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Abstract. This paper discusses the application of machine (or artificial) intel-
ligence intended to accelerate the development of technical expertise by novices.
It provides evidence from various sources of the instructional effectiveness of
this approach. It also discusses and provides examples of the monetary and
operational value of individualizing instruction beyond that obtainable in
classroom instruction and points to a future where learning and/or performance
aiding is provided anytime, anywhere through a combination of human guidance
and tutorial dialogues with computers.
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1 Introduction

Efforts have been underway for a number of years to accelerate the acquisition of
expertise by developing computer-assisted, adaptive instructional systems that provide
the benefits and capabilities presently found in human-based, one-on-one instructional
dialogues. It reviews the history, characteristics, and benefits of using computers to
provide individualized, tutorial instruction using these dialogues, the design and
assessment of a specific digital tutor in response to a Defense Advanced Research
Projects Agency (DARPA) challenge, and implications of that effort and its results for
adaptive instructional systems in general.

1.1 The Need for Adaptive Instruction

In 1890, William James [1] stated as his First Principle of Perception that: “Whilst part
of what we perceive comes through our senses from the object before us, another part
(and it may be the larger part) always comes out of our mind” (p. 747, 1890/1950). If
individual learners differ, as they invariably do, then it is likely that their perceptions,
cognition, and learning differ. This observation leads to Thorndike’s [2] frustration with
classroom instruction and his assertion in 1906 that “The practical consequence of the
fact of individual differences is that every general law of teaching has to be applied
with consideration of the particular person” (p. 83).
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These views continue to be supported by empirical research on the extent of indi-
vidual differences that teachers and instructors must contend with in classroom-based
instruction. Early on, Suppes, Fletcher and Zanotti [3, 4] found 1:4 as the ratio in time
needed by fastest to slowest learners in elementary school mathematics. Later, Gettinger
[5] reported similar differences in time to learn of 1:3 and 1:5. These and other results
suggest that some individuals in a classroom are being denied valuable learning
opportunities and the advanced competencies they could be acquiring while others,
equally deserving of learning, struggle to keep up. Gettinger emphasized, in accord with
Carroll [6], that this difference is not due solely to inborn native ability, but, more
precisely, to what they both described as individual differences in learning ability.

Along with learning ability, another often noted and accepted source of difference
in time to learn is prior learning [7]. Because differences in prior knowledge acquired
by individuals increase through time and life experience, it is likely that differences in
learning rate similarly increase with the age and the varied experiences of individuals as
they pursue higher education and workforce training. Overall, adapting learning to
individual differences in background, temperament, ability, and prior knowledge
appears to be an intransigent and continuing challenge for classroom instruction at all
levels.

The general problem of individual differences can be eased by classroom practices
and heroic efforts of classroom teachers, but only partially. Despite its short term
economic advantages, classroom-based instruction, with its difficulty in attending to the
specific needs and capabilities of individual learners, presents an unavoidable imped-
iment to instructional efficiency and effectiveness. Based on his own and his students’
research, Bloom [8] famously claimed a learning increase of two standard deviations in
learning from tutoring (one instructor working with one learner) compared to classroom
instruction — a difference that (roughly and on average) would increase 50th percentile
learners to the 98th percentile.

Although discussion about Bloom’s empirical findings continues, subsequent
research supports the substantial superiority of individual tutoring over classroom
instruction [9-12]. Why then do we not provide an Aristotle for every Alexander and a
Mark Hopkins for the rest of us? The answer, of course, is that, except for very
complex and critical activities (e.g., surgery, airplane piloting), we cannot afford it.

But we can afford computers. Following the development of writing, which made
learning portable, and then books, which made learning both portable and (eventually)
affordable, we may be on the verge of a third revolution in the teaching-learning
process — the use of computer technology to provide universal, adaptive, on-demand,
tutorial instruction. Full natural language, with its use of metaphors, similes, allusions,
slang, and other peculiarities, may remain beyond the capabilities of computers for
some time, but their understanding of natural language has been sufficient to support a
wide range of tutorial interactions for some time [13, 14].

This possibility suggests a future in which personal computer-based devices (e.g.,
laptops, telephones) provide adaptive instruction, performance aiding, and decision
support in the form of tutorial dialogues at any time and practically anywhere. Nec-
essary and fully up to date subject matter information (updates and all) need not be
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stored locally. It can be collected in real time and as required from the global infor-
mation grid (the “cloud”) and adapted to the background, needs, evolving capabilities,
and interests of individual learners [15].

1.2 Characteristics of Adaptive Instruction

Today, and according to the US Department of Education [16] adaptive instructional
systems cluster around one of three strategic approaches: differentiation, which adapts
instructional approaches for different groups of learners; personalization, which adapts
the topics and objectives of instruction to learners’ specific needs, interests, and/or
preferences; and individualization, which adapts instruction, but not its topics and
objectives, to the abilities, prior learning, and learning progress of each learner as an
individual.

Choosing which strategy to apply in devising an adaptive instructional system may
be keyed to the overall purpose of the instruction, specifically, whether it is intended
for education or training. For instance, education must adequately prepare learners for
unknown futures, whereas training must prepare learners for a known and, to an extent,
understood future, i.e., specific tasks and occupations. For this reason, individualiza-
tion, with its focus on attaining specific, prescribed learning objectives, may be better
applied in training, especially technical training, while personalization, with its
adjustment of objectives to the learner, may be a better choice for education and
education institutions. Differentiation, with its adaptations for different groups of
learners rather than individuals may be closer to personalization than individualization.
At present, digital tutoring seems more focused than differentiation or personalization
on adaptive instruction as training, with its requirement that individual learners achieve
specific learning objectives at requisite standards and conditions.

When it comes to adapting instruction, the differences between training and edu-
cation are neither rigid, pure, nor absolute. Training and education may be viewed as
opposite ends of a continuum of instruction. Most training includes elements of edu-
cation, and most education includes elements of training. Both physicists and electronic
technicians learn Ohm’s Law and algebra through education, but both may need to be
trained in the skills needed to operate an oscilloscope. Both surgeons and Boatswain’s
mates must acquire skill in tying knots, but both must understand when and why to use
them in their work. Nonetheless, both education and training are fundamentally con-
cerned with learning and cognition. Techniques and findings from either may be as
relevant and applicable for the opposite end of the continuum as they are to their own.
Increased attention of scholars and researchers to both ends of this continuum seems in
order, if not overdue. Given this context, we may turn to the use of computers to adapt
instruction to learners.

1.3 Computers and Adaptive Instruction

Like many innovations (e.g., horseless carriages, wireless telegraph), computer-assisted
instruction (CAI) began by piling an existing technology, in this case textbook based
programmed learning, onto a new technology. Programmed learning applied in CAI is
based on processes and frames such as the one shown in Fig. 1. Typically, it applies
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Keller’s [17] Personalized System of Instruction to determine which set of programmed
learning frames a learner should receive. Then, in accord with Crowder’s [18] Intrinsic
Programming — as opposed to Skinner’s [19] Extrinsic Programming, it presents
instruction consisting of expository text and frames, to provide the next steps for
instruction depending on the learner’s response.

From previous module
B > Pre-test

Yes, go to next module
> Pass? a3 >

No, go to this module¢

In the multiplication of 3 x4 =12,
the number 12 is called a

A. Factor [Branch to remedial X1]
B. Quotient [Branch toremedial X2
C. Product [Reinforce, go to next]

D. Power [Branch to remedial X3

v

Post-test

Fig. 1. A representative intrinsic programming frame

It is relatively inexpensive to program computers for these frames, and the approach
remains in wide use. Reviews found it to be modestly superior to classroom learning,
reporting moderate effect sizes in the area of 0.43, thereby indicating improvements
in learning by 50th percentile learners (roughly and on average) to the 67th percentile
[20, 21].

However, frame oriented instruction requires considerable human “authoring”
effort and expense because the frames must anticipate and provide for every possible
state of the learner and the instruction, which was early shown to be impossible — even
for something as rudimentary as second grade arithmetic [22]. A more adaptive and
effective approach was evidently needed — an approach in which the state of the learner
and the instruction could be dynamically generated, modeled, and provided by com-
puter. This possibility motivated the Department of Defense to support research and
development, very early, for intelligent tutoring systems [23], identified here as digital
tutors.

2 Digital Tutoring

With support in the mid-1960’s from the Office of Naval Research, Wallace Feurzeig
[14] determined that computers could and should do more than simply mimic pro-
grammed textbooks. He developed a computer language (MENTOR) and a program
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(also called MENTOR) to prepare learners to perform medical examinations. Based on
initial development of the Mentor language, semantic networks, Quillian’s “language

comprehender” [24], and his own work with SCHOLAR, Carbonell [25] identified two
definitive features that distinguish digital tutors from standard CAI:

e Information system structures. These are described as dynamically generated
information structures provided in place of pre-programmed, frame-oriented
approaches. Generative, information structures, such as those based on ontolo-
gies, concept maps, natural-language understanding, and one-on-one tutorial
capabilities, relieve developers from the need to anticipate every state that might
exist for an individual learner and the instructional system. Modeling these states
and dealing with them were thereby assigned, as much as possible, to the computer.

e Mixed-initiative tutorial dialogue. Digital tutors allow either the computer or the
learner to take the initiative in asking questions, posing problems, or initiating lines
of inquiry. Students can ask questions at various levels of understanding or
abstraction, and tutorial responses by the computer can be generated and tailored for
the level of learning the student has achieved as well as the context within which the
responses Occur.

Dialogue Comments
Student W hat‘:f)lttl;zcbfi:iiil:;;t;;::il::ng:‘,()f the This exchange is straightforward question and answer.
The base eritter voltage (;fb; i.s 037 | SOPHIE introduced a fault into the simulated power

SOPHIE vol ts‘ g S supply and the student must locate and repair it.

Student What about for the current limiting SOPHIE must be able to parse the dialogue sufficiently

transistor? to know that the student is asking for the base emitter

SOPHIE The base emitter voltage of Q8 is .349 | voltage of transistor Q8. The student’s question derives

volts. from the context established by SOPHIE.

Student What should it be? Again, the interaction depends on SOPHIE’s under-

. . standing of context. It also requires SOPHIE to simulate

SOPHIE The base cmlttcryv;)tltage of Q8is -349 both the faulted power supply and one that is operating

Volts. correctly.

Student Replace Q8. This interaction illustrates a clear step beyond what
Brown et al. considered knowledgeable to one they
considered intelligent. SOPHIE has knowledgeably

I am going to ask vou some parsed both dialogue and the student’s emerging
SOPHIE uesti gab gut h‘ - (38 is faulted solution path, modeled the student’s troubleshooting
ques lf)ns i ,O 0 18 - | hypotheses, determined that they are incorrect, is
Are any junctions shorted? capturing the dialogue initiative from the student, and is
undertaking a series of tutorial interactions intended to
guide the student back to a correct solution path.

Fig. 2. Sample tutorial dialogue with SOPHIE [13]

These distinctions were based on what Carbonell [8] called Information Structure
Oriented Instruction as opposed to the Ad-Hoc Frame Oriented instruction that used
programmed learning techniques. This approach was later the basis for developing,
among others, the SOPHIE system to train electronic technicians as illustrated in
Fig. 2. The comments in Fig. 2 annotate a dialogue recorded between a learner
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troubleshooting an electronic power supply and a digital tutor (SOPHIE). As well as
providing advanced natural language techniques that demonstrate SOPHIE’s adaptive
dialogue capabilities, the final exchange shows SOPHIE’s mixed initiative capabilities.
Like a good tutor, it knew when to take the initiative from the learner and how to ask
questions that guide the learner to a correct solution path.

As suggested from the 1970s on [e.g., 26], digital tutors typically apply three
explicit models used to adapt instruction: (1) a model of the subject matter including
the knowledge and skills to be acquired; (2) a dynamically evolving model of each
learner’s understanding and acquisition of the desired knowledge and skills; and (3) a
model of instructional techniques, i.e., tutorial strategies, that may be used by a specific
learner to develop knowledge and skills derived from the first two models.

Later, an additional model (4) was added to cover communication between the
learner and the instructional system [27, 28]. The first, third, and fourth of these models
may be devised at the beginning of the instruction. The third and fourth together
provide a theme on which tutorial interactions might be improvised in real time based
on emerging characteristics and preferences of the learner. The second model must
evolve dynamically with the student. It must be generated, adapted, and revised in real
time, preferably in a “stealthy” manner [29], with a minimum of explicit testing. It
provides a foundation for adapting instruction to the learner.

2.1 Effectiveness of Digital Tutoring

Assessments of digital tutors generally report greater statistical effectiveness compared
to other instructional approaches. However, among them, and in other research as well,
there are findings that are statistically significant, but of minor instructional value
and/or return on investment time and cost. For that reason, researchers increasingly use
effect sizes to indicate the practical value of their findings.

Effect sizes report differences between experimental groups in terms of standard
deviations. Discussion about the proper calculation of effect sizes and their interpre-
tation continues [30, 31]. These differences are notable, and worthy of consideration,
but their calculation is not as much an unsettled issue as their interpretation, which may
be peculiar to the individuals or organizations using them for decision-making. Table 1
suggests some interpretations of effect sizes. It is based on comments by Cohen [32],
the DoEd What Works Clearinghouse [16], and Bloom [8] and suggests a guide for
interpreting effect sizes, or at least those reported here.

Earlier (1994), evaluations of frame-based CAI found that it produces more
learning than classroom instruction with standard deviations in the area of 0.33 [33,
34]. This result would be viewed as a small, but appreciable improvement in
instruction, given the interpretations suggested in Table 1. However, it is appreciably
less than reviews of digital tutoring, which appears to be superior in providing learning
than either classroom instruction or frame-based CAL
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Table 1. Overview of effect size

Effect Size Suggested designation®
ES < 0.25 Negligible”

0.25 < ES < 0.40 | Small

0.40 < ES < 0.60 | Moderate

0.60 < ES < 0.80 | Large

ES > 1.00 Very large

ES > 2.00 Bloom’s challenge®
Notes: “Extended from suggestions by

Cohen [32]; "What Works Clearinghouse
[16]; “Bloom [8]

Meta-analyses of digital tutoring have been performed by VanLehn [35] and Kulik
and Fletcher [36]. VanLehn reviewed 27 studies of digital tutoring and found that they
averaged a moderate effect size of 0.59. However, in further investigation of his data,
he found an average effect size of 0.40 for sub-step-based tutoring compared to a large
effect size of 0.76 for step-based tutoring. In other words, learning by 50th percentile
learners would improve (roughly and on average) to the 66th percentile under fine-
grained tutoring — about the same as frame-based learning — but improve (roughly and
on average) to the 78th percentile under more general, less specific tutorial interactions.
Additional research may better account for this finding, which may have been due to
the need for students to reflect more carefully and thoroughly on results of step-based
tutoring than those of sub-step-based tutoring.

An extensive and more recent analysis by Kulik and Fletcher [36] found a large
effect size of 0.66 for 50 digital tutors, with data ranging from —0.34 to 3.18 (after
Winsorizing for outliers) in effect size — an overall result between VanLehn’s analysis
of sub-step and step-based tutoring, but appreciably closer to the latter than the former.
In any case, these findings, which used a more precise definition of digital tutoring than
some earlier analyses, suggest substantial learning improvements over both classroom
instruction and applications of frame-based programmed learning techniques in CAL

2.2 Design and Development of the DARPA Digital Tutor

Given this context, the design, development, and two recent assessments of a digital
tutor developed by the Defense Advanced Research Projects Agency (DARPA) for the
US Navy deserve attention. Development of this technology has been proceeding
steadily since Feurzieg’s MENTOR [14]. However, DARPA’s mission is to leap ahead
and develop high payoff research that is too risky and expensive to be considered by
the military Service laboratories. An example is the development of cigarette package
sized devices to replace suitcase-sized systems for determining locations on earth using
Global Positioning System satellites.

In education and training, DARPA’s intent was to substantially accelerate acqui-
sition of expertise, well beyond journeyman levels, by learners starting with little, if
any, prior knowledge or training in the subject area. The subject matter chosen was
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Information Systems Technology, which is abbreviated by the Navy as IT in reference
both to the technology and to individuals with this occupational specialty.

Design and development of the Tutor was basically a matter of identifying high-
quality tutorial ingredients and applying them in proportions determined by system-atic
empirical testing. It was pragmatic and not focused on verifying any particular theory
of learning, cognition, and/or instruction. The developers had acquired years of
experience studying one-on-one tutoring by humans. Findings from that work provided
initial approaches for designing the DARPA Tutor.

DARPA funding allowed extensive assessments in devising the Digital Tutor
[37-39]. Early assessments of tutoring techniques used IT novices of about the same
age, education level, and capabilities as novice Sailors assigned to the Navy IT school.
The Tutor was developed step by step in sessions with detailed video and additional
voice recordings to determine what was effective and what was not. These sessions
were repeated as needed to develop instructional activities and interactions that reliably
accomplished targeted learning objectives. This iterative approach provided the foun-
dation for a problem-based learning environment allowing computer development of
subject matter and individualized information structures that were functionally similar
to those of human tutors with expertise in both the subject matter and in one-on-one
instruction.

Experts in specific IT topics were contacted based on their knowledge, publications,
and reputation. These experts were auditioned in 30-min IT tutorial sessions with
learners who were representative of new Navy sailors. The intention was to base (or
“clone”) the Digital Tutor using the practices of individuals who were expert in both an
IT topic and in one-on-one tutoring.

These sessions helped identify and select 24 tutors who were experts in requisite IT
topics for use in designing the Digital Tutor. The tutors then tutored 15 IT qualified
sailors who were newly graduated from recruit training and chosen at random. The
sailors were tutored one-on-one by these experts for 16 weeks to prepare them for IT
careers in the Navy. Every session in this tutoring was again captured in video. These
sessions, which were extensively reviewed and assessed, served as the basis for the
tutorial instruction provided by the Digital Tutor. This analytic work, including further
trial and analyses, continued as the Tutor was developed. The Tutor employs the
following prescriptive procedures:

e Promote reflection by eliciting learner explanations of what went well and what did
not;

e Probe vague and incomplete responses;

e Allow learners to discover careless errors but assist learners in correcting errors
arising from lack of knowledge or misconceptions;
Never articulate a misconception, provide the correct answer, or give a direct hint;
In the case of a learner impasse, review knowledge and skills already successfully
demonstrated by the learner and probe for why they might or might not be relevant
to the current problem; and

e Require logical, causal, and/or goal-oriented reasoning in reviewing or querying
both incorrect and correct actions taken by the learner to solve problems.
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The Tutor used information structures to:

Model the subject matter;

Generate evolving models of the learner;

Generate, adapt, and assign problems to maximize progress of individual learners;
Engage in tutorial exchanges that shadow, assess, and guide learners’ problem
solving;

e Ensure that learners reflect on and understand deeper issues and concepts illustrated
by the problems.

Operationally, the design of the Digital Tutor emphasizes:

e Active, constant interaction with learners — which fostered the “flow” that is found
in computer-based games [40].

e Capturing in digital form the processes and practices of one-on-one tutoring;

e Requiring problem solving in authentic environments — leaners used actual Navy
systems, not simulations of these systems. Problem solving was not based on
copying the problem solving paths of experts. The tutor was expected to help
learners follow whatever path they chose to troubleshoot and solve problems.

e Continual, diagnostic assessment of individual learner progress;

e Focus on higher order concepts underlying problem solving processes and
solutions;

e Integration of human mentors.

The presence of experienced Navy ITs as mentors was essential for this training.
They resolved difficulties in human-computer communication, managed the study
halls, and, especially, provided examples of Navy bearing and culture for the novice
sailors. “Sea stories” might be viewed as little more than entertainment, but, as with
Army “War Stories” and Air Force “Air Stories”, few activities are as effective and
important as these stories in providing civilians with the esprit de corps and culture
needed to prepare them for military service.

Mirroring its development strategy, the Tutor’s instructional approach is spiral. It
presents conceptual material selected for individual learners by the tutor. This material
is immediately applied in solving problems intended to be comprehensive and
authentic. Learners interact directly with US Navy IT systems, not simulations, while
the Tutor observes, tracks, and models their progress and solution paths. Tutoring
tactics developed for the Tutor were the following:

e Promote learner reflection and abstraction by:
— Prompting for antecedents, explanations, consequences, or implications of
answers.
— Questioning answers, both right and wrong.
— Probing vague or incomplete explanations and other responses by the learner.
e Review knowledge and skills when the learner reaches an impasse or displays a
misconception by asking why something did or did not happen.
e Avoid providing a correct answer, providing a direct hint, or articulating a
misconception.
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e Sequence instruction to pose problems that are tailored and selected to optimize
each learner’s progress.

e Require logical, causal, or goal-oriented reasoning in reviewing or querying steps
taken by the learner to solve problems.

e Refocus the dialogue if the learner’s responses suggest absent or misunderstood
concepts that should have been mastered.

e If a learner makes a careless error in applying a concept already mastered, allow
problem-solving to continue until the learner discovers it.

e Verify learner understanding of any didactic material before proceeding.

A daily schedule for instruction consisted of 6 h using the Tutor followed by a two-
hour study hall, which was proctored by one of the Navy instructors assigned to the
school. It involved discussion and reflection on material presented during the day. At
the end of the week, one of the senior designers of the Tutor would attend to participate
in the discussion, address particularly difficult issues that the learners encountered
during week, and, in return, gain insight into what the Tutor was doing well and not
well.

2.3 Effectiveness of the DARPA Digital Tutor for the Active Navy

Navy Assessment

After the training was about half finished, IT knowledge of the human tutored sailors
was assessed by a paper-and-pencil test prepared by Navy instructors. It included
multiple choice, network diagram, and essay questions answered by the 15 human-
tutored and by 17 classroom instructed sailors. The tutored sailors averaged 77.7 points
compared to 39.7 points for the classroom training sailors on this test, which indicated
an effect size of 2.48 exceeding Bloom’s 2.00 target in their favor [39].

Four other assessments of the Digital Tutor were performed with different sailors
participating at progressive stages of the Tutor’s development: 4 weeks, 7 weeks, 10
weeks, and finally 16 weeks [37, 39].

The first assessment of the Tutor compared the IT knowledge of 20 new sailors,
who had completed the first 4 weeks of Digital Tutor training then available, with that
of 31 sailors who had graduated from approximately 10 weeks of standard classroom
training and with that of 10 Navy IT instructors. This study the found an effect size of
2.81 in favor of the 4-week Tutor students over the students who had graduated from
the 10 week IT course and an effect size of 1.32 in their favor compared to their Navy
instructors. These differences were also statistically significant (p < 0.05) [39].

The next assessment compared both the IT trouble shooting ability and IT
knowledge of 20 new sailors, who had completed the 7 weeks of the Digital Tutor
training then available, with that of 20 sailors who had graduated from a newly revised
19-week IT classroom and laboratory training course and with that of 10 instructors
who only took the knowledge test. The IT trouble shooting effect size favoring the
7-week Tutor sailors’ troubleshooting skill over that of the 19-week classroom and
laboratory sailors was 1.86. The IT knowledge difference effect size favoring the
7-week Tutor sailors over the 19-week classroom and laboratory sailors was 1.91 and it
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was 1.31 in comparison with their instructors. Again these differences were statistically
significant (p < 0.05) [37, 39].

A final assessment was performed after another representative group of 12 sailors
had completed training with the final 16-week version of the Tutor. The DARPA
challenge was to produce in 16 weeks (the usual time for ab initio IT training) sailors
who would be superior in skill and knowledge to (a) other novice sailors trained using
conventional classroom and laboratory practice, and (b) ITs with many years of
experience in the Fleet [39].

The assessment involved new sailors who completed IT training with the DARPA
Digital Tutor, other new sailors trained for 35 weeks using the Navy’s classroom based
Information Technology Training Continuum (ITTC), and senior ITs with an average
of 9.2 years of Fleet experience. As with all the assessments, sailors who had just
finished recruit training were assigned at random to the two training groups (DT and
ITTC standard classroom training with laboratory experience). The Fleet ITs were
chosen as the “go to” ITs from ships on shore duty in San Diego and Oak Harbor,
Washington.

There were 12 ITs in each group. Repeated measures were used because of the
small sample sizes — 14 h of IT trouble shooting skill testing, 4 h of written (mostly
short answer) knowledge testing were used in the assessments. Other tests such as oral
examination by experienced ITs, development and design of IT systems according to
typical specifications, and ability to ensure security of an IT system were also applied.

IT troubleshooting in response to trouble tickets was the most important component
of the training in preparing these novice sailors for their Navy IT occupation. It was
intended to resemble Fleet IT requirements as closely as possible. Navy “Trouble
Tickets” which had been submitted from the Fleet for shore-based assistance were
presented as problems to be solved by 3-member teams with a specified time for
solution. Results of the Troubleshooting testing are shown in Fig. 3. Notably neither
the ITTC nor the Fleet teams attempted to solve the “Very Hard” problems.

70
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§ ! @Solved DAttempted but Not Solved
= 50
g
o~
-4
§ 40 38
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g 30
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1 (] .
) : : i

0
Very | Easy Averagel Hard = Very = Very = Easy Average| Hard | Very | Very | Easy Average Hard | Very
Easy Hard Easy Hard Easy Hard

oT Fleet mrc

Fig. 3. Troubleshooting problems solved by DT, Fleet, and ITTC teams
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Troubleshooting capability was the primary focus of the assessment because it best
indicated how well the new ITs were prepared to do their jobs in the Fleet. Acquisition
of IT knowledge was also of interest and found to account for about 40% of individuals’
troubleshooting scores. This is an appreciable amount and it is of interest, but perfor-
mance in IT troubleshooting is the main concern of the Navy. More description of these
assessments along with additional data, testing, and findings is provided by [39].

Veterans Assessment

An approximate replication of the above assessment was provided by assessing an
18- week version of the Tutor used to train 100 military veterans [38]. The course was
extended by 2 weeks to assist the veterans in adapting and applying to civilian technical
workplaces. As Table 2 shows, most of the veterans were unemployed before taking
this course. There were no academic dropouts from the course, which was completed
by 97 of the veterans. Fourteen of the veterans chose to seek higher education rather
than apply directly for employment. Another 6 veterans did not reply to requests for
post-training information. All 77 of the graduates who sought employment were hired.
Their average annual salary was $73,000, which, at the time, was equivalent to civilian
employment intended for IT technicians with 3-5 years of IT experience [41]. Most
received early bonuses and promotions.

Table 2. Characteristics of 101 Veterans® accepted for digital tutor IT training

Average years of separation from military service | 5.20

Avg age 30.5
Married 30
Armed forces qualification test 87.1
Full time employment 11
Part time employment 45
Prior civilain IT instruction 8
High school/GED degree 45
AA degree 11
BA/BS 44
Other 1
Prior Military IT Instruction 4

Note: “One veteran dropped out before beginning the course
and was replaced.

Results from return on investment analysis are shown in Fig. 4. It shows that
monetary return to the government over a 20-year period is appreciable for all mon-
etary support provided to veterans. However, the return is much greater for the 18-week
digital tutoring program than government support for a either a 2 or 4 year degree and
even for veterans who completed a program of education after receiving no monetary
support from the Veterans Administration [38].
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===Digital Tutor

==2-Year Degree
4-Year Degree

===4-year Tech Program

===No IT Training

Fig. 4. Monetary Return to US Government Per Individual from Support Provided for
Education and/or Training ($000)

2.4 Summary Comments on Digital Tutoring to Provide Adaptive
Instruction

Assessments of the DARPA Digital Tutor suggest a number of possibilities and issues,
four of which are discussed here. Others will doubtless occur to readers.

Acceleration of Expertise
The value of technical expertise is as evident from empirical research as it is from
random observation [42, 43]. However, the years of experience and practice needed to
develop technical expertise increase its cost and limit its supply. Empirical demon-
strations that the time to develop technical expertise can be compressed from years into
months are few, but extant.

For instance, the Sherlock project [44—46] prepared technicians to solve complex
problems occurring in a test stand used to troubleshoot components of Air Force
avionics systems. Assessments found that 20-25 h of Sherlock training produced about
the same improvement in performing difficult and rarely occurring diagnostic tasks as 4
years of on-job experience [44]. Their approach presaged that of DARPA’s Tutor in
assuring that intensive technical learning was always followed by guided reflection on
what worked and what did not.

Other evidence was provided by IMAT, the Navy’s Interactive Multi-Sensor
Analysis Trainer [47]. This system focused on what the authors described as ‘incred-
ibly complex tasks’. They describe these as broad, multifaceted, abstract, co-dependent,
and nonlinear tasks that require a large repertoire of patterns and pattern-recognition
capabilities for their solution. An at-sea trial found that 2 days of training with a laptop
version of IMAT increased submarine effective search area by a factor of 10.5 [48]. In
effect, a submarine with IMAT-trained sonar operators could provide the sonar
surveillance of 10 submarines with operators who lacked IMAT training. The opera-
tional and monetary value of this capability is substantial.

These examples, in addition to the DARPA Digital Tutor discussed here, suggest
training advances of considerable value, including those that may reliably and signif-
icantly accelerate the acquisition of expertise, waiting and within our reach, but not yet
in our grasp.

Return on Investment
Training and education are often viewed as expenses, not investments, which does not
serve well either of them or the many who benefit from them. If designed honestly and
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well' digital tutors are expensive to design and build. However, the monetary and
operational costs of not doing so may be far greater. No quantity of digital tutors would
cost more than the loss of a single submarine, or any ship that was lost because its
internal network system failed. That aside, analysis [49] found that continuing to
provide standard classroom IT training with its requirement for years of follow-on
development and on-job training is far more expensive than the cost to design, develop,
and reliably update a digital tutor. For instance and assuming that the Navy must train
2,000 ITs a year for the Fleet, the costs saved by using the 16-week Digital Tutor
program to replace 16 weeks of classroom training followed by 7 years of on-job
training averaged savings in discounted dollars were estimated to average $109M
annually over a 12 year period [49].

As further shown by the development and delivery of the DARPA Digital Tutor to
veterans, its design, development, and delivery costs were substantially less than the
costs to provide standard Veterans Administration education benefits for individuals to
acquire a 2-year or 4-year college degree [38]. For that matter, individuals who
completed a 4-year college degree in information network technology with no support
from the government returned considerably less to the government in income than ITs
who completed the Digital Tutoring program was extended to 18 weeks to prepare
veterans for the civilian market place. The internal rate of return on government
investment that provided 18 weeks of housing, meals, and Digital Tutoring to prepare a
veteran for a career in IT was estimated to be about 35 percent over a 20-year period.

In general, training and education and their consumers, might benefit significantly
if, in addition to assessing their effectiveness for learning, our evaluations and
assessments of instructional capabilities additionally included assessments of their
likely return on investment.

Applying Digital Tutors

As discussed above, a case can be made that Digital Tutoring is more effective and
suitable for instructional objectives involving conceptual learning rather than those
concerning the initial rudiments of any subject. Objectives for these rudiments, such as
nomenclature, common procedures, and basic procedures, are found at the low end of
Bloom’s often referenced hierarchy of instructional objectives [6]. Nonetheless, they
are essential for learning and instruction in most, if not all, subject matter. As early CAI
programs demonstrated, these rudiments are readily learned through the techniques of
drill and practice.

Most successful drill and practice programs focus on discrete items such as arith-
metic facts, vocabulary words, orthography, technical terms, and the like. Drill and
practice is an effective, and when well done, incentivizing approach. Its promise was
early demonstrated for introducing basics in subjects such as beginning reading [50]
and elementary mathematics [3, 4, 51, 52]. Comments about “drill and kill” may apply
to some classroom learning, but drill and practice programs presented by computer
have been found to be successful and enjoyed by early learners [34, 53, 54]. Con-
siderable data from the 1960s, 1970s, and onward have shown these rudiments can be
acquired efficiently and effectively through computer-assisted drill and practice. Some

! “Intelligent Tutoring” has long been used as a marketing term by training developers and contractors.
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drill and practice programs have applied sophisticated approaches such as statistical
optimization routines to select and present items that maximize individual learning
given constraints such as time available and a learner’s progress [51, 55-58]. Com-
parisons of these early drill and practice programs with conventional classroom
instruction generally found effect sizes of about 0.40 [33].

Moreover, and as shown in Table 3, digital tutoring does not do as well in
preparing learners with these rudiments as does drill and practice. Tutoring appears
necessary and more suited for the next step — applying subject matter rudiments to
develop the abstractions and concepts needed for a deeper and more nuanced under-
standing of the subject matter. As effect sizes in the table suggest, this conceptual area
appears to be where digital tutoring is most needed and most successful in providing a
full understanding of the subject matter and applying it successfully.

Table 3. Effect sizes for four digital tutoring systems assessed for conceptual and rudimentary
learning

Source Concepts Rudiments
Graesser et al. [59] 0.34 0.00
Koedinger et al. [60] 0.99 0.36

Person et al. [61] 0.30 0.03
VanLehn [35] 0.95 —0.08
Average (Standard Deviation) | 0.65 (0.326) | 0.08 (0.168)

The idea of pairing drill and practice programs with digital tutoring is becoming
less heretical in digital tutoring circles. For instance, this approach is suggested by Nye
et al. [62] along with the sensible caution that drill and practice may be overdone by
focusing entirely on solving specific problems. Overall, rudiments may be best left to
drill and practice techniques with digital tutoring brought in once the rudiments are
sufficiently acquired. Reflection, which is enabled by dialogue exchanges in digital
tutoring, reveals the abstract and generalizable concepts underlying problems presented
and increases both retention and transfer of what is learned [45, 46, 60, 63, 64].

Team Training

An issue raised by Fletcher and Sottilare [65] concerns Digital Tutoring capabilities
applied to training for teams. As Jones [66] suggested, teams differ in their degree of
“teamness”. That is to say that in some teams the members perform their task almost
independently, passing off their contributions without much adjustment in their actions
based on what other team members do. In these cases, application of Digital Tutoring
seems relatively simple — they can be trained and taught in much the same manner that
individuals are trained and taught. Many positions in baseball, as Jones points out, are
like this. However, in some teams the interactions of at least some members depend
closely on what other team members may do. Doubles tennis is a good example of this
interaction. In baseball, as Jones suggests, the pitcher and the catcher may comprise a
genuine team, with each responding to actions taken by the other. Whether we agree
this example or not, it seems evident that teams and their members differ in the
teamness of their responsibilities.
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Sottilare with others [65, 67] suggests that there is a role for intelligent tutoring in
team training and that it may be organized and assisted by the Generalized Intelligent
Framework for Tutoring (GIFT). Work in this area is recent and continuing. It has yet
to be applied and assessed in a context for team training, but, considering the intense
requirements for teams and team activity in Defense, it seems likely to proceed.

3 Final Comment

Finally, no “magic sauce” or specific academic theory was used to produce the DARPA
Digital Tutor. It was designed and developed by using empirical means to identify
high-quality, but well-known, tutorial ingredients and applying them in proportions
determined by systematic, empirical testing.

Certainly theory for instruction is essential [51, 58] but the Digital Tutor was
initiated by a DARPA challenge to solve a practical problem. The approach used to
develop a solution was based on performance requirements rather than an attempt to
prove a theory. Like education and training, practice and theory appear to exist on a
continuum, but the Tutor was more focused on solving a practical problem, than
proving a theory. Its development was fundamentally eclectic and pragmatic, based on
an iterative, formative evaluation approach.

The DARPA Digital Tutor may have realized a breakthrough in the technology of
adaptive learning. It was a catalyst for a 2017 National Academy of Sciences, Engi-
neering, and Medicine symposium to press for wider and more routine use of this tech-
nology in order to prepare the national technical workforce for both present and emerging
challenges to the national economy and productivity. The consensus was that digital
tutoring technology is essential and ready to assume this responsibility. Nonetheless, how
best to move it from the laboratory into the field remains undetermined.
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