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Abstract. Pose estimation of humanoid objects in monocular systems is a non-
trivial problem that has been at the forefront of the human-computer interaction
field. The ability for a computer to not only to detect the presence of a humanoid
shape within an image but also to infer relative location and configuration has
particular use for many applications. We explore a novel approach to solving
this task by introducing a multi-stage preprocessing algorithm and a constrained
pose estimator.
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1 Introduction

Here at Human Solutions of North America, we have developed a novel multi-tiered
approach to detecting and estimating poses in monocular system of humanoid objects
using state of the art deep learning architectures and extensive domain knowledge
through our commercial body scanners and Size North America proprietary data. Using
a U-Net architecture we are able to segment an image to classify which pixels belong to
a humanoid and which pixels belong to the background. The U-net architecture is ideal
for this task and is considered the state of the art when it comes to image segmentation
tasks. It is an encoder-decoder architecture that introduced a technique called a skip
step that allows the propagation of feature locality throughout the network in order to
classify what kind of subject a particular pixel belongs to. We then clip each detected
subject and pass the image into a Convolutional Neural Network (CNN) to infer
demographic information. This particular portion of the approach allows us to pick a
good “initial guess” as to the structure of the subject. We extract information such as
race, age, weight, and body morphology. Thusly, we choose a homologous mesh that
has been statistically generated from our Size North America database for that par-
ticular demographic. The Size North America database consists of submillimeter pre-
cision three dimensional body scans of approximately 18,000 subjects distributed
evenly across various demographics. This database allows us to produce a statistically
representative three dimensional meshes of each demographic across multiple mor-
phologies. Finally, we pass the homologous mesh into a deep neural network and
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produce a final mesh that represents the pose of the subject. This last step acts as a
regressor and deforms the homologous mesh to fit the initial body pose of the subject.

This novel approach allows us to estimate the pose of multiple subjects that are
within view of a monocular system as well as letting us infer a globally plausible body
shape for occluded portions of the subject. This approach also opens the door for soft
body simulation on subjects within an image. Applications of this methodology are
wide and far impacting from three dimensional scene reconstruction and point of view
visualization, to high fidelity motion capture from low cost systems.

2 Materials and Methods

2.1 Image Segmentation

Training a deep encoder-decoder neural network is rather tricky. This is caused by the
conflicting nature of the requirements of the neural network versus the drawbacks of
backpropagation. The U-Net architecture requires a maximization of information for
semantic segmentation to be successful. This means that the standard methods of model
regularization can no longer be utilized.

One major issue of deep neural networks is a tendency for overfitting. This is due to
their large parameter space. The standard way to combat this issue is through dropout.
During training we employ a process that stochastically stops gradients from propa-
gating backwards through the layers in the neural network. This effectively kills
neurons and forces the neural network to perform at a deficit. Many have theorized that
this method causes the neural network to generate strong sub-classifiers in earlier
layers. The late stage layers then ensemble these subnetworks to produce a final pre-
diction. Unfortunately, structural information will be lost that act as input for later layer
in the decoder network. Therefore, this method cannot be used.

To reduce computational cost, many neural networks, employ a Max Pooling layer
whereby neurons of a previous layer are pooled together into a single neuron by taking
the highest output signal from the group. This has the effect of reducing computational
complexity while preserving the gross structure of the information. Unfortunately, local
adjacency information is not preserved with this technique and fine image details that
are important for classifying humans are lost.

We initially take a 512 x 256 three channel image, referred to as the source image,
and pass it through a specialized “encoder-decoder” convolutional neural network
referred to as a U-Net architecture [1]. The U-Net architecture introduces a tensor
concatenation operator that allows structural information about identified classes to
propagate throughout the neural network that is used to reconstruct a pixel-wise
classification tensor. This concatenation operation is referred to as a “skip-step”.
Because we are dealing entirely with rank three tensors the concatenation operations
occur along the third axis or the channels axis and are computationally cheap (Fig. 1).
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Fig. 1. Shows the general architecture for the U-Net Convolutional Neural Network. On the left
hand side show the encoder network. On the bottom center is the latent tensor representation of
the source image. On the right hand side is the decoder side of the neural network. In the center
we have the concatenation operations that allow the structural information of the source image to
propagate.

To reduce computational complexity, we employ a strided convolution that acts
similarly to max pooling. The difference is our kernel size is always larger than the
stride. This allows us to include adjacent information that is outside the “pooling”
region while reducing the number of computations by power of two.

Since we are unable to use dropout to regularize our neural network we employed a
method of streaming subsets of our original dataset, this is also referred to as incre-
mental learning [1]. The Common Objects in Context (COCO) dataset [2], includes
330 thousand images that are semantically labeled by object class. The dataset is
excellently curated and provides a large variety of examples to train on (Fig. 2).

Our activation function, which provide the non-linear capacity for our neural net-
work, was chosen specifically to remove the need for batch normalization [3]. SELU,
or scaled exponential linear units belong to a class of self-normalizing activation
functions. This activation function allowed us to remove the need for additional nor-
malization layers without losing the benefit that normalization has to solving the
vanishing gradient property.

SELU is defined as

C(aler—1), x<0
f(‘x?a))°{ X, XZO

Where A is a learned parameter that acts as a scaling factor to boost gradient
propagation.
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Fig. 2. The iterative training process allows us to define a dynamic set of images to train on.
This removes the issue of training over fit without having to perform dropout and other model
regularization techniques.

2.2 Clipping

Once a class is identified within the source image we must clip the class object into a
separate image to extract demographic information. This clipped form of the image
isolates the subject from external sources of information that may add undue noise
during the subsequent processes.

Clipping is performed using a masking methodology on a low-pass canny filter.
Initially we take a source image and pass a Gaussian Kernel Convolution across the
source image to remove high frequency information from the image. This will have the
effect of reducing the number of possible edges, as shown in Fig. 3.

Fig. 3. Shows the canny edge filter as applied directly on the source image (top right) versus
being applied after a low pass filter operation on the source image (bottom right).

Once we extract edges we apply a pixel-wise multiplication of our region proposal.
The result of the operation yields a very clean image that contains only the subject to be
passed on later processes (Fig. 4).
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Fig. 4. Edge masking allows us to focus on edges that we think belong to a human.

2.3 Demographics Estimation

The demographics of a detected subject plays an important role in selecting the right
initial conditions for the mesh regression procedure. Extracting the demographics of a
subject is done using three convolutional neural networks. Each one is responsible for
extracting a prediction for age, race, and gender. The CNN’s use two principles to
achieve better than human performance when classifying demographics. A decaying
special drop rate, and an expanding kernel size.

To regularize the neural networks and prevent over fit, we employ a high drop rate
in the earlier stages of the neural network and a low dropout rate in the later stages of
the neural network. This improves the ability of strong subnetworks to be generated for
extracting low level features. In the later stages we want the layers to act as an
ensembling mechanism. Secondly, expand the kernel sizes to capture local features
within the image at earlier stages and global features in later stages.

The result of the convolutional neural networks is then concatenated to produce a
final prediction vector to be used in subsequent steps (Fig. 5).
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Fig. 5. Highlights the key architecture of the set of Convolutional Neural Networks that are
responsible for extracting demographic information from the subject after clipping.
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2.4 Homologous Mesh Generation

During our product developments we conducted a size survey called Size North
America which consisted of scanning eighteen thousand diverse subjects using mil-
limeter precision body scanners. The subject takes a quick demographic survey and
then change into skin-tight under garments. They then enter our body scanner whereby
multi-laser optical measurements occur across the entire length of the body producing
High Density Point Cloud (HDPC) data. Using propriety software, we aggregated our
HDPC data into statistically representative and vertex uniform meshes called homol-
ogous meshes (Fig. 6).

Fig. 6. Showcases the vertex uniformity of the homologous meshes within our dataset.

2.5 Homologous Mesh Estimation

Given a demographic prediction vector P; about a particular subject then a reasonable
estimate about a subject’s mesh M; can be given by an inner product of the prediction
vector with the basis B of the space representing all possible human meshes. We
approximate the basis of this space using out homologous mesh’s extracted from our
Size North America survey.

P;-B

M; =
P;-P;

Where B is the basis set of meshes defined as

{Bg,r7a|Bg,r,a c MHX3XI60’785’,g cZreZac Z}
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and P; is the prediction vector defined as

{P;|P; € R"},

for a subject i (Fig. 7).

Fig. 7. Shows a sample of our homologous meshes across demographic range. Starting from the
top we show meshes for Female African Americans, Male African Americans, Female Asians,
Male Asians, Female Others, Male Others, Female White, Male White. Each mesh across a row
is a statistically representative model of our age group classes. Starting from the left we show
meshes for ages 0-11, 12-17, 18-23, 24-29, 30-35, 36-41, 42-47, 48-53, 54-59, 60-65, 66—
71, 72+ respectively.

In essence this process is a weighted average operation of all the homologous
meshes across our demographic classes. The weights are determined by the probabil-
ities produced by the neural network.

2.6 Pose Estimation

Pose estimation was accomplished using a Convolutional Neural Network on clipped
source images. Preprocessing the image to remove background information allowed us
to reduce the complexity of our neural network. Since pre-clipping removes back-
ground information, our neural network did not need to learn what a person looks like.

We posit that the pose estimator works by simply regressing a central skeleton into
the contour provided. Our neural network’s final layer simply had 22 degrees of
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freedom. We constructed a constrained skeleton layer based on pre-existing anatomical
models which greatly reduced the regression times and improved overall accuracy
when compared to a standard dense layer output. Our constraints are defined by
medically accepted normal ranges of motion (Tables 1, 2, 3, 4, 5, 6 and 7).

Table 1. Describes the normal range of motion for the hip.

Type Minimum angle (Deg.) | Maximum angle (Deg.)
Flexion 0 125
Extension 115 0
Hyperextension | 0 15
Abduction 0 45
Adduction 45 0
Lateral rotation 0 45
Medial rotation 0 45

Table 2. Describes the normal range of motion for the knee.

Type Minimum angle (Deg.) | Maximum angle (Deg.)
Flexion 0 130
Extension | 120 0

Table 3. Describes the normal range of motion for the ankle.

Type Minimum angle (Deg.) | Maximum angle (Deg.)
Plantar flexion | 0 50
Dorsiflexion |0 20

Table 4. Describes the normal range of motion for the foot.

Type Minimum angle (Deg.) | Maximum angle (Deg.)

Inversion | 0 35
Eversion |0 25
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Table 5. Describes the normal range of motion for the shoulder.

Type Minimum angle (Deg.) | Maximum angle (Deg.)
Flexion 0 180
Extension 0 50
Abduction 0 90
Adduction 90 0
Lateral rotation | 0 90
Medial rotation | 0 90

Table 6. Describes the normal range of motion for the elbow.

Type Minimum angle (Deg.) | Maximum angle (Deg.)
Flexion 0 160
Extension | 145 0
Pronation 0 90
Supination| 0 90

Table 7. Describes the normal range of motion for the wrist.

Type Minimum angle (Deg.) | Maximum angle (Deg.)
Flexion 0 90
Extension |0 70
Abduction | 0 25
Adduction | 0 65

2.7 Rigging Homologous Meshes

Once pose estimation is complete applying the pose to the mesh involves regressing the
mesh skeleton which applies a system of linear transformations to the mesh allowing
the mesh to be regressed into the desired pose.

To simplify the rigging process of the homologous mesh we used the software
Unity. By defining the key points of a skeleton we are able to apply transformations to
the entire mesh through the 3D rending software (Fig. 8).
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Fig. 8. Showcases the control points of the skeleton defined in Unity. These will act to define a
system of linear transformations that will be applied to each vertex on the mesh.

3 Results

The image segmentation network was particularly difficult to train as great care had to
be taken when dealing with class weights. Code was developed to dynamically cal-
culate class weight upon each batch. The class weights were calculated by counting
pixels belonging to people versus pixels belonging to the background. This added
procedure cause training times to be much higher, but yielded very good results
(Fig. 9).

The clipping operation yielded expected results whereby 83% of human subjects in
validation data were clipped from the source image. This is largely sufficient for images
in the wild. We expect the use case for this algorithm to be mostly situated in controlled
well lit environments (Fig. 10).
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Fig. 9. Showcases very hard validation examples of the image segmentation process. Input
images are shown in column 1, the ground truth labels in column 2, and the neural network
results in column 3. Background pixels are represented in green, while pixels belonging to people
are represented in blue. (Color figure online)

W1 source - o . Wl ass edg u] < | W7 masked source = [u} X

Fig. 10. Shows a sample of the clipping process in a non-trivial test case where the subject has
intersecting edges with a background. The subject also has a wide variety of occluding features
such as facial hair with no discernable variation from his shirt.
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Training the demographic convolutional neural networks yielded a significantly
greater than random accuracy for each network. We trained these networks using the
UTKFace dataset [16] which provides a well curated set of faces with race age and

gender annotations (Figs. 11, 12 and 13).
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Fig. 11. Outlines the train curve for extracting age estimations after 400 training epochs. The
top one prediction accuracy for 13 classes plateaued after the 150" epoch. The jitter in accuracy
is caused by the dropout rate in earlier layers as compared to the training step size (1e-3). The line
in blue shows the benchmark accuracy if the neural network were to classify age at random.
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Fig. 12. Outlines the train curve for extracting gender estimations after 400 training epochs. The
top one prediction accuracy for two classes plateaued after the 60™ epoch. The line in blue shows
the benchmark accuracy if the neural network were to classify gender at random. (Color figure

online)
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Fig. 13. Outlines the train curve for extracting race estimations after 400 training epochs. The
top one prediction accuracy for four classes did not plateau and had significant trouble attaining
greater than random accuracy. The line in blue shows the benchmark accuracy if the neural
network were to classify race at random. (Color figure online)

4 Discussion

4.1 Improvements

One major drawback that this methodology has is the multistage approach. Compu-
tationally speaking this is not efficient and may suffer when implemented on lower end
hardware. We propose that the whole process be integrated into a single feed forward
neural network.

Our neural network size was also limited by the capabilities of our hardware. Source
images were down sampled from their original sizes. Therefore, it is reasonable to
expect a major loss of fine details that are crucial to the process. Expanding the number
of filters and adding more layers may allow the neural network to perform better.

4.2 Applications

Mobile Sizing

Our methodology opens the door for robust sizing estimations of a subject without the
need for expensive hardware. Given a proper reference point the algorithm can extract
length measurements across any set of points defined along the mesh. This has direct
applications for the fashion, automotive, aerospace, and ergonomic industries.

An example scenario for the fashion industry would be at the retail level. A boutique
fashion store can setup or use existing camera systems to build mesh estimates for all
their customers. When a customer selects a garment they can instantly view a simu-
lation of how the garment looks and moves on their body. This removes the risk of
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exposing expensive apparel to the customer and allows the store to reduce inventory
while catering to a higher range demographics.

In ergonomic research, a key area of the field that is lacking is the ability to rapidly
prototype designs on computer systems. The ability to develop ergonomic products that
can be easily be tested on specific demographics plays an important role. Our tech-
nology has particular use when the designer(s) does not have access to an expensive
demographics sizing database. They will be able to easily produce simulation ready
meshes from any images.

Social Networking and Information Pivoting
The ability search information broker databases allow one to leverage limited knowl-
edge about a subject to expand their information. Unfortunately, traversing these
databases becomes an intractable computational nightmare. Searching social media
databases is nearly impossible when looking for a particular subject. The ability to
narrow down the search space for a human subject greatly reduces search times.
When this methodology is paired with other information gathering techniques, such
as natural language processing, one may be able to extract knowledge about a human
subject just by having a simple conversation with the subject. This has direct appli-
cations in law enforcement. During an interrogation the interviewer’s task is to extract
information that might otherwise be hidden or obscured. Real time information vali-
dation plays a very crucial role. Our system can be used to search and validate a
person’s identity in real time. Information such as age, gender, race, height, body
morphology can be used as filtering terms to search offender databases without the need
to rely on the human subject to provide accurate information.

Motion Capture

The motion capture industry has barrier of entry in terms of cost of equipment and
education. High fidelity motion capture systems requires dedicated studios with ded-
icated hardware and a very knowledgeable team to maintain [18]. With our pose
estimation and mesh regression we are able to produce reasonably accurate motion
capture that can later be fed game development projects and movie studios. Our sys-
tem’s ability to produce homologous mesh’s allows for easy integration with pre-
existing animation and rendering pipelines. The vertex uniformity of the mesh lets
studios perform soft-body and hard body simulations to produce highly realistic scene
renderings at a fraction of the cost.

4.3 Privacy Implications

The sensitive nature of extracting demographic data from images has grave privacy
implications. The applications for this technology should be selected to align with the
public good. Such a technology could be used to leverage into personal and private
details. The methods discussed by this paper are not the edge cases for the potential
application of this technology. Such methods can be used to estimate data protected by
legislation such as medical history. With the right combination of inputs bad actors
may use this technology to perform identity theft and other more malicious acts.
Age has particularly strong privacy implications if this technology is used in public
facing systems. The ability to extract identifying features from the minority subset of
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the population without parental approval can breach many local and federal regulations.
Such a system must have filters in place to ignore subjects that have reasonable evi-
dence that they are below the age of majority.

Race plays an important role in the system’s ability to extract fine details with a
high degree of accuracy. Initial structural features that reduce regression times are
highly dependent on race. There are many downsides to a system that relies on
accurately classifying race. If the convolutional neural network is trained on data that
has a class imbalance between races the network may miss-identify a race or the race in
particular may become under or over represented within the prediction vector. This will
negatively impact the quality of the results. In terms of morality, threat analysis systems
and the like that rely on race for identification and classification may compound race
inequalities. Therefor the author proposes that systems that are used to predict human
behavior should abstain from using race qualifiers.

Gender, like race, is a predictive qualifier for estimating body structure. The very
trivial example is bust size. If an initial guess for a female subject was not statistically
representative for a female, the regressor would likely need more iterations for a fixed
step size to optimize the initial mesh to fit a female bust. Choosing the correct gender is
crucial to an accurate representation of a subject. Unfortunately, it is very difficult to
represent the subset of the population that is gender ambiguous. By the very definition
a transgender subject crosses the boundaries between classes and can cause even the
most perceptive humans to think twice. This poses a very difficult technological
problem and may also exacerbate the political issues around transgender rights.

Many of the examples presented show the need for a good demographic classifier,
but we must take particular care when these systems are applied to public applications.
We must not give public institutions and regulatory bodies technological justifications
to widen the gap of inequality. Nor must we employ these technologies prematurely
when they have a direct impact on a person’s life and liberty.
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