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Abstract. Movement interventions commonly feature Fundamental locomotor
skills (FLSs) like hopping. These skills are thought to positively shape physical
activity (PA) trajectory in children. However, the extent to which children who
are at risk for overweight and obesity deploy these skills during leisure time PA
is often unknown. Direct observation methods are cost-prohibitive. Step count
from commercial activity trackers fail to capture these movements. This paper
explored the feasibility of using an instrumented insole and machine learning
algorithms to classify hopping, running, sprinting, and walking. A subject (age:
40 years; mass: 81 kg; height: 1.7 m) walked, hopped, and sprinted while
wearing an instrumented insole. The insole features two pressure sensors and a
mechanical housing. The mechanical housing held an Arduino/Genuino 101
programmed using Arduino Software Integrated Development Environment
(IDE). An artificial neural network (ANN) training and real-time classification
software was written in Arduino IDE and downloaded onto the Arduino 101’s
non-volatile memory. The ANN used pressure and time derivative data from a
dual sensor array and was tested with various statistical parameters. The moving
average, standard deviation, min, max, time derivative and acceleration proved
most significant for effective training and precision realtime classification. The
on-line validation produced mixed accuracy: walking, running, and sprinting
were classified with higher than 70% accuracy, but hopping was classified with
only 25% accuracy. It is concluded that insole instrumentation with supervised
machine learning seem promising to help track FLS deployment. The lower
classification accuracy associated with hopping may be due to higher signal
variability.

Keywords: Machine learning � Locomotor skills � Movement classification �
Foot pressure � Neural network

1 Introduction

Physical activity (PA) interventions pervade many multi-setting programs, including
school-based programs, aimed at preventing or controlling obesity [1]. Given recom-
mendations that children and youth engage in 60 min or more of predominantly
moderate to vigorous PA every day [2], PA patterns should expectedly feature
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recurrent deployment of fundamental locomotor skills (FLSs) like hopping, jumping,
and running (including variations like sprinting). These movements cost more than six
times the energy expended from sitting quietly for one minute and can facilitate
neuromuscular and cardiorespiratory fitness [3, 4]. When implemented in children,
trainings that involve agility (e.g., sprinting) and plyometric movements (e.g., hopping)
are designed to facilitate mastery of FLSs and projected to positively shape physical
activity trajectory [5, 6]. Fundamental movement skills include FLSs and are thought to
be positively related to PA behavior [7]. The presence of FLSs and children’s PA
behavior content has typically been investigated through direct observation [8]. This
method is cost and temporally prohibitive. More commonly, accelerometer-based
devices are used to output number of steps taken. This method lacks details on activity
structure and the specific types of movements that are deployed. Therefore, there is a
need for a research device that will allow researchers to directly investigate, under-
stand, and model the relationship between ad hoc interventions and subsequent loco-
motor behaviors.

PA is any bodily movement generated by skeletal muscle and results in energy
expenditure [9]. It has been suggested that motor skill competence mediates engage-
ment in PA [10] and is associated with health-related physical fitness across childhood
(i.e., in children aged 4−13 years) [11]. Chen et al. [12] concluded that health-related
physical fitness components like trunk lift, push-up, and curl-up tests were linked with
students’ engagement in PA during physical education, recess, and sports outside
school. Castetbon and Andreyeva [13] found that gross motor skills, which involved
vertically translating the body’s center of mass (e.g., skipping a minimum of eight
consecutive steps, jumping from a standing start, and hopping unilaterally over five
consecutive repetition) were inversely associated with obesity and standardized BMI
scores. FLSs like jumping, hopping, leaping, and running form the foundation nec-
essary to acquire sport-specific skills and engage in PA across the lifespan [10]. For
example, jumping is integral to performing complex activities in a number of sports,
including volleyball, basketball, and soccer [14–16]. Unlike walking, which emerges
automatically across the developmental trajectory, FLSs are acquired through
instruction, structured training, context-specific exposure and practice [11]. When
adequately developed, these skills can facilitate joint stiffness regulation and powers,
which are optimal for many metabolically demanding bipedal movements [17]. Deficits
in these skills can engender low self-confidence and can constitute a barrier to PA [18].

While some longitudinal studies have assessed self-reported PA behavior among
children who participated in such interventions, others have measured PA behavior
using more objective means like accelerometers [19]. The challenge is that while there
is some evidence that FMS proficiency may mediate PA behaviors, the specific
mechanisms are not lucid. This relationship is further complicated by factors such as
health-related physical fitness and ecological factors, including park density and park
amenities, which have also been linked with PA behavior. Therefore, it is important to
pose more specific questions regarding the relationship between FMS interventions and
the deployment frequency and duration of targeted skills. Because FLSs tend to be
metabolically expensive, thereby engendering high energy expenditure, it is important
to understand whether interventions that promote FLSs among children result in
increased deployment frequency and duration.
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Wundersitz et al. [20] previously classified activity types using time and frequency
domain features of gyroscope and accelerometer signals and multiple approaches,
namely Logistic Model Tree, Random Forest, and Support Vector Machine. Their
Logistic Model Tree algorithms showed the highest classification accuracy (79−92%) a
walk, tackle, standing stationary, sprinting, jogging, change of direction, and a coun-
termovement jump. However, their movement capture durations varied between 0.5 to
1.5 s [20]. Shorter duration capture was considered optimal for accelerometer-based
classification training, because they exclude non-pertinent movement data (i.e., noise)
[20]. It is unclear whether this method would remain accurate during longer duration
movements. While instrumented insoles have been used to extract spatiotemporal gait
features [21] and detect fall events [22], they have yet to be implemented to classify
FLSs and associated temporal features.

To that end, the current work explored the feasibility of implementing artificial
intelligent technologies to classify different modes of human locomotion using input
from an instrumented insole. Although various wearable PA tracking devices are
pervasive, many use accelerometers and gyroscopes and are typically worn around the
wrist. As such, they are subject to artifacts and require many more features (upwards of
37), in order to accurately classify lower extremity-driven movements [20]. This
requires greater processing power and time [20]. Additionally, activities like riding
outdoor bicycles or stationary indoor exercise bikes become difficult to detect or
quantify, because the upper limbs are generally stationary in these contexts (the hands
usually grasp the handle bars for support stability). In contrast, this work focuses on
using pressure-related data from an instrumented insole to classify locomotor modes,
especially considering that these movements are primarily undertaken using the lower
extremities. This method is expected to require fewer features for classification.

This study has two primary aims: (1) present the design of an instrumented insole
that uses foot pressure data from a dual sensor array to classify three FLSs (i.e.,
hopping, running, and sprinting) and a non-fundamental locomotor skill (i.e., walking),
and (2) present an initial feasibility assessment by means of accuracy estimates of the
ad hoc ANN’s classification of the foregoing locomotor modes. The device and pro-
posed method could allow researchers track and answer elusive questions regarding the
relationship between FLS training and movement competency interventions and
locomotor activity behavior and structure, especially during unsupervised play in
children. The device could also allow researchers model the relationship between FLS
deployment frequency and weight trajectories, especially among children.

2 System Development

2.1 Mechanical Design

To fulfill the requirements for an ergonomic design of a wearable system for FLS
classification and motion triggering, the physical interaction between the human users
and the elements of the system needed be carefully taken into account. Most wearable
devices are parallel and physically coupled with a human limb. Therefore, the ergo-
nomic design of wearable sensor/actuator devices, in particular, should be compliant
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with the human model in terms of anatomical, anthropometric and biomechanical
characteristics. In order to make the wearable device comfortable, we designed the
device to wrap around the tarsus. Pressure sensors were placed to coincide with the first
metatarsal head and medial rear foot, in order to optimally sense foot pressure. While
the average adult tarsus radius helped informed the dimensions of the current insole, its
dimensions can be easily modulated to suit a variety of foot sizes. The design of the
mechanical housing of the wearable device is shown in Fig. 1. Notably, the ankle-
mounted mechanical housing is fairly bulky in size; however, it contains all of the
mechanical and electrical devices in multi-layered housing for ease of maintenance and
operation.

2.2 Electrical Design

The brain of the real time ANN is an Arduino 101 (Intel Corporation, Santa Clara, CA).
The Arduino/Genuino 101 is a development board, which contains the Intel® Curie™
Module, designed to integrate the core’s low power-consumption and high perfor-
mance with the Arduino’s ease-of-use.

In order to make the wearable device wireless, we used the 101 Bluetooth Low
Energy technology. The Arduino/Genuino 101 is programmable using the Arduino
Software (IDE), our Integrated Development Environment common to all our boards.
These ran both online and offline. The overall electrical diagram is shown in Fig. 2.

The ANN training and real-time classification software was written in IDE and
downloaded onto the non-volatile memory. Two thin (0.2 mm) circular (diameter
9.53 mm) force sensitive resistors (i.e., FlexiForce A301 sensors) (Teksan, South
Boston, MA) capable of measuring up to 25 lbs. were connected through the analog
inputs. Two vibrator actuators were connected through the Arduino relay shield.
Although shown in pertinent figures, further information on the vibration actuators is
not presented, as it is outside the scope of this paper. The force range of the Flexiforce
sensors were adjustable by varying the voltage drive applied and the resistance of the
feedback resistor. A 6 V battery with a power on/off switch on the housing was
integrated, in order to drive the force sensor amplifier.

Fig. 1. Mechanical housing of the wearable device
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2.3 Artificial Neural Network (ANN) Design

ANNs are a very rough model of how the human brain is structured. ANNs are
composed of units of calculation called neurons. These artificial neurons are connected
by synapses with weighted values.

ANN emerged as a more meaningful approach to solving problems, given increased
computer processing power and the availability of big data. Among the core enablers is
the backpropagation mechanism that helps train an ANN to solve specific non-linear

Fig. 2. Electrical diagram

Fig. 3. Artificial Neural Network (ANN) design
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problems. When the result is unexpected, an error is calculated, and the values at each
neuron and synapse are propagated backwards through the ANN for the next time. This
process takes big data for an ANN to be trained correctly. In an ANN, there is an input
layer (i.e., the data), a hidden layer, and an output layer. From the perspective of the
problem scope of the locomotion classification, we start with an assumption that one
hidden layer suffices to solve the problem. After several iterations, we finalized the
ANN structure with 12 inputs nodes, 8 hidden nodes and 4 output nodes as follows
(Fig. 3). The details of the ANN design are finalized during the ANN training, which is
detailed in the next section.

3 Experiment

3.1 Protocol

A college age young adult male (age: 20 years; height: 1.7 m; mass: 74 kg) wore their
regular running shoes fitted with the instrumented insole on their dominant side. They
then walked for 33 s, ran for 28 s, sprinted for 19 s, and hopped unilaterally for 42 s on
a single belt Merax JK1603E treadmill (Merax Fitness, City of Industry, CA). The
Texas A&M University – Corpus Christi Institutional Review Board approved this
study.

3.2 ANN Training

The supervised training was used. In the training phase, the correct class for each
record was kept and used for the supervised training process. During the training, the
target value of each locomotion mode was compared to the output value with 0.5 of
initial weighting on each propagation. The error terms between target and actual output
were then used to adjust the weights in the hidden layers, in order to drive subsequent
outputs closer to the target values (i.e., a feedforward mechanism).

A key feature of neural networks is an iterative learning process in which data cases
(rows) are presented to the network one at a time, and the weights associated with the
input values are adjusted each time. After all cases are presented, the process often
starts over again. During this learning phase, the network learns by adjusting the
weights so as to be able to predict the correct class label of input samples. As shown in
Fig. 5, the training data have a high level of noise. The advantages of neural networks
include their high tolerance to noisy data, as well as their ability to classify patterns on
which they have not been previously trained. Therefore, we will test the ANN clas-
sification with data used for training (off-line validation) and with data not used for
training (on-line validation).

The network processes the records in the training data one at a time, using the
weights and functions in the hidden layers, then compares the resulting outputs against
the desired outputs. Errors are then propagated back through the system, causing the
system to adjust the weights and apply them to the next record to be processed. We
trained the ANN 1000 times and compared the total least square error with the desirable
goal. The goal value of the ANN was set to 15 with 12 inputs.
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Input Layer. The input layer of the ANN was composed of 12 data sets as listed in
Table 1. Note that some networks did not learn. This could be because the input data
did not contain the specific information from which the desired output was derived.
Therefore, we tested different sets of input data starting with the raw sensor data. As a
result, a total of 12 sets of data were identified for the adequate classification accuracy
of up to 70% (Table 1). Networks also do not converge, if there is not enough data to
enable complete learning. Ideally, there should be enough data so that part of the data
can be held back as a validation set. We trained the ANN with the average number of
data set of 100 for each locomotion mode. Therefore, a total of 400 data were used to
refine the ANN weights. The front and rear sensors were positioned to approximately
coincide with the first metatarsal head and medial tubercle of the calcaneus, respec-
tively (Fig. 4).

Output Layer. We tested two possible configurations of the output layer. One was the
single node of decimal value from 0 to 4. The other was the digital 0, 1 value of each
node with 4 nodes to cover 5 different locomotion layers. The latter turned out to be
more accurate in classification. Therefore, we structured the output layer of the ANN
with 4 neurons as listed in Table 2.

Fig. 4. Sensor implementation at insole

Table 1. Input data structure

Set
1

Rear
sensor
data

Sum of last
20 data

Moving
average

Standard
deviation

Time
derivative

Acceleration

Set
2

Front
sensor
data

Sum of last
20 data

Moving
average

Standard
deviation

Time
derivative

Acceleration
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4 Preliminary Data Analysis

In order to train the ANN, we collected data across four locomotor modes (Fig. 5).
Although there are observable patterns, we were initially unable to train the ANN
successfully; the classification accuracy was only up to 30%. In order to enhance the
classification accuracy, we trained and tested the ANN with various statistical param-
eters to find the most significant ones. Over the period of experiments, we discovered
several significant parameters (i.e., features) for effective training and precision realtime
classification. Therefore, we explored parameters that were statistically relevant/
meaningful to the training objective from the raw locomotion data, in order to bring the
classification accuracy up to 70%. As listed in Table 1, we identified six features from
the raw data from each sensor. A total of 12 features served as input to the ANN. Each
input is shown in Figs. 6, 7, 8 and 9. In order to generate all six features, we processed
the raw data by following the data processing sequence as shown (Fig. 10). Each data
was sampled every 100 ms, so we collected 10 raw data per second.

Table 2. Output data structure

Output Locomotion mode

0000 Staying
0001 Walking
0010 Running
0100 Sprinting
1000 Hopping

Fig. 5. Raw data for 4 locomotion modes
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Fig. 6. Walking data

Fig. 7. Running data
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Fig. 8. Sprinting data

Fig. 9. Hopping data
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5 Results and Discussion

5.1 ANN Classification

In this section, we share the results and discuss the ANN classification. Notably, the
off-line validation, which used the same data as the training, demonstrated 100% for all
four locomotion modes. In on-line validation, most of the locomotion modes were
classified with greater than 70% accuracy, except hopping. As shown in Fig. 5, the
noise level in hopping tended to be very high compared to other locomotion modes.
This may be primarily due to the fact that the wearer likely did not depress the two
sensors in a consistent pattern during the stance phase of each hop. Specifically, the
participant appeared to depress the sensor at the medial tubercle of the calcaneus with
relatively more variable pressure during each hop. Tables 3 and 4 show the off- and on-
line validation outputs for each of the four locomotor modes.

This work attempted to classify FLSs by solely using force-sensitive resistors
(FSR) sensors. A system designed to track FLS deployment duration and frequency
during leisure time PA among children has to be wearable and practical. Therefore,
excluding additional sensors like accelerometers was an important initial hardware
consideration to minimize the systems’ cumbersomeness and energy requirements.
However, the lack of other opportunistic sensor integration may have detracted from
the current classification outcomes. Cates et al. [22] recently designed a multi-sensor
insole by integrating four force-sensitive resistors and an inertial measurement unit
accelerometer to detect high acceleration fall events from low acceleration activities of
daily living. Their algorithm involved 45 features, and 15 of these were from FSR data.
Although they concluded that a multi-sensor system produced increased classification
accuracy, they conceded that such design is associated with increased user discomfort.
Their work also underscored the challenge of classifying comparably high acceleration
movements using accelerometer data features. Running, jumping, and hopping are
consistent with high acceleration movements; therefore, it is unclear whether
integrating accelerometry and related vector magnitude features may boost relative
classification accuracy in the current design [22].

Fig. 10. Data processing sequence
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Table 3. Off-line validation

a. Walking (100%) b. Running (100%)

Output 
1

Output 
2

Output 
3

Output 
4

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

c. Sprinting (100%) d. Hopping (100%)

Output 
1

Output 
2

Output 
3

Output 
4

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

Output 
1

Output 
2

Output 
3

Output 
4

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

Output 
1

Output 
2

Output 
3

Output 
4

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0
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6 Limitations

The current work is has several limitations. The insole only has two integrated FSR
sensors. Considering the placement of these sensors, pressure data from the midfoot
region was likely not captured. Capturing and integrating pressure data across more foot
regions may enhance the accuracy of classifying more variable movements like hop-
ping. The training data was relatively diminutive and originated from one participant.

Table 4. On-line validation

a. Walking (80%) b. Running (75%)

Output 
1

Output 
2

Output 
3

Output 
4

0.002 0 0.999 0

0 0 1 0

0.004 0.001 0.975 0.001

0 0 0.973 0.022

0 0 1 0

0.004 0 0.998 0

0 0 1 0

0 0.001 1 0

0 0 1 0

0 0 1 0

c. Sprinting (100%) d. Hopping (25%)

Output 
1

Output 
2

Output 
3

Output 
4

0.011 0 0 0.999

0.001 0.999 0.001 0

0 0 1 0

0.056 0.011 0.854 0.003

0 0 1 0

0.996 0.01 0.001 0.001

0.018 0.96 0.002 0

0.012 0.945 0.006 0

0 0 1 0

0.085 0.012 0.775 0.002

Output 
1

Output 
2

Output 
3

Output 
4

0 0 0 1

0 0 0 1

0 0 0 0.997

0 0 0 0.998

0 0 0 1

0 0 0 1

0 1 0 0

0 0 0 1

0 0 0 1

0 1 0.007 0

Output 
1

Output 
2

Output 
3

Output 
4

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0
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There is need to collect more data, in order to optimize the algorithm training. Further,
additional instrumented insole data features, including ones in the frequency domain
should be explored, in order to potentially improve hopping classification accuracy up to
70% or higher. Future research will aim to classify additional FLSs like jumping and
non FLS lower extremity-based movements like bike riding.

7 Conclusion

This paper explored the feasibility of using data from an instrumented insole to classify
running, hopping, sprinting, and walking. During the off-line validation, we achieved
100% classification accuracy; however, the on-line validation produced mixed accu-
racy. Walking, running, and sprinting were all classified with higher than 70% accuracy
in the on-line validation, but hopping was classified with a 25% accuracy. The level of
variability in hopping tended to be high compared to other locomotor modes. This may
have been due to the fact that the wearer did not depress the sensors using similar
pressure patterns during each hop. It is concluded that an ANN technology using
features generated from foot pressure data appears promising to classify the locomotor
modes that are often the subject of many movement competency interventions. This
may provide important insight into children’s FLS deployment and their overall
movement content, particularly during leisure time PA. This knowledge may help
inform movement competency interventions and how these may shape moderate to
vigorous PA behaviors, especially in the context of preventing or controlling over-
weight and obesity. The device overcomes some limitations associated with wrist worn
activity trackers, including artifacts and decreased predictability of upper extremity
movement patterns during primarily lower extremity-driven movements. It also mini-
mizes the need for excessive features, which was previously reported to increase
processing time.

Although the wearer did not report any discomfort associated with the device,
future work will aim to miniaturize the mechanical housing and assess its usability.
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