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Abstract. This paper describes the concept of a hybrid tutor as a type of
adaptive instructional system (AIS). A hybrid tutor is a confederation of several
digital learning resources and human interactions so that the right resource is
available to the learner at the right time. We discuss a method for combining
several existing educational technologies into a unified platform that tracks
progress on learning a subject matter across several constituent parts and offers
recommendations on what to do next. There is a learning record store that keeps
track of progress and enables intelligent recommendations at several levels:
broad topics, specific knowledge components, material difficulty, and mode of
instruction. The fine-grain adaptability allows the incorporation of several cog-
nitive learning principles, such as multiple representations and modalities, mental
model construction, item spacing, and support for self-regulated learning. The
proposed web-based learning environment can function as a stand-alone
instructional platform that is integrated into classrooms with topics assigned
according a curriculum-based calendar or an adaptive learning environment that
suggests learning activities that are generated by an intelligent recommender
system. As a proof of concept, we developed ElectronixTutor, a hybrid tutor
designed for introductory and intermediate electrical engineering education. This
paper describes the rationale for its design and preliminary results.
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Learning principles

1 Introduction

Adaptive instructional systems (AISs) are computer-based systems that guide learning
experiences by tailoring instruction and recommendations based on the goals, needs,
and preferences of each learner in the context of domain learning objectives [1]. These
advanced computer learning environments help students master knowledge and skills
by implementing algorithms that adapt to students and that are informed by scientific
principles of learning [2]. Typically, this type of instruction focuses on one student at a
time to be sensitive to individual differences relevant to the topic at hand or instruction
generally. It is also possible to have an automated tutor or mentor interact with small
teams of learners in collaborative learning and problem-solving environments [3, 4].

Many of these systems go far beyond the capabilities of conventional computer
training systems. Adaptivity in conventional systems often consists of no more than
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coarse-grained signal-response using primitive learning principles. For example, a
learner may study static material (e.g., text), take a multiple-choice assessment, receive a
score, and iterate through the same process until achieving a threshold performance.
Progression through topics often follows a predetermined order. Advanced AISs can
drastically improve upon this approach by implementing fine-grained adaptivity. This
can include providing feedback within individual problems to work toward a correct
answer or directing learners to a subsequent problem suited to their level of mastery (as
determined by previous performance). This is known as two-loop adaptivity [5].
Intelligent tutoring systems, a subset of AISs, track detailed learner characteristics such
as knowledge, skills, and other psychological attributes and apply computational models
based on the combination of artificial intelligence and cognitive science [2, 6, 7].

1.1 Contributions of AISs

The evolution of cognitive learning principles and models of learning have produced a
range of pedagogically advanced AIS environments. Several mature systems have
demonstrated significant learning outcomes. Some examples cover well-defined subject
matters such as algebra and geometry, including Cognitive Tutors [8–10] and ALEKS
[11]. Other efforts in electronics (SHERLOCK [12], BEETLE-II [13]) and digital
information technology (Digital Tutor [14]) also have successful use cases.

The inclusion of verbal interaction with conversational agents can scaffold more
natural engagement with the subject matter [15, 16] and open doors to less well-defined
domains. Conversational systems encourage learners to explain concepts in their own
words and thereby engender reflection and reasoning. Mixed initiative dialogues allow
learners to direct the conversation to personally relevant areas of the topic. Paralin-
guistic cues (e.g., pointing, facial expressions) increase realism and allow for visual
reinforcement of information.

Conversational systems with two or more agents (e.g., a teacher agent and a student
agent) allowmultiple kinds of interactions and encourages greater social involvement [15,
17, 18]. Some examples of conversational AISs includeAutoTutor [16, 19], Betty’s Brain
[20], Coach Mike [21], Crystal Island [22], and Tactical Language and Culture System
[23], all with demonstrated advantages over conventional instructional techniques.

Analyses of the effectiveness of AISs (and more specifically intelligent tutoring
systems) have demonstrated value added over more conventional approaches like
classroom instruction or reading static materials. While the effect sizes vary substan-
tially from d = 0.05 [24, 25] to an impressive d = 1.08 [26], most converge on rela-
tively large values between d = 0.40 and d = 0.80 [5, 27]. Together, AISs cover a wide
range of topics, and often the same topic from a variety of pedagogical angles.

1.2 Some Practical Challenges of AISs

Several practical problems have challenged widespread creation and adoption of these
AISs despite their individual successes and collective contribution to our understanding
of educational technologies more generally. AISs require large, diverse teams to work
together effectively. For example, AutoTutor problems in electrical engineering
required multiple experts in the fields of computer science, cognitive psychology,
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natural language processing, and, of course, electrical engineering [28]. These systems
require a major investment in time and resources. Smaller, less expensive systems
focus on a small band of pedagogical methods, learning principles, modalities, and
content; but this runs the risk of yielding smaller learning gains and fewer learners who
benefit from the AIS.

1.3 Multiple Representations

Learning functions on many levels (e.g., [29, 30] that can benefit from varied forms of
instruction. Levels of learning also tend to build on one another, such that higher levels
often assume competency on lower ones. While individual AISs may suffer from lack
of breadth or prohibitive development time, they each potentially provide a valuable
representation of the information. A staged algebraic approach can offer a concrete
mathematical complement to the conceptual focus of conversational AISs. Simple word
problems provide remedial representation of key concepts and relationships when
targeted at problem areas. Easily accessible definitions and functional descriptions
lower the barrier to interaction with information. And functional comprehension fol-
lows from representations integrating concepts, components, and relationships. Lev-
eraging multiple representations in AISs can provide staged advancement when made
concurrently available. This can also help ensure that learners stay within Vygotsky’s
zone of proximal development [31].

The National Academy of Sciences, Engineering, and Medicine [32] identified
affordances of learning technologies. The affordances include interactivity, where the
technology responds to learners’ actions, and adaptivity, where information is contin-
gent on the past behavior, knowledge, or characteristics of the learner. Taken together,
these present a baseline technical qualification for AISs. Other affordances include
providing feedback on quality of performance, offering a choice on what to learn next,
and allowing nonlinear access to content for self-directed learners. Learning technology
also affords linked representations that emphasize different conceptual viewpoints,
open-ended learner input to encourage self-expression, and communication with others.

Leveraging all of these affordances into a single AIS presents a daunting challenge.
However, given the potential for concurrently developed and available AISs in the same
domain, a possible solution is to combine existingAISs into a larger, complex system. The
resulting system would provide diverse modes of interacting with content, strengthening
learners understanding by reinforcing through varied, stratified repetition. It could also
foster ownership on the learner’s part by allowing choice of not just content, but order,
representation, and difficulty. The resulting confederated system would include a human
instructor that orchestrates learning, together with the recommendations from an intelli-
gent recommender system. This essentially is what we mean by a hybrid tutor: the best of
accomplished human tutors and digital intelligence from an ensemble of digital resources.

The hybrid tutor would still require substantial investment by experts in diverse
fields to create content, but the advantages stated should mean those hours are more
likely to yield fruitful interactions with students. The pressing challenge becomes
developing a way of translating progress in one system to progress in another, and in
making intelligent recommendations across an array of resources on several levels
(e.g., topic, modality, difficulty, sources, human vs. computer).
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2 ElectronixTutor

The promise of a hybrid tutor spurred the development of ElectronixTutor. Elec-
tronixTutor is a hybrid tutor, designed to supplement classroom instruction by lever-
aging multiple AISs (and conventional static learning resources) in a single platform.
Critically, all individual learning resources contribute to a unified learner record store.
This store translates progress among the many resources on several discrete levels.

The disciplined classification of these resources and levels allows the learning
record store to inform an integrated recommender system. Collectively, these com-
ponents leverage the established benefits of AIS interaction and provide both detailed
(i.e., individual) and composite (i.e., classroom or population) learner information to a
human instructor who can then manually set assignments at the item or topic level. The
inclusion of multiple learning resources, both adaptive and static, allows Elec-
tronixTutor to present learning content in multiple modes. Learners then have detailed
records for how they interact with each one (e.g., time, performance, self-selected
versus recommended or assigned).

These resources all appear in a common user interface (see Fig. 1). In this example,
an AutoTutor conversation (complete with optional dialogue history and scroll-over
information from Point & Query) appears in the activity window that dominates the
screen. The left-side navigation bar includes site navigation as well as all course
content. Featured prominently is the “Topic of the Day” facility, where instructors set
the area of content to be mastered. Below that appear “Recommendations”, based on
the learners’ history of interaction with the system holistically. Finally, learners can
self-select any of the available problems from a drop-down menu (though instructors
can limit content availability for pedagogical reasons).

Fig. 1. The ElectronixTutor user interface, here showing an AutoTutor question with Point &
Query engaged.

Foundational Principles and Design of a Hybrid Tutor 99



2.1 AutoTutor

AutoTutor [16, 19] presents conceptual questions on electrical circuits in a conversa-
tional exchange. Learners have both a tutor agent and a peer agent with whom to
engage in a natural language discussion on a designated topic. The resulting “tria-
logues” always orient the learner to the topic, introduce an appropriate graphical
representation, and directly address the learner by name when asking the main ques-
tion. This allows learners to go from the concrete image to the deeper concept.

Further, each main question has several components of a full correct answer, with
the AutoTutor Conversational Engine able to extract partial, as well as incorrect,
responses from natural language input. This affords follow-up hints, prompts, or pumps
from one or both conversational agents to elicit all information the learner knows about
the topic at hand. In addition to the depth of understanding that AutoTutor examines,
the analysis of breadth makes it an excellent diagnostic interaction with the learner to
identify the appropriate next problem within the larger system. This approach has
proven successful across numerous domains, including STEM topics such as computer
literacy physics, biology, and scientific reasoning.

2.2 Point and Query

Within AutoTutor, Point & Query [28] aims to mitigate the difficulty many learners
have in identifying appropriate questions to ask by offering a simple mouse-over
interaction with circuit diagrams. The learner clicks on a hot spot, which launches a set
of good questions to ask; the learner selects a question and immediately receives a good
answer [33]. Research has demonstrated that this facility greatly increases the absolute
number of interactions with the learning program. The low effort necessary to engage
with content lowers the barrier and encourages further engagement by reinforcing
question-asking behavior with immediate answers.

2.3 Dragoon

Dragoon [34] has learners construct and manipulate dynamic models of circuits,
ensuring functional understanding of interacting parts by fostering the development of
appropriate mental models (see Fig. 2). These questions represent by far the most
difficult problems available. The holistic perspective on structures, parameters, and
relationships among them requires comprehensive understanding. This adds substantial
value, both in ensuring mastery with a high degree of confidence, and in providing
challenges to the most advanced, diligent learners.
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2.4 LearnForm

LearnForm is oriented toward complex problem-solving on electronics circuit problems,
with overarching problems that deconstruct into constituent parts and feedback (see
Fig. 3). Mathematical reasoning and algebraic logic play an important and recurring role
in electrical engineering. These problems ensure that learners have detailed knowledge of
all required steps, with explanations provided in relatively simplemathematical sentences
that build on one another until a complete, applied problem is complete.

Fig. 2. A sample Dragoon problem, requiring detailed, comprehensive knowledge of the
circuits.

Fig. 3. A sample LearnForm problem, with algebraic formulas broken down into constituent
parts while still relating to the original problem in total.
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2.5 Beetle-II

BEETLE-II [13] addresses basic understanding of circuits, with a focus on introductory
concepts such as voltage, current, open versus closed circuits, and how to find faults
using voltage. These problems demonstrated learning gains, but only engage the
macro-level of discourse and pedagogy as opposed to the micro-level language and
content adaptation present in AutoTutor.

2.6 NEETS and Topic Summaries

As mentioned above, quality static texts will retain their place on the pedagogical
landscape for the foreseeable future. The Navy Electricity and Electronics Training
Series (NEETS) is a hefty collection of documents encapsulating all essential training
information for the several Navy specialties dealing with electronics. These documents
are both irrefutably useful and irredeemably dry. We provide these in context as a
necessary backstop for any well-rounded education in Navy electrical engineering,
though relying on learners to voluntarily engage (or reliably engage when compelled)
remains a challenge beyond our scope. ElectronixTutor has indexed these texts and
provides hyperlinks to the appropriate section when listed or recommended to learners.

The considerable depth of the NEETS suggested the need for a more approachable
static text resource that would still allow learners to peruse at their own pace. To that
end, subject matter experts collaboratively created topic summaries for each of the
15 topics covered in ElectronixTutor. These summaries comprised between one and
four pages of a high-level overview, including diagrams, important definitions or
formulas, and links to external resources such as Wikipedia or university webpages
deemed to be of value.

2.7 Unified Learner Model and Recommender System

The inclusion of learning resources that instantiate such divergent pedagogical strate-
gies is an important first step. However, these resources need to be organized and
launched to the right person at the right time according to a disciplined framework.
Knowledge components [35] provide a common currency of content to support this
(see Fig. 4). In ElectronixTutor, every problem is annotated by experts on various
content topics and knowledge components. They determine whether each learning
resource includes these topics and knowledge components. For each of the 15 topics in
the system on devices and versus circuits, decisions are made by the experts as to
whether particular knowledge components tap the structure, behavior, function, or a
parameter. This 15 (topic) � 2 (device versus circuit) � 4 (structure, behavior, func-
tion, parameter) matrix yields a list of 120 combinations. The landscape of learning
resources has questions/items that touches at least one of these, and potentially several.
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All learner interactions with learning content are discretized through knowledge
components, formalized in xAPI format, and sent to the unified learner record store. An
intelligent recommendation system ensures adequate coverage of each topic while
keeping learners in the zone of proximal development, with problems not too difficult
or too easy, but just within the learner’s mastery. ElectronixTutor allows learners to
choose problems in three ways. They can stay in the Topic of the Day, which com-
pletely controls their selection and guides them to what our algorithm judges to be the
optimal problem for their advancement within a topic designated by a human
instructor. Alternatively, they can also choose from among three recommended
activities (item/question in a topic), providing a degree of control (and thereby psy-
chological engagement) while staying within near-optimal parameters. Finally, learners
can opt for completely self-directed learning, allowing full access to the suite of
learning resources and range of topics. Progress in any of these will update the rec-
ommendations accordingly.

3 Preliminary Data

We have conducted several small-scale studies in university and trade school settings,
though we have not yet attained our optimal goal of full classroom integration.
Available data indicate that learners’ performance in ElectronixTutor was not signifi-
cantly correlated with degree of problem difficulty (q [12] = –0.068, p = 0.818), and
stayed relatively stable near 78% correct. This means learners stayed roughly in the
zone of proximal development, which was intentionally in the design of the system.
That is, the stability is likely explained by adaptivity of the recommender system, and
in part due to allowing users to self-select problems commensurate with their experi-
ence and level of comfort with the material.

Fig. 4. Knowledge component mapping in ElectronixTutor
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We saw a good distribution of engagement relative to available topics. In Table 1,
the most advanced topics appear at the top of the list, and most basic at the bottom.
With the first eleven progressing topics garnering generally increasing use, we feel
confident in the content match between sample and target populations to a point.
Minimal use for the four most advanced topics suggests the need for some advanced
classes to be incorporated into future studies for full system evaluation.

Survey data obtained from those who completed ten hours of interaction provide
some promising results as well. While the total number of participants to complete the
study was small (only 6 completed out of 50 to request log-on credentials), the majority
indicated that they would continue to use ElectronixTutor without paid compensation.
This indicates a certain start-up cost in learning the system that can be mediated by a
more thorough introduction. Our initial attempt at classroom integration showed largely
the same effect, with few able to move past the opening stages. It should be noted that
these systems were used voluntarily, so adoptions were accepted to be low. The results
are compatible with research on MOOCs, which are known to have high dropout rates.

We also identified some learners who became disengaged, particularly during the
posttest assessment. Performance features like time on task and scores relative to
historical performance make this detection relatively simple. In this way, human
instructors can more readily intervene when learners become distracted or discouraged.

Table 1. Relative time spent in each available topic.

0 2 4 6 8 10

Ohm's Law & Kirchhoff's Law
Series & Parallel Circuit

Series/Parallel Combination
Filter

PN Junction
Rectifier

Power Supply
Diode Limiter & Clamper
Zener Diode & Regulator

Transistor
CE Amplifier
CC Amplifier
CB Amplifier

Multistage Amplifier
Pushpull Amplifier

Hours Spent

To
pi

c
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4 Conclusions, and Future Work

The integration of multiple existing AISs in a unified, cohesive platform is the essence of
hybrid tutors. Integration enhances the range of interactions available, expanding the
range of interaction types available to learners and leveraging more of the potential
affordances of learning technology. Variability in representations is useful in fostering
deep, lasting understanding of complex topics like electrical engineering. The multiple
modes of content and strategy acquisition are expected to provide better transfer to new
problems that the learner may encounter. Providing varying levels of control over
content selection encourages engagement and investment in learning activities. Students
can defer to classroom assignment (adaptive to their mastery level), evaluate a man-
ageable number of recommendations (based on historical performance), or choose to
explore freely. These overarching factors collectively suggest to a high likelihood that
hybrid tutors like ElectronixTutor will yield a product greater than the sum of their parts.

Future work in this field will focus on tight integration into classrooms, with
calendar functions determining assignments and system participation built into the
syllabus. This is the ideal application of hybrid tutors. Interim goals include
improvements based on learner feedback, notably improvements in the early stages
when many participants dropped off. Further, deployment of ElectronixTutor “in the
wild” (that is, made available widely to any who are interested in using it) will
opportunistically recruit participants with motivation to learn, thus providing data and
opportunities for iterative improvement. The University of Memphis library offers a
“sandbox” learning tools interface that may facilitate this branch of inquiry. Further,
Shelby County Schools, the school district surrounding the University of Memphis, has
expressed interest in supplementing conventional classroom instruction with Elec-
tronixTutor, potentially expanding the learner base.
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