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Abstract. Wearable sensors have emerged as low-cost portable gait
assessment tools in the past decade. However, it is necessary to process
the signal collected from the sensors to analyze the human gait. Different
spatio-temporal features for example, stride length, step length etc. can
be obtained by detecting specific events in a gait cycle. Extraction of
a single cycle is an important step for detection of events such as heel
strike, foot flat, toe off, and mid-swing. Existing methods assume gait
signals are fully periodic, whereas they are actually quasi-periodic. This
quasi-periodicity increases with decrease in walking speed. Individuals
with abnormal gaits are unable to walk in high speed. We propose a
novel approach to extract cycles from gait signals with varying period-
icity which are appropriate for low gait speed. To discriminate normal
and abnormal gait pattern, we consider normal and equinus gait data in
experimental analysis. Three participants walked normally, two partici-
pants simulated walking with equinus on the right leg, and two partic-
ipants simulated walking with equinus on both legs. We have used two
Sparkfun 9DoF Razor Inertial Measurement Unit (IMU) sensors having
sampling frequency of 200 Hz. The performance of proposed approach
is demonstrated through statistical error analysis. It outperforms the
existing techniques, specially in case of low speed gait data. The com-
plexity analysis is also presented to evaluate the efficiency of the proposed
algorithm. Finally, Fisher’s Discriminant Ratio is applied on the entire
feature set to identify most prominent features to discriminate between
normal and abnormal gait pattern.
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Slow-speed gait analysis · Gait event detection · IMU sensor ·
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1 Introduction

Gait analysis has recently gained significant attention for several applications
such as medical diagnostics, bio-metric identification, robotics, animation etc.
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Among different gait assessment tools, 3D-motion capture systems are consid-
ered the best tool because of their high accuracy and reliability. Unfortunately,
it is not affordable for clinics, specially in developing and poor countries. Wear-
able sensors such as, Inertial Measurement Unit (IMU) may be considered as a
low-cost gait analysis tool in the clinical domain [1–4].

Inertial Measurement Unit. An Inertial Measurement Unit (IMU) consists of a
tri-axial accelerometer, a tri-axial gyroscope and a tri-axial magnetometer. The
accelerometer data provides the information about acceleration of the sensor,
gyroscope measures the angular velocity of the sensor, and magnetometer mea-
sures the magnetic field vector with respect to the gravity vector. Additionally,
the information about orientation of the sensors can be obtained by integrating
the angular velocity. Presence of magnetic disturbances can limit the accuracy
of the estimated orientations. In our experimental setup, we have used wearable
IMUs as a cost-effective approach.

Periodic vs. Quasi-periodic. Periodic signals are the signals that recur the same
behavior after regular intervals. In signal processing, quasi-periodic signals are
defined as signals that show periodicity microscopically, but may not be periodic
macroscopically i.e. one period is more similar to its adjacent periods than the
periods at farther away in time. Non-stationary processes that changes in time
generates quasi-periodic signals. Gait signal is also quasi-periodic in nature, spe-
cially when captured for a long duration and slower speed [5,6]. This is mainly
due to the fact that walking in lower speed permits the candidate to change the
time intervals to complete a gait cycle. This changing periodicity poses as a chal-
lenge while detecting a full gait cycle during gait analysis (here by periodicity,
we refer to the time interval to complete a gait cycle).

Gait Cycle Events. A gait cycle consists of two phases: (1) stance phase (60%
approximately) and (2) swing phase (40% approximately). Each of these phases
consists of sub-phases i.e. initial contact, loading response, mid-stance, terminal
stance, pre-swing, initial swing, mid-swing, terminal-swing. These phases can be
distinguished with events like heel strike, foot flat, heel off, toe off, mid-swing.
To obtain spatio-temporal features like stride length, step length etc., detection
of the previously mentioned events are important. Gait cycle extraction can be
used to detect these events.

In this paper, we proposed a new approach which is used for extracting
gait cycles taking the varying periodicity of a long gait signals of slow walking
pattern. We collected normal and equinus gait data as samples using wearable
IMU sensors. Equinus gait has been simulated by the participants due to lack
of availability of medical gait data. A comparison between the existing methods
and proposed method for slow speed gait data with different speeds is presented.
We compared the feature values extracted, and presented a comparison of stan-
dard errors caused due to each methods. We also analyzed complexity of the pro-
posed method. We performed a statistical analysis among the features extracted.
In Sect. 2, we discuss the data acquisition procedure and pre-processing of the
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Fig. 1. (a) A closer look at Sparkfun 9DoF Razor IMU sensor. (b) Placement of the two
IMU sensors around the shank of both legs of the candidate walking on the treadmill.

acquired data. In Sect. 3, we briefly explain the existing methods for gait cycle
extraction. Next in Sect. 4, we propose a new approach that considers varying
periodicity. In Sect. 5, we analyze and discuss the results. Finally, we conclude
our study and state our future plans in Sect. 6.

(a) (b)

Fig. 2. Sample clips of a signal: filtered vs. original (a) for 3 km/h (b) for 1.5 km/h.

2 Data Collection and Pre-processing

For our experimental setup, we have used wearable IMUs as a cost-effective
approach. Two Sparkfun 9DoF Razor IMU sensors having sampling frequency
of 200 Hz were attached with a band along with batteries and on-board memory
chip. These bands were tied around the shanks of both legs of each participant.
Figure 1a is an image of the used IMU sensor. The gyroscope in IMU measures
the angular velocity of the sensor. Signal values in gyroscope “X”-axis is ignored
because movement in x-axis is negligible. Figure 1b shows placement of the IMU
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sensors and gyroscopic axes for both shanks. We performed our analysis on three
categories of gait: normal gait, equinus gait on both legs and equinus gait on
right leg only. Due to lack of medical gait data, we simulated equinus gaits.
Three participants walked normally, two participants simulated walking with
equinus on the right leg, and two participants simulated walking with equinus
on both legs. The candidates were asked to walk on a treadmill with two different
pre-specified speeds: normal (1.5 km/h) and high (3 km/h). We did not opt for
higher speed considering it will be difficult for a differently-abled person to walk
with higher speed.

The preprocessing of the data was done in three steps: (i) Clipping: During
the process of capturing signal data, the person is in standing position before
starting walking and after stopping. The signals occurred during this phase is
discarded in the clipping process. (ii) Interpolation: The collected data does not
have equal time intervals. We interpolated the signal data using linear interpo-
lation method. (iii) Filtering: The signal data collected from the IMU contains
high frequency noise. To remove high frequency noise, we filtered the signal using
high-pass filtering with help of convolution process. Figure 2 shows the original
signals and filtered signals for left shank gyroscope z-axis data of both leg equinus
gait at 3 km/h and 1.5 km/h respectively.

3 Gait Cycle Extraction

For a fully periodic signal, periodicity can be utilized to extract complete cycles.
Periodogram is used to identify the highest occurring periodicity in a signal.
There are two general methods to generate periodogram: a. circular auto-
correlation method [7–9], b. spectrum analysis using Fast Fourier Transform
(FFT) [10,11].

3.1 Circular Auto-correlation

In this method, correlation value of a time series to itself with increasing lag is
computed. For a discrete signal y, it is defined as,

ACFl(y) =
∑

n∈L

y(n) ∗ ȳ(n − l), (1)

where L is the signal length and l is the lag. Figure 3 represents normalized cACF
plots with 400 lag in sample signals shown in Fig. 2. As it can be observed that
the peaks are not at regular intervals, specially in Fig. 3(b) i.e. normalized cACF
plot of slower speed gait data, signifying that gait signals are not fully periodic.
In the periodogram, the highest peak is at lag 0 because the correlation between
same signals is 1 and the next highest peak is considered as the most dominant
period.
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Fig. 3. Circular auto-correlation values of sample clips of (a) 3 km/h (b) 1.5 km/h
respectively.

(a) (b)

Fig. 4. Spectrum analysis after Fourier transformation of sample clips of (a) 3 km/h
(b) 1.5 km/h respectively.

3.2 Spectrum Analysis

In spectrum analysis method, first the signal is converted to frequency domain
using FFT. The periodogram is generated by plotting the spectrum or power
distribution against different frequencies. Figure 4 are spectrum distributions
against frequency for sample signals shown in Fig. 2. The dominant frequencies
are easily observable from the plot. We observe that number of peaks in Fig. 4(b)
is larger than number of peaks in Fig. 4(a). It shows that quasi-periodicity of gait
signals increase as the speed decreases which leads to multiple periodicity values.

4 Proposed Method

The traditional methods considers a fixed periodicity and segments the signal
of equal size. Due to wrong segmentation, cycles extracted are not always com-
plete. For example, a cycle may be missing one or more phases e.g. heel strike
and again, some cycles may contain two heel strikes. Only complete cycles are
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selected for further processing. During this process, if the data is highly quasi-
periodic, there is higher chance of information loss as many cycles will remain
undetected. Our objective is to track the varying time intervals taken to com-
plete each gait cycle of the signal. Pseudo-code for the proposed process is shown
as GetV arPeriodicity procedure in Algorithm 1. A graphical representation of
the whole process is shown in Fig. 5.

Fig. 5. (a) A base cycle under consideration, (b) Test cycles’ window range (w size)
in a single iteration (c) Generated combined value of Kolmorogrov-Smirnov (KS) tests
and Hausdorff’s distance
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Algorithm 1. Proposed algorithm
1: procedure GetVarPeriodicity(signal,init period)
2: sig len ← length of signal
3: last index ← init period
4: est per ← init period
5: base cycle ← signal[1 : init period]
6: while ((last index + est per) < sig len) do
7: min cmbdist ← Inf
8: for (j in range(0.5 ∗ est per, 1.8 ∗ est per)) do
9: test cycle ← signal[last index : j]

10: k stat, p val = kstest(base cycle, test cycle)
11: h dist = hausdorff dist(base cycle, test cycle)
12: if p val > thres prob then
13: cmb dist = k stat + 0.01 ∗ h dist
14: if cmb dist < min cmbdist then
15: saved j ← j.
16: min cmbdist ← cmb dist.
17: last index ← last index + saved j.
18: periodlist ⊃ saved j.

In our approach, we use the pre-defined knowledge of a complete gait cycle.
Initially, a complete cycle, called base cycle (base cycle), is taken as reference.
Along with it, an initial period i.e. init period is required as input which is
the time length of the base cycle. Figure 5(a) is base cycle of the example sig-
nal from Fig. 2(b). Considering the microscopic property of quasi-periodic sig-
nals, it is expected that adjacent cycles may have more or less similar time
period. Therefore, to find the next cycle, a window is taken into account that
depends upon the time-period of the previous complete, within which it is
assumed the next cycle lies. In our case, we have taken the window range to
be (0.5 ∗ est per, 1.8 ∗ est per), where est per is the estimated time period
of the previously detected cycle. Figure 5(b) shows the window range for the
text cycles. Signals corresponding to this window range is taken sequentially
as test cycles (test cycle) and compared with base cycle as shown in Fig. 5(b).
To measure the similarity of pattern, some statistical tests are performed. Dis-
cretized Kolmorogrov-Smirnov test or KS test (kstest), and Hausdorff distances
(hausdorff dist) have been used for dissimilarity measurement. The purpose of
KS test which is based on empirical distribution function is to find out whether
two samples follows the same distribution or not [12]. KS value for two discrete
sets X and Y is defined by

dks(n,m) = supx‖F1,mx − F2,nx‖ (2)

where sup is the supremum function, and F1,m and F2,n are empirical distri-
butions of the two samples respectively, with m and n to be the sizes of two
samples respectively. KS test generates a statistical value that is the measure of
similarity and a p-value (p val) that is the measurement of confidence associated
with each hypothesis. Hausdorff distance measures how much two subsets of a
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metric space are distant from each other [13]. Hausdorff value for two subsets X
and Y is defined by

dks(X,Y ) = max{supx∈X{infy∈Y d(x, y)},

supy∈Y {infx∈Xd(x, y)}} (3)

where sup is the supremum function and inf is the infimum function and d is the
distance metric used. For our approach, KS statistical values only with p-value
more than a threshold probability is taken into consideration. Both Hausdorff
and KS statistical values are combined after normalization process, denoted as
cmb dist. Plot in Fig. 5(c) shows how the combined value of KS test and Haus-
dorff distance is changing for the test signals in the window range. The test cycle
generating minimum combined distance (min cmbdist) is selected as the final
complete cycle.
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Fig. 6. A complete single cycle extracted from a signal with highlighted features i.e.
maximum foot flat, toe off, maximum swing, and heel strike.

Gait Features Selection. After gait cycles are extracted, values of the signal at
events such as toe off, heel strike, foot flat were computed from each gait cycle.
Then average values of these features for all extracted gait cycles are taken as
feature representation of a particular signal and has been used for statistical com-
parison. We discarded outliers from the feature values before averaging process.
Figure 6 shows an example of the features selected from an individual cycle.

5 Result Analysis and Discussion

A gait cycle is considered complete if it consists of the following gait events: heel
strike, foot flat, toe off, and mid-swing. Table 1 shows a comparison based on
the percentage of ‘complete gait cycles’ extracted by each of the methods for
different gait types with respect to speed. We define ‘complete gait cycles’ by
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the cycles which contains all four events i.e. swing, toe-off, heel strike, and foot
flat. Any cycle missing even one of the feature values is considered as incomplete
gait cycle. From Table 1, it can be observed in most of the cases, performance of
FFT is average. Although it produces large number of cycles, but large portion of
these cycles are incomplete cycles. ACF on the other hand, shows a remarkable
performance for z-axis gyroscopic data, but fails to perform for y-axis gyroscopic
data, specially for low speed gait. However, we can observe a consistent good
performance of our method for all types of gait data even for slow speed gaits.
A clearer representation of the performance of all three methods are presented
in Fig. 7 for both high and slow speed.

Fig. 7. Percentage of complete gait cycles extracted by ACF, FFT and proposed
method for different types of gait data with (a) 3 km/h and (b) 1.5 km/h

We analyzed the feature values produced by each methods and a compara-
tive study of the standard error values of each feature for different gait signal
categories are shown in Table 2. Standard error (se) is defined by

sd(x)√∑n
i=1(x)

, (4)

where sd is the standard deviation and x is a vector of numerical observations.
From Table 2 it can be observed, while the performance of cACF and FFT is
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Table 1. Percentage of complete gait cycles extracted by ACF, FFT and proposed
method for different types of gait data with 3 km/h and 1.5 km/h speeds.

Speed Gait type Gyroscope Number of complete gait cycles

ACF (%) FFT (%) Proposed (%)

3 km/h Normal y-axis 65.75 70.25 77.08

z-axis 89.3 50.75 77.43

Equinus right y-axis 42.66 63.6 83.40

z-axis 72.62 51.2 75.43

Equinus both y-axis 48.55 51.15 76.30

z-axis 72.17 61.14 83.40

1.5 km/h Normal y-axis 35.60 60.20 87.34

z-axis 88.0 34.45 78.80

Equinus right y-axis 22.5 67.9 88.15

z-axis 87.6 34.6 73.85

Equinus both y-axis 27.6 69.9 92.70

z-axis 85.8 33.65 73.80

inconsistent for different conditions, performance of our proposed method is on
average good throughout all the test case situations. For low speed gait signals,
when the signal is expected to be highly quasi-periodic, both cACF and FFT
succeeds occasionally, for example, normal swing phase y-axis data, or equinus
both heel strike z-axis data, but fails to perform on most of the other cases. For
better understanding, mean and standard deviations of the error values of each
methods are also presented as summary in Table 3. From Table 3, lower standard
deviation of standard error in low speed gait supports the fact that our proposed
method worked well on the overall data compared to cACF and FFT.

To analyze the features extracted by the proposed method, Fisher Discrimi-
nant Ratio (FDR) of each of the features are examined. FDR is used to find the
contribution of features to distinguish between classes. It is defined by

∑C
k=1 pk(μk − μ)2

∑C
k=1 σ2

k

, (5)

where C is the number of classes, pk is the probability of class k and μk and
σk is the standard deviation of each class, whereas μ is the overall mean. FDR
values of each feature extracted by our proposed method is presented in Table 4.
Heel strike has the highest FDR value, swing amplitude being the second highest
FDR value. We can conform from this analysis, these two features are more
significant than the rest of the features.

Complexity Analysis

The computational complexity of cACF method is O(L2), where L is length of
the signal. While using the spectrum analysis method, the signal goes through
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Table 2. Standard errors of features generated by ACF, FFT (Spectrum Analysis)
and proposed method for different gait types (normal, equinus right, equinus both) of
different gait speeds

Speed Gait type Method Swing Foot flat Toe off Heel strike

3 km/h Normal y-axis z-axis y-axis z-axis y-axis z-axis y-axis z-axis

ACF 2.12 3.23 1.24 1.12 1.69 1.64 1.46 1.57

FFT 2.01 3.69 1.47 2.12 1.98 6.18 1.62 2.32

Proposed 2.35 2.85 1.46 1.49 1.74 2.91 1.34 3.69

Equinus right ACF 2.18 3.07 0.99 1.92 1.40 1.37 1.52 2.41

FFT 1.79 3.69 1.08 1.96 1.16 4.20 1.26 2.20

Proposed 2.04 3.52 1.46 1.28 1.30 2.03 1.39 2.50

Equinus both ACF 2.45 2.80 1.13 1.75 2.13 3.35 1.52 4.11

FFT 1.63 3.28 0.81 2.14 1.10 4.23 1.04 5.42

Proposed 1.75 2.66 1.04 1.61 1.36 3.39 1.23 3.16

1.5 km/h Normal ACF 1.92 3.17 1.51 1.14 2.24 2.97 1.73 1.55

FFT 1.68 5.34 1.39 3.06 2.11 7.20 1.43 3.62

Proposed 2.37 3.94 1.49 1.60 2.12 3.26 2.05 3.28

Equinus right ACF 5.82 4.63 2.04 1.26 3.33 2.76 1.76 2.64

FFT 1.72 6.83 1.34 3.75 1.26 6.30 1.25 4.07

Proposed 2.28 4.81 1.70 1.95 1.70 4.11 1.43 3.32

Equinus both ACF 4.35 5.10 2.24 1.47 2.59 3.78 2.34 2.27

FFT 4.58 4.30 2.26 1.54 2.93 5.31 2.55 2.08

Proposed 2.15 4.31 1.84 1.08 2.38 4.46 1.89 2.83

Table 3. Mean and standard deviations of the standard errors of ACF, FFT and
proposed method

Speed ACF FFT Proposed

Mean sd Mean sd Mean sd

3 km/h 2.008 0.811 2.433 1.442 2.064 0.824

1.5 km/h 2.692 1.252 3.247 1.873 2.598 1.079

Table 4. Fisher Discriminant Ratios (FDRs) of the gait features extracted by the
proposed method

Speed Gyroscope Swing Foot flat Toe off Heel strike

1.5 km/h y-axis 0.01934 0.00524 0.01802 0.06522

z-axis 0.03246 0.0243 0.02201 0.03217

3 km/h y-axis 0.02348 0.01933 0.01629 0.03113

z-axis 0.03345 0.01187 0.02879 0.03636
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Fast Fourier Transform which has time complexity of O(L ∗ logL), where L is
length of the signal [14]. In our algorithm, apart from signal length, the com-
plexity depends upon the length of testing range, wsize, and the complexity of
similarity measurements. Distance calculation methods depends on the length of
the vectors, i.e. in our case is length of the base cycle(bl) and the test cycles(tl)
which is again dependent on wsize. Therefore, we can say the similarity measure-
ment is of complexity O(bl ∗wsize). Finally, the total complexity of the proposed
method becomes O(L∗bl ∗wsize

2). When the signal is too long, bl can be ignored
compared to L and the complexity reduces to O(L ∗ wsize

2). For small length
gait signals, complexity of the proposed method is less than ACF. When wsize

is very small compared to length of the signal, L, the proposed method shows
lower time complexity than spectrum analysis.

6 Conclusion

For modeling different types of abnormal gait, it is required to capture slow
speed gait data from the participants having gait abnormality. In our experimen-
tal research we observed that slow speed gait is of highly quasi-periodic nature.
Existing methods considering singular periodicity are able to detect relatively
less number of complete cycles for quasi-periodic signals which may lead to major
loss of information. A varying periodicity detection algorithm has been proposed
to address this issue. It has been understood from the comparative result analy-
sis that the proposed approach is able to extract more number of complete gait
cycles with significant feature information. For feature analysis, a statistical tech-
nique, FDR, has been applied to evaluate the reliability of extracted features for
discriminating normal and abnormal gait pattern. From the complexity analysis,
the following observations can be stated: (i) Circular ACF is more computation-
ally intensive than the proposed method. (ii) Spectrum analysis method has
lower computational complexity for small length signals. For long-duration gait
data, our method demonstrates lower computational complexity than spectrum
analysis. The proposed algorithm shows promises to be used to extract cycles
from other quasi-periodic signals such as electro-myography (EMG) signals of
muscles activity or electroencephalography (EEG) signals from brain, with the
prior knowledge of the repetitive pattern.
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