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Abstract. Recently, mobile robots are attracting attention in various industries.
Outdoor unmanned security mobile robot is a key issue for surveillance. The
main task of these security robots is to protect people and property. For this
purpose, the robot should be able to autonomously navigation and interaction
with people is essential. Especially, it is required to perform autonomous driving
by avoiding collision with humans and obstacles, tracking a certain human for
intruder surveillance or safety of people. For the outdoor security task, we
propose the novel localization and control methods that is not only overcome the
weather conditions for positioning, but also build a safety route for avoiding and
following relative to human position. The robust localization method is based on
detecting the salient features by the information filters for multi-layered
knowledge (e.g. sensory, episodic, semantic and cloud big data), and then
estimate an accurately position of the moved robot. Next, the safety route is
defined a rollover model of a security robot on slope and suggests a path
generation using DWA (Dynamic Window Approach) method with safety ratio.
The method of evaluating rollover is the ZMP (Zero Moment Point) concept. If
there is a ZMP between the wheels of the steering mobile robot, it can be safe.
The results show that the autonomous navigation is possible with robust
localization method, and then it can follow a specific human by the safety path
generation. The proposed method is expected to be usable in various applica-
tions requiring outdoor surveillance.
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1 Introduction

Interaction technology between human and robot has been continuously developed.
Among the applications for surveillance, outdoor unmanned security robots have
attracted attention in recent years. The robots have to perform autonomous navigation
and human interaction in various outdoor environments. First, autonomous driving has
been carried out steadily, and many researchers are conducting it. First, autonomous
driving has been continuously studied by many researchers. Especially, the navigation
techniques for the outdoor environment have been performed mostly for good weather,
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and it is difficult to cope with most weather conditions. This is because effective feature
extraction is difficult in complex weather environments. In order to overcome this
problem, robust features are extracted by utilizing all of the multi-modal sensor data
available to the robot. Then, there is a need for a method of locating the most useful
features using prior knowledge of the current weather, location, and topography.

On the other hand, the security robot is required to interact with humans to perform
missions to track or guide interested humans. For this purpose, it is necessary to
consider both the control method of measuring and maintaining the distance from the
human, the method of driving safely by recognizing the speed and the humility.
Therefore, a safe control method is required for rollover that does not overturn while
measuring distance.

In this paper, we propose a robust localization method for outdoor environment and
a control method for interaction with human. The proposed method can drive outdoors
for most weather conditions, and can track and guide humans on the unpaved road or
slope way. Experimental results show that robust position estimation is feasible based
on knowledge-based features, and a stability model can be defined to enable safe travel
with less risk of rollover.

The remainder of paper is organized as follows. In Sect. 2, some related works are
summarized. Section 3 describes localization for outdoor autonomous navigation,
including multi-layered knowledge based salient map, information filter, and some
results. The safety path generation method with ZMP model is described in Sect. 4.
Section 5 presents the human robot interaction by following in surveillance application.
Finally, we summarize the proposed method.

2 Related Works

Research on the position estimation of robots has been carried out steadily. The
Researches based on various sensors estimate a location with a fixed map using vision
data [1] or sensor data [2] in indoor environment. However, in order to carry out
unmanned security, localization method should be possible in outdoor environment.

There is a method [3] of recognizing the road environment by mixing LiDAR based
on GPS, a method [4, 5] using a laser sensor, a method using a single camera [6] or a
stereo vision [7] for outdoor localization. These methods determine the location by
mixing the global GPS and the local pose estimation using the sensor data. In the same
way, there is also research on location recognition using only global and local vision
data [8]. However, for practical security, robust driving methods are needed in most
weather conditions, including seasonal changes.

In order to overcome the environmental changes, a method of estimating the
location using robust features in the image for seasonal changes [9], a method that is
useful not only for seasons but also for night and daytime conditions [10, 11], and
techniques have been proposed for rain or snow weather conditions [12]. These
methods are solving some of the changes in the outdoor environment depending on the
feature quantity using a specific image only. Therefore, in this paper, we propose a
localization method considering most of season, night/day and weather conditions.
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On the other hand, there were various efforts for stable control of robots. However,
it seems that most of them are not suitable for roads that have roughness for active
steering [13], steering and braking [14, 15], which are mostly controls for flat roads.
Therefore, we propose a stable model-based control algorithm by the centrifugal force
generated in the turning process in order to prevent the rollover on the road with the
slope.

Most of the interaction methods between human and robot were performed based
on sensor data in indoor environments [16, 17]. However, in this paper, we propose a
human-following interaction method using the above-mentioned location recognition
and control method for outdoor unmanned security robot. It performs interactions that
follow specific humans for outdoor security applications. Consequently, the proposed
interaction method is expected to improve the service of the outdoor unmanned security
robot.

3 Localization for Outdoor Autonomous Navigation

3.1 Multi-layered Knowledge Augmented Based Strategy Map

A multi-layered knowledge augmented map database for extracting valid data from
multi-modal sensor is shown in Fig. 1. This map is based on a multi-layer including
semantic knowledge (semantic data, episodic data, semantic and cloud big data), cli-
mate, time, geographical features and driving strategies. The information is used to
enhance a dynamic navigation map. Figure 2 shows an example of fusion of valid
salient data based strategy map at the current location by query from the multi-layered
knowledge augmented DB map. This is a way to represent the most useful data at the
current position using a high-level knowledge database. Moreover, each data has a
level of robustness and reliability can be measured using it. Therefore, we can choice
the salient data which has strong and weak data in the given knowledge data (weather
condition, current time, season, temp, RH, etc.).

‘ ) Semantic Info.
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Time variant geographical Localization
feature features Strateg)

J

Fig. 1. Multi-layered knowledge augmented map database configuration.
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Fig. 2. An example of valid salient data based strategy map.
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Fig. 3. The overview of reliable localization method.

3.2 Reliable Localization Method

Reliable localization estimation is performed by extracting salient pointers and features
with the multi-layer prior knowledge-based information filters. This method is esti-
mated by fusion of non-model based Monte Carlo Localizer [18] and model-based EKF
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Localizer [19] in a reliability pose. Each localizer considers the knowledge-based
robust level to determine its uncertainty. The final pose estimation using this is a
reliable result, as shown in Fig. 3.

The proposed method employs an information filter for multi-modal sensor data,
the salient points and features can be extracted as,

X; = 1(x;, k) + Vi (1)

where X; is observed data, and V; denotes the noise vectors. The I(-) derived from the
information state vector Y;

ve21()7" 2)

Therefore, the information filter can be extracted a reliable position from the multi-
modal sensor data. Finally, we can estimate the accurate position for security robots.

3.3 Experimental Results for the Proposed Localization Method

In order to show the usefulness of the proposed method, a salient dominant vertical
structure was extracted from the heavy rain images. The Fig. 4 shows the results of
extracting valid salient features by using information filter. In Fig. 4(a), the image
shows a result in the good weather condition. Figure 4(b) is the start image in the heavy
rainy day. The third image is a result without filter, as shown in Fig. 4(c). Finally,
Fig. 4(d) shows the result image with the proposed information filter (e.g. blurring, lens
flare effect repression). Table 1 shows that the salient feature extraction rate improves.

Fig. 4. The results of information filter: (a) sunny day, (b) rainy day, (c) result without filter and
(d) result with filter.
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Table 1. The comparison of salient feature extraction rate for weather conditions.

Weather condition Sunny Day | Rainy Day Rainy Day
(without filter or proposed) | (without filter) (without filter) (proposed)
Salient feature extraction rate | 100% 9% 77%

Clear weather (b) Rain Filtering

Clear weather (d) Rain weather (e) Rain Filtering (f)
Fig. 5. The result of the proposed method: (a) sunny start location, (b) rainy start location

without filter, (c) rainy start location with filter, (d) sunny final location, (e) rainy final location,
and (f) rainy final location with filter. (white points are localization error)

Table 2. The comparison of 3D LiDAR feature error rate for weather conditions.

Weather condition (without | Sunny day Rainy day Rainy day
filter or proposed) (without filter) | (without filter) | (proposed)
Feature error rate 0% 20% 0.14%

Figure 5 shows the results of applying the proposed method to 3D LiDAR data in a
factitious rainy situation. Figure 5(a) and (d) show the start image and final image in a
sunny day, and there is no position error. In Fig. 5(b) and (e), the images show that
localization error is caused by the raindrops. Finally, the results of our method can
reduce the error and obtain a valid location, as shown in Fig. 5(c) and (f). Therefore,
the precise location in clear weather loses its accuracy in rainy conditions, but it can be
seen that the proposed method is capable of reliable localization by elimination feature
error, as shown in Table 2.
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4 Safety Path Generation for Human Computer Interaction

4.1 Robot Modeling for Overcoming Rollover

The rollover of the mobile robot is determined by the gravitational force in the ramp
and the centrifugal force generated in the turning process of the mobile robot [20].
Figure 1 shows a graphical representation of a turn at a ramp and the resulting force. At
this time, the case where the robot is rolled over is expressed by Eq. (3),

(3)

may 2
S w

Robot Horizontal Plane Robot Frontal Plane

Fig. 6. The robot model on a slope.

where v is velocity of robot, w is angular velocity of robot, 0 presents the angle of
slope. This equation represents that the rollover is dependent on v, w, and 6. Moreover,
in this equation, only the occurrence of rollover is known, and the risk of rollover is
unknown. Therefore, it is necessary to quantify the risk of rollover using ZMP (zero
moment point). This model is modified to introduce the ZMP concept, as shown in
Fig. 7.

Robot Safety ratio

Fig. 7. The robot ZMP model on a slope.
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The risk of rollover of a robot can be expressed numerically by the concept of
ZMP, and if ZMP model exists between the outer and inner wheels of the robot, it can
be said to be stable against rollover. Furthermore, this ZMP model was represented, as

Eq. 4),
p=h+ %h 4)

where p is ZMP, even if it is the same size, which the risk of rollover depends on the
robots should be normalized, as Eq. (5),

5= ’% (h9+ %h)' (5)

where stable factor s must be between 0 and 1 to be stable, and if it is negative, it can be
determined that rollover has been occurred. If the risk of rollover can be determined
numerically, a stable path can be created.

The algorithm used in this paper is DWA (dynamic window approach). DWA
calculates the cost according to each cost function in the area consisting of robot
velocity and angular velocity set, and determines the most suitable robot velocity and
angular velocity. This can be expressed by Eq. (6),

G(v,w) = a(a - heading(v,w) + - dist(v,w) +y - vel(v,w) + & - rollover(v,w,0)). (6)

Without Rolloverratio

— Angular Velocity
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Rollover Cost

With Rollove_r ratio
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Fig. 8. The experimental results in slope. (Colour figure online)
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Figure 8 shows the experimental result through the algorithm applying the rollover
model. The robot is turning in a slope, and the result is the same as the graph. In the
graph, Rollover cost (sky blue color) indicates the risk of rollover. The results show
that the value was 0.4 or higher when the risk of overturning was not taken into
consideration, and the risk of overturning was lowered to 0.25 when the risk of
overturning was considered.

5 Human-Robot Interaction by Following

In the security mission, the unmanned robot must perform the role of tracking or
guiding the human. In particular, a mission to track a specific human is initiated by a
tracking command received from an administrator, extracting a human region from an
image obtained from a camera mounted on the robot. To do this, we employ a method
for extracting human regions from the camera image and an interaction method for
performing mission based on tracking method [21].

5.1 Human-Robot Distance Measurement

In order to perform various missions in the outdoor environment, the robot is equipped
with a multimodal sensor module. The mission for extracting and tracking human
regions in various camera modules conducts by RGBD cameras. When a tracking
command is received from the control tower, the robot measures the distance of the
tracking area from the depth image. The area from the center (x;, y;) of the region to the
width and height of the region is divided as shown in Fig. 9(a) (green rectangle), and
the depth of the region is accumulated in units of 1 m, and then the final distance D is
calculated, as shown in Fig. 9(b) and Eq. (7).

1 N
D= ﬁZi:l di (7)

10 15

Distance (m) (b)

Fig. 9. An example of tracking: (a) distance calculation region, (b) histogram by distance.
(Colour figure online)
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[Human Detection results] [Human Designation] [Designed Human Following Start]

Fig. 10. Human following mission execution flow

5.2 Human-Following Interaction

The interaction of tracking and following the robot human was performed based on the
following scenarios. First, when the abnormal situation (extraction of the crowd density
based on the threshold) occurs in the fixed agent, the robot receives the abnormality
confirmation command from the control tower. Second, the robot moves to the fixed
agent where the abnormal situation occurs, identifies the abnormal situation, and
transmits the image to the control tower by distinguishing the person who is falling
from the person standing. Next, the robot receives the specific human tracking com-
mand, and then starts tracking the specified human, as shown in Fig. 10. Finally, the
robot carries out the below sequence to perform the human following interactions.
Human Following Interaction Sequence

1. Calculate the straight line distance between the robot and the center coordinates of
the human from (x;, y;) and D.
Calculate the relative angle between the robot and the human.
Tracking Flag is executed when straight line distance is over 1.5 m.
Left/Right Flag is executed when relative angle is more than 15°.
When the Tracking Flag is executed, a linear velocity tv" is generated in proportion
to the straight line distance to the object.
*tv = (tv_gain)*(z_distance) The tv_gain is experimentally determined to be 0.2.
6. When the Left/Right Flag is executed, the rotation speed rv" is generated in pro-
portion to the relative angle with respect to the object.
**rv = (rv_gain)*(d_angle) The rv_gain is experimentally determined to be 0.35.

A

Figure 11 shows a result image of human following interaction.
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(b)

(d)

Fig. 11. Human following interaction results: (a) control tower command, (b) drone view,
(c) side view, (d) robot view.

6 Conclusion and Future Work

Interactions between robots and humans are very important in outdoor unmanned
security missions. Among the interactions, the task of following the human is one of the
most active that the robot can perform on the control tower orders. In this paper, we
propose a localization method robust to outdoor weather environment and a control
method for safe driving in rough load for human following interaction. The results of
the localization showed the robustness to the weather, and the control method proved to
be safe path generation. Human robot interaction based on these methods showed
usefulness to perform a given task, and it was found that robot could actively respond.
Therefore, it is expected that the proposed methods can be applied to the security robot
more practical.

In the future, we will add a snow removal filter to secure application to most robots
by using autonomous navigation based on semantic information and driving techniques
for various locomotion. Moreover, we are also developing a human following inter-
action method for collaborative tracking of multiple robots.

Acknowledgements. This work was supported by the ICT R&D program of IITP, 2017-0-
00306. Development of multimodal sensor-based intelligent systems for outdoor surveillance
robots.



210

T. Uhm et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Ullah, M.M., Pronobis, A., Caputo, B., Luo, J., Jensfelt, P., Christensen, H.I.: Towards

robust place recognition for robot localization, In: International Conference on Robotics and
Automation, pp. 530-537. IEEE, USA (2008)

. Emidio, D., Francesco, M.: Mobile robot localization using the phase of passive UHF RFID

signals. IEEE Trans. Ind. Electro. 61(1), 365-376 (2014)

. Jesse, L., Michael, M., Sebastian, T.: Robotics: Science and System, 3rd edn. MIT,

Cambridge (2008)

. Jose, G., Eduardo, N., Stephan, B.: Localization and map building using laser range sensors

in outdoor applications. J. Robot. Syst. 17(10), 565-583 (2000)

. Martin, A., Sen, Z., Lhua, X.: Particle filter based outdoor robot localization using natural

features extracted from laser scanners. In: Proceedings of the International Conference on
Robotics & Automation, pp. 1493-1498. IEEE (2004)

. Eric, R., Maxime, L., Michel, D., Jean-Marc, L.: Monocular vision for mobile robot

localization and autonomous navigation. Int. J. Comput. Vision 74(3), 237-260 (2007)

. Motilal, A., Kurt, K.: Real-time localization in outdoor environments using stereo vision and

inexpensive GPS. In: Proceedings of the 18th International Conference on Pattern
Recognition ICPR 2006). IEEE (2006)

. Christian, W., Hashem, T., Andreas, M., Andreas, Z.: A hybrid approach for vision-based

outdoor robot localization using global and local image features. In: Proceedings of the 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA,
USA, pp. 1047-1052 (2007)

. Tayyab, N., Luciano, S., Wolfram, B., Cyrill, S.: Robust visual robot localization across

seasons using network flows. In: Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, Canada, pp. 2564-2570 (2014)

Christoffer, V., Achim, J.L.: SIFT, SURF & seasons: appearance-based Long-term
localization in outdoor environments. Robot. Auton. Syst. 58(2), 149-156 (2010)
Michael, M., Eleonora, V., Walter, S., David, C.: Vision-based simultaneous localization
and mapping in changing outdoor environments. J. Field Robot. 31(5), 780-802 (2014)
Naoki, A., Yasunari, K., Shogo, Y., Koichi, O.: Development of autonomous mobile robot
that can navigate in rainy situations. J. Robot. Mechatron. 28(4), 441-450 (2016)

Robert, B.: Safety, Comfort and Convenience Systems, 3rd edn. Wiley, Hoboken (2006)
Ackermann, J., Odenthal, D.: Advantages of active steering for vehicle dynamics control. In:
International Conference on Advances in Vehicle Control and Safety, France (1998)

Brad, S., Tore, H., Anders, R.: Vehicle dynamics control and controller allocation for
rollover prevention. In: Proceedings of International conference on control applications,
Munich, Germany (2006)

Donato, D.P., Annalisa, M., Grazia, C., Arcangelo, D.: An autonomous mobile robotic
system for surveillance of indoor environments. Int. J. Advan. Robot. Syst. 7(1), 19-26
(2010)

Jiale, G., Hong, W., Zhiguo, L., Naishi, F., Fo, H.: Research on human-robot interaction
security strategy of movement authorization for service robot based on people’s attention
monitoring. In: Proceedings of the International Conference on Intelligence and Safety for
Robotics, pp. 521-526. IEEE (2018)

Sebastian, T., Dieter, F., Wolfram, B., Frank, D.: Robust Monte Carlo localization for
mobile robots. J. Artif. Intell. 128(1-2), 99-141 (2001)

Ling, C., Huosheng, H., Klaus, M.: EKF based mobile robot localization. In: Proceeding of
International Conference on Emerging Security Technologies, Italy, pp. 149-154 (2012)



Multi-modal Sensor Based Localization and Control Method 211

20. Ji-Hyun, P., Tae-Young, U., Gi-Deok, B., Young-Ho, C.: Stability evaluation of outdoor

21.

unmanned security robot in terrain information. In: Proceedings of 18th International
Conference on Control, Automation and Systems, Korea, pp. 955-957 (2018)

Jongwon, C., et al.: Context-aware deep feature compression for high-speed visual tracking.
In: Proceedings of Conference on Computer Vision and Pattern Recognition, pp. 478-488.
IEEE (2018)



	Multi-modal Sensor Based Localization and Control Method for Human-Following Outdoor Security Mobile Robot
	Abstract
	1 Introduction
	2 Related Works
	3 Localization for Outdoor Autonomous Navigation
	3.1 Multi-layered Knowledge Augmented Based Strategy Map
	3.2 Reliable Localization Method
	3.3 Experimental Results for the Proposed Localization Method

	4 Safety Path Generation for Human Computer Interaction
	4.1 Robot Modeling for Overcoming Rollover

	5 Human-Robot Interaction by Following
	5.1 Human-Robot Distance Measurement
	5.2 Human-Following Interaction

	6 Conclusion and Future Work
	Acknowledgements
	References




