	2.4.2	 Integration: The Measurement Over Time
	2.4.3	 Integrating Segmentation and Measurements

	2.5	 Results and Conclusion
	2.6	 Exercise Answers
	2.6.1	 Exercises 2.1–2.4
	2.6.2	 Exercise 2.5

	Bibliography

	3: 3D Quantitative Colocalisation Analysis
	3.1 Introduction
	3.1.1 What Is Colocalisation?
	3.1.2 Which Colocalisation Methods Are There?
	3.1.3 Some Image Preprocessing Tips You Should Keep in Mind

	3.2 Datasets
	3.3 Tools
	3.4 Workflow 1: Objects Overlap Volume Quantification
	3.4.1 Step 0: Building a Strategy
	3.4.2 Step 1: Normalize the Image Names
	3.4.3 Step 2: Tag the Objects
	3.4.4 Step 3: Isolating the Overlapping Parts
	3.4.5 Step 4: Retrieve Volumes
	3.4.6 Step 5: Generate Outputs
	3.4.7 Step 6: Make the Macro User Friendly
	3.4.8 What Then?

	3.5 Workflow 2: Objects Overlap Intensity Quantification
	3.5.1 What Should We Do?
	3.5.2 New Step 4: Retrieve Intensities
	3.5.3 Adapted Step 6: Make the Macro User Friendly

	Bibliography

	4: The NEMO Dots Assembly: Single-Particle Tracking and Analysis
	4.1	 Introduction
	4.2	 Datasets
	4.3	 Tools and Prerequisites
	4.4	 Workflow
	4.5	 Single-Particle Tracking with TrackMate
	4.5.1	 Step 1: Loading Image Data and Launching TrackMate
	4.5.2	 Step 2: Detection
	4.5.3	 Step 3: Filtering
	4.5.4	 Step 4: Particle-Linking
	4.5.5	 Step 5: Filtering Tracks
	4.5.6	 Step 6: Export Results

	4.6	 Motility Analysis with Mean-Square Displacement
	4.6.1	 Step 1: Importing Tracks into MATLAB
	4.6.2	 Step 2: Create and Add Data to the MSD Analyzer
	4.6.3	 Interlude: A Short Word About Mean-Square Displacement Analysis
	4.6.4	 Step 3: Compute the Mean-Square Displacement
	4.6.5	 Step 4: Log-Log Fit of the Mean-Square Displacement
	4.6.6	 Step 5: Analysis of the Log-Log Fit

	4.7	 Results and Conclusion
	Bibliography

	5: Introduction to MATLAB
	5.1	 Tools
	5.1.1	 MATLAB
	5.1.2	 Image Processing Toolbox
	5.1.3	 Statistics and Machine Learning Toolbox, Curve Fitting Toolbox

	5.2	 Getting Started with MATLAB
	5.2.1	 Baby Steps
	5.2.2	 Plot Something
	5.2.3	 Make it Pretty
	5.2.4	 Getting Help

	5.3	 Automating It: Creating Your Own Programs
	5.3.1	 Create, Save, and Run Scripts
	5.3.2	 Code Folding and Block-Wise Execution
	5.3.3	 Scripts, Programs, Functions: Nomenclature

	5.4	 Working with Images
	5.4.1	 Reading and Displaying an Image
	5.4.2	 Extracting Meta-Data from an Image
	5.4.3	 Reading and Displaying an Image-Stack
	5.4.4	 Smoothing, Thresholding and All That

	5.5	 Time-Series Analysis
	5.5.1	 Simulating a Time-Series of Brownian Motion (Random Walk)
	5.5.2	 Plotting a Time-Series
	5.5.3	 Histograms
	5.5.4	 Sub-Sampling a Time-Series (Slicing and Accessing Data)
	5.5.5	 Investigating How “Speed” Depends on Δt
	5.5.6	 Investigating How “Speed” Depends on Subsampling
	5.5.7	 Simulating Confined Brownian Motion
	5.5.8	 Simulating Directed Motion with Random Tracking Error
	5.5.9	 Loading Tracking Data from a File
	5.5.10	 Smoothing (Filtering) a Time-Series

	5.6	 MSD: Mean Square Displacement
	5.6.1	 Creating a Function That Calculates MSDs
	5.6.1.1	 About Functions and How to Call Them

	5.6.2	 MSD: Linear Motion
	5.6.3	 MSD: Brownian Motion
	5.6.3.1	 MSD: Simulated Random Walk

	5.6.4	 MSD: Averaged Over Several 2-Dim Tracks
	5.6.5	 Further Reading About Diffusion, the MSD, and Fitting Power-Laws

	Appendix: MATLAB Fundamental Data Classes
	MATLAB Documentation Keywords for Data Classes

	Appendix: Do I Have That Toolbox?
	Appendix: HTML and Live Scripts
	Publish Your Script to HTML
	Working with Live Scripts

	Appendix: Getting File and Folder Names Automatically
	Read from a Folder
	Path and File Names

	Appendix: Codehygiene
	Appendix: MATLAB Cheat Sheet
	Bibliography

	6: Resolving the Process of Clathrin Mediated Endocytosis Using Correlative Light and Electron Microscopy (CLEM)
	6.1	 Introduction
	6.2	 Data Presentation
	6.3	 Overview of Data Processing
	6.4	 Tools Description
	6.5	 Application to a CLEM Experiment
	6.5.1	 CLEM Workflow Overview and Preparation
	6.5.2	 Labeling of Landmark Pairs
	6.5.2.1	 Correlation from Low Magnification Tomogram to High Magnification EM Image

	6.5.3	 Generating the Transformation
	6.5.4	 Applying the Transformation to Image and Coordinate Data
	6.5.4.1	 Transforming Images
	6.5.4.2	 Transforming Coordinates

	6.5.5	 Registering the Low-Magnification and the High-Magnification EM Data

	6.6	 Accuracy Estimation and Improvements
	Appendix: Image Transformations
	Basic Similarity and Affine Transformations
	Higher-Order Transformations
	Generating Transformations from Image Coordinates

	Bibliography

	Index

