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Abstract. One major cost driver in simulation-based training (SBT) and
Intelligent Tutoring System (ITS) development is authoring scenario content.
Effort is compounded when creating a catalog of scenarios to enable optimal
scenario selection for the individual learner. Automated Scenario Generation
(ASG) methods have been successful at creating variants of scenarios using
procedural generation, evolution, or event templates with variable parameters.
These methods typically describe boundaries within which content may vary,
but do not describe how the variation will affect learning.
The authors developed an evolutionary algorithm approach to generate vari-

ations in training scenario content that can integrate with the Generalized Intel-
ligent Framework for Tutoring (GIFT) being developed by the Army Research
Lab (ARL). One of the primary goals of the approach is to greatly increase not
just surface variations that do not affect learning, but variations on scenario
content and instructional feedback that make the scenarios measurably different
as described by multidimensional learning effect metrics. The approach leverages
a structured cognitive task analysis (CTA) which outputs a set of scenarios in a
schema that directly drives the ITS. A small change to the CTA identifies
dimensions and constraints of variation and the effect on learning from the
variations. Both manual and machine learning approaches are being explored.
The key contributions of our research are (a) developing domain-general

computational measures of effect on learning for creative variation, (b) making
evolution effective for many teaching and tutoring domains by evolving textual
content in addition to event sequences, and (c) leveraging human expert input
and usage data to influence and feed back into evolution.
This paper summarizes the need for ASG, describes the novel approach, and

shares the key contributions of our research.
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1 Introduction

Intelligent Tutoring Systems (ITS’s), scenario-based training, and simulation-based
training can be very effective [e.g. (NTSA 2018; Kulik and Fletcher 2016; VanLehn
2011)]. They are also time-consuming to develop, test, and modify. The extra time and
cost results in reduced use of training using these methods, relatively few choices being
created, and existing scenarios stagnating. In nature, systems improve and adapt to
changes such as the environment they are in through methods such as evolution.
Likewise, a training system should evolve to keep it up to date, to adapt to new
situations, and to enable the system to provide a better learning experience. In nature,
the variant that survives evolved in a way that enables it to overcome the problem. For
training, where the goal is effective learning, it should be the instructional value of the
variant scenario that determines its worth. We are prototyping two methods for
evolving. One is by design, and one by random mutations. The scenarios generated by
both methods are assessed by their instructional value, so determining the instructional
value is a primary focus of this paper.

The ability to evolve scenarios provides a method for what is known as Automated
Scenario Generation (ASG). Busch et al. (1995) investigated and validated the ability to
auto-generate instructional tutoring for maintenance training based on a summary of the
state-of-the-problem solution in different ways, suggesting a strategy, suggesting a
system or component that still needs to be tested, or suggesting a specific test. Auto-
generating these multiple levels of mentoring enables scenarios that are automatically
generated to be used instructionally without any further human effort. A second method
of evolving new scenarios is by creating novel sequences of scenario segments or a
specific sequencing of events within a scenario (Zook et al. 2012). Dividing the scenarios
into segments that are natural for the domain make the segments effective learning
experiences when used standalone, when assembled into complete stories, or when
assembled with short transitional segments that keep the leaner engaged. Using natural
scenario segments also provides for an intuitive framework to lower the effort of manual
authoring and provides entry points for more focused practice in the specific segment.
This method was applied when developing scenarios for the SUAS COMPETE (Small
Unmanned Aviation Systems Company Employment Training Exercises) adaptive
training prototype (Durlach and Dargue 2010) which was selected for use in this current
project. Selecting scenario individual phases is a typical method used for skill practice.
Both commercial pilot and tactical pilot students practice the more difficult landing and
take-off phases of flight more than cruise phases. One of the great benefits of flight
simulators is that students can repeatedly practice landings without having to taxi, take
off, and perform approach phases. Musicians greatly benefit from repeating specific
sections of a musical score without having to repeat the entire score. Similarly, athletes
such as baseball players hone their skills by practicing specific portions of their sport
such as batting. These methods of ASG are effective at providing unique, tailored
learning experiences for individuals or teams. However, they require substantial
authoring effort to create the individual building blocks that are assembled into the
unique scenarios. This project set out to alleviate the authoring burden by automatically
generating the individual segments or the entire scenario. We also set out to explore and
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validate domain-general methods to create novel scenario variants in less predictable
ways. These methods are still instructionally sound, and better prepare learners to be
more adaptive, resourceful, and innovative.

1.1 The Theory of (Scenario) Evolution

Training scenarios are authored to intentionally provide a learning experience for
specific learning objectives. If not done correctly, a variant could very easily reduce the
value of that learning experience. A primary objective of this project is to increase, or at
least maintain, the instructional value of the training exercise. To avoid superficial or
counterproductive variants, ASG systems need to understand the domain. Novelty
Search helps alleviate the domain dependency by rewarding how unique a variant is
rather than rewarding progress toward a goal (Stanley and Lehman 2015b). The
solution is still measured against the goal, but the distance from the goal is not the
primary measure of value/worth. If the strain/branch/variant is unique and still within
bounds, then it is worth keeping and worth exploring (evolving) further. Novelty
Search then needs two litmus tests for each variant: a determination of whether it is
within bounds and a measure of novelty or uniqueness from other variants. Both of
these measures are domain-specific.

The visual demonstration (Stanley and Lehman 2015a) on the Novelty Search Users
Page is in the domain of solving a maze. The goal is to reach the end of the maze, and the
demonstration shows how the typical approach of focusing on proximity to the goal can
lead to failure. For Novelty Search, the demonstration uses the maze walls as bounds and
distance from previous mutations rather than distance to goal. In a domain where, for
example, a student needs to learn how to create a smoke screen to hide from an enemy,
the measures of novelty might be position of the student, position of the enemy, and
wind direction. Boundaries for this exercise might be that the wind direction can only be
the eight primary compass directions and another measure is minimum and maximum
distance between student and enemy. For this project, we want a measure of novelty to
include instructional value. An instructional value of novelty for the smoke exercise
should be something like the angle between the vectors of wind and line-of-site to the
enemy, and distance to the goal along that line-of-sight, as these are the factors that the
student must use to determine the correct placement of smoke.

1.2 The Goal of This Paper

Mager (1962), emphasized that a learning objective needs to be written as a clear
description of competent performance so that it is clear how to generate instruction for,
and assessments of, those learning objectives. For the smoke lesson described above, a
learning objective written in this format might be “Given a terrain map showing
position of the learner’s unit, positions of the enemy, position of the goal, and weather
information including wind direction and speed, the learner will be able to select the
target location for smoke grenades and number of grenades within a given tolerance to
sufficiently keep the enemy from seeing the learner’s approach toward the goal.” With
this information, a developer can determine how to evolve the scenarios to provide
practice and assessment of that objective. The goal of this project is to enable software
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to automatically generate a set of scenarios. In addition to the mechanism/algorithm
that performs the automation, we need a method to describe to the ASG system how to
automate the generation and how to assess the learner’s attempt. We also need to make
this domain-neutral. This paper focuses on this aspect of defining the learning objec-
tives in such a way that the scenario meets the learning objectives (the instructional
value can be determined). For more information about how the authors are imple-
menting Novelty Search for this project, see Folsom-Kovarik and Brawner (2018).

2 Training Scenario Variability

The US Army scaffolds a Soldier’s training using a methodology known as crawl-
walk-run (Headquarters, United States (U.S.) Army Combined Arms Center 2016),
which conducts training events sequenced in progressive levels of difficulty. Intelligent
tutoring systems such as the US Army Research Lab’s Generalized Intelligent
Framework for Tutoring (GIFT) (Sottilare et al. 2012) feature the ability to scaffold the
learner by sequencing content in such a progressively more difficult order. These
systems can automatically select a training exercise (scenario) from a pool of exercises
based on the learning complexity of the exercise. A single dimension of complexity is
often sufficient within a specific learning objective. For example, the difficulty factor
for adding two positive integers might be based on whether or not the sum of any of the
digits is greater than 9 so that the learner has to perform the concept of carrying.
However, within the larger learning objective of adding two numbers, there are mul-
tiple additional dimensions of complexity, such as whether or not there are negative
numbers and whether there are fractions. To properly challenge the learner, the com-
plexity should increase along the appropriate dimension.

Simulation scenarios are much more complex than the simple math example given.
For example, the scenarios used for this project involved 49 enabling learning objec-
tives that address nine higher-level concepts. Additionally, there are three distinct
phases to the scenarios where the learner must plan for the mission, prepare for the
mission, and execute the mission. Each of the SUAS COMPETE scenarios use over
300 multi-dimensional learner performance measures at approximately 45 discrete
decision points to precisely determine the learner’s mastery of the learning objectives.
Evolving the scenario within specific learning objective dimension will enable the
system to generate variants that provide learning experiences and practice tailored to a
learner’s particular needs. However, these learning objectives are domain-specific, so
we need more generic dimensions of variability.

2.1 Scenario Complexity

Dunne et al. (2015) developed a tool to measure a simulation scenario complexity
based on three characteristics of the scenario: Task Complexity (TC), Task Framework
(TF), and Cognitive Context Moderators (CCM). Each characteristic is based on factors
about a given scenario, such as the number of cues, actions, subtasks across actions,
interdependent subtasks, possible paths, criteria to satisfy, conflicting paths, and dis-
tractions (see Table 1, Scenario Characteristics).
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Dunne et al. summed these dimensions into a single complexity factor for the
scenario and validated with domain experts. The single value attribute of complexity
allows the instructor to select the scenario with the proper level of difficulty for indi-
vidual learners. It also allows analysts to verify that they have authored enough sce-
narios with the proper coverage of complexity levels to enable the US Army’s crawl-
walk-run methodology. Providing the right level of challenge enables the learner to
“get into the flow of optimal learning” described by the psychologist Csikszentmihályi
(1990). His research discovered three conditions required for getting into the state of
optimal performance and learning. First, the task must be a challenging activity with a
clear set of goals and a measure of progress toward those goals. Second, there must be
immediate feedback to the person about the progress in those measures. Third, the
person must perceive the level of challenge of the task is aligned to one’s own per-
ceived abilities. In other words, the learner must believe that the task is difficult and
requires effort, the learner must be able to access and interpret the cues that are required
to measure progress toward the goal, and the learner must believe that achieving the
goal is possible. The ITS used for this project—like the Sherlock ITS it was based on
(Lesgold et al. 1988; Lesgold and Nahemow 2013)—prepares the learner for the task
through instruction, then immerses the learner into the task-based scenario. Sherlock
further encouraged the learner that she/he had the skills, and that the system would
provide help if needed.

Keeping the measure of complexity for each characteristic or even each base
variable separate will help tailor the experience more precisely for the individual
learner. For example, a particular learner may not have any problem with the number of
cues or distractions, but needs more practice in scenarios that have a high number of
interdependent subtasks. Individual measures of each dimension for the scenarios and
for the learner’s mastery will enable the scenario selection mechanism to select the
appropriate scenario for the learner. It may not be practical to directly measure the
learner’s level of proficiency in each of these complexity dimensions independently in
the same way as measuring proficiency in each learning objective. Rather than

Table 1. Scenario characteristics

• Task Complexity
– Component Complexity

• Number of Tasks/Actions required
• Number of Information Cues that must be monitored and assessed

– Coordinative Complexity
• Number of Sub-Tasks
• Number of Inter-Dependent Tasks

• Task Framework (How well defined is the domain)
– Task Paths – Presence of multiple potential ways to accomplish outcome(s)
– Task Criteria – Number of desired outcomes
– Unknown/Conflicting Paths – Degree of uncertainty

• Cognitive Context Moderators
– Distraction Factor
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measuring directly, analytics of the learner’s performance in the scenarios can provide
insight to the learner’s competency in the individual factors.

A training scenario is a series of situations, events, decisions, actions, and tasks.
Some dimensions of complexity are only valid for specific phases or tasks within the
scenario. For example, factors that vary the complexity of scenarios for piloting an
airplane include length and direction of runway, cross-wind, and wind shear. However,
those factors only influence the complexity of the tasks performed during takeoff and
landing, whereas route changes only add complexity during cruise or approach. As
shown by experiments by Biddle et al. (2006), allowing distinct phases to be selected
independently from a pool of variants will allow for more focused practice for the
individual needs of each learner. The example of smoke above is a distinct phase of an
overall scenario breaching a minefield. For that scenario, new elements might be wind
speed, multiple enemy positions, uncertainty of enemy position, and the position for the
goal to which the student/unit must move. Therefore, the complexity factors and other
instructional value measures should be individually computed and associated with each
distinct phase of the scenarios.

Any LMS that is compliant to SCORM 2004 or AICC can select scenarios based on
measured gaps in a learner’s expertise of explicit learning objectives (Perrin et al. 2004;
Biddle et al. 2006). However, the scenario selection algorithms need to be able to
determine which scenarios focus on which learning objectives. Typically, scenarios are
intentionally authored for explicit learning objectives (LOs). For ASG, either the
system similarly needs to generate scenarios explicitly for the specific LOs or there
needs to be a method to determine which LOs a student will encounter in each of the
machine-generated scenarios.

3 The Approach

To address the needs of generating scenarios for specific instructional value or gen-
erating using Novelty Search then calculating the instructional value, we are leveraging
the SUAS COMPETE scenario XML files. The structure of those scenarios comprise
optional paths through a series of situations, events, decisions, actions, and tasks.
Therefore, the scenario complexity can be autonomously determined by software.
Additionally, for each action along the paths in the scenario XML there are individual
measures for each of the 49 LOs. Although the LOs are domain-specific, the format of
the LO measures in the XML is domain-independent.

3.1 Dimensions of Evolution and Instructional Value

We defined specific ways in which the scenario can evolve as dimensions. We looked
at specific dimensions for the scenarios we considered and dimensions that were
envisioned to be generic and thus applicable across domains. As one method to validate
the dimension as generic, we considered domains such as corporate leadership, factory
workers, engineering, and compliance training.
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The domain-generic dimensions of complexity were validated with the subject
matter expert (SME) who authored the original scenarios. LTC John Sanders (US
Army, retired), whose specialty areas include combined arms, authoring tactical
operations doctrine, and advanced military instruction, helped define the roles of
SUAS. He agreed that those factors measure the complexity of learning, and, in
general, also measure the complexity of the tasks within the scenarios. The relevant
effect of each measure varies based on the phase of the scenario. Additionally, the
effect is dependent on the specific task or decision within the phase.

LTC Sanders, the SUAS COMPETE SME, previously worked with the author to
define three dimensions of complexity for military scenarios (see Fig. 1) (Sanders and
Dargue 2012). These factors include the level of threat, complexity of the task or
system used in the task, and environmental factors. The level of threat dimension could
be expressed in a domain-generic way as level of risk or urgency. The eight dimensions
defined by Dunn et al. discussed earlier are more specific and therefore can be classified
in a hierarchy under those defined by Sanders and Dargue (see Table 2).

Fig. 1. Progressive training matrix in three dimensions from (Sanders and Dargue 2012)

Table 2. Three dimensions of scenario complexity

• Level of risk or urgency
– Number of criteria to satisfy
– Number of conflicting paths

• Complexity of the task or system used in the task
– Number of actions
– Number of subtasks across actions
– Number of interdependent subtasks
– Number of possible paths

• Environmental factors
– Number of distractions
– Number of cues
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3.2 CTA and Authoring

The scenarios we are using were authored using a Cognitive Task Analysis
(CTA) originally developed to capture knowledge of maintenance technicians for an
ITS. The Precursor, Action, Results, Interpretation (PARI) (Hall et al. 1995; Means and
Gott 1988). The PARI CTA is typically a structured interview process using two
SMEs. Using a spreadsheet we enabled a single SME to perform PARI (Dargue and
Biddle 2016). For each task, deci-
sion, or action to be performed in the
scenario, the spreadsheet codifies the
SME’s mental model and four pos-
sible actions that can be performed.
The SME ranks each of the four
possible actions and defines changes
to the assessment of the learner’s
level of expertise for each learning
objective. For each decision made in
the scenario, the learner model is
dynamically updated using these
assessments. A unique, inherent
capability is that for any given
decision point, different learning
objectives are scored based on which
decision is made at that point. For
example, if the situation requires the
learner to select the proper tool to
tighten a hex bolt, and the learner
selects the proper wrench, she will
get credit for understanding when to
use a wrench. If she had selected a
hammer, her measure of expertise in
both wrenches and hammers will be
reduced. Another feature of the
PARI CTA is that the decisions are
made in a specific context of other
decisions. Each phase of the scenario
comprises a series of tasks, actions,
or decisions. The expert’s path is
defined by the expert’s decisions plus the outcomes or results of those decisions. To
fully define the scenario, the tool is used to codify the results of each possible decision,
how the mental model changes, and what new decisions can be made. This can be done
by the same SME or multiple SMEs. In this manner, multiple paths with continuity in
branching are defined for the scenario. One simple method to generate a scenario
variant is to reduce the complexity of the scenario by removing optional or conflicting
paths (Fig. 2).

Fig. 2. PARI CTA process
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A second method to generate a scenario variant for a specific learner is to modify
the scenario to change the situations so that different decisions/actions should be made.
A search through the decision points can determine which path will present the deci-
sion points that the learner needs to experience to target specific gaps in expertise. If the
path is not on the optimal path or a path that the learner is likely to take, the software
will need to know how to vary the situation at one or more decision points.

The problem statement and the precursor for each decision point captured by PARI
contain the situation and the mental model of the expert. These are also the cues that are
counted to determine scenario complexity. Currently, this information is free-form text
in the XML describing the expert’s thoughts for the precursor for the decision and the
interpretation of the results of the decision. While this is effective for transferring the
expert mental model to the learner, it is not easily understood by the software nor is it
easily modified by the software. A relatively simple addition to the scenario authoring
tools will capture the cues used by the expert for each decision in a machine under-
standable and variable way. Often the factor is an indication of cost or risk for that
choice and is therefore weighed by the expert for making the decision. The addition to
PARI for requesting the author to define the few factors of complexity that are not
currently computable will make that critical information explicit for the software. With
that information, the software can determine what level of challenge each decision
point has and how that challenge level can be changed.

With the cues explicitly defined, the software can determine which factors need to
be changed to make a less than optimal or even unacceptable path the optimal choice.
The software will also be able to calculate the new complexity measure and be able to
make changes to ensure the right level of challenge is given to the learner. Returning to
the wrench/hammer decision, if the learner has already demonstrated mastery of
selecting a wrench for hex bolts, we might want to change the number of conflicting
paths complexity factor by adding a socket wrench, pliers, and a pipe wrench in
addition to the original crescent wrench. We might change the number of actions
complexity factor by stating there is a nut on the other side and that the bolt has to be
torqued to a standard they have to calculate. If the learner has not demonstrated
proficiency in hammers and nails, the software could change the fastener to a hammer.

3.3 Scenario Continuity

In many cases, such as our fastener example, the path from making the correct choice
does not change: the path only depends on whether the learner selected the correct
decision. For the fastener, when the correct tool is used, regardless of whether it was a
nail or a bolt, the fastener is properly fastened. If the user selects the wrong tool, the
fastener will work loose. In other cases, decision points further down the scenario path
might need to reflect the change.

We also run the danger of making a variant that is nonsensical or impossible. For
example, if the fastener we change to a nail is holding the wheel on a car. To avoid
those cases, bounds need to be defined. A straightforward solution is to have the author
specify the bounds or possible variants. In many cases, this is a natural extension to the
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addition that defines the cues used by the expert to make the decision. For domains
such as military tactical decision making, discontinuity is inherent. Uncertainty caused
by the “fog of war” and unexpected changes from adaptive threats and deceptive
techniques used by the enemy make discontinuity in the scenario more realistic and
better prepares the learner for warfare.

Variants made by adjusting the number of cues, paths, subtasks, or outcomes do not
present a risk of discontinuity or nonsense. The paths created by the original authors
and encoded in the original scenario provide scenario continuity for all the possible
paths, including the conflicting paths, as the scenario evolves or unfolds based on the
decisions and actions performed by students in the simulation.

4 Conclusions and Recommendations for Future Research

This project consists of researching, prototyping, and evaluating methods to autono-
mously evolve variants of simulation scenarios to be used in adaptive training systems.
The primary purpose for generating a variety of variants is to provide a library of
scenarios so that the optimal learning experiences can be selected for students. There are
basically two approaches with slight alternatives being prototyped. The first approach is
to use information within the scenario to purposely create variants. The second approach
is to generate a large set of variants that are then analyzed for instructional value.

For the first approach, the existing scenario format in XML includes enough
information to intelligently make a small set of variants for specific instructional
outcomes. By adding information, such as cues an expert uses to make decisions to the
scenarios, the software can generate a larger set of tailored scenario experiences that are
focused on a greater number of different instructional outcomes. Both approaches
require research and validation of methods to autonomously assess the instructional
value of scenario variants. The first uses the variables of the assessment as guides in
making the variants.

The second approach uses the assessment as a “litmus test” of the instructional
worthiness of scenario variants. The variables used by Dunne et al. to determine
scenario complexity provide what may be an ideal domain-independent method to
determine the instructional value of a simulation scenario variant. Those variables also
provide information that may be used to make specific variants to address an individual
learner’s needs.
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