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Abstract. Models are predominantly developed using either quanti-
tative data (e.g., for structured equation models) or qualitative data
obtained through questionnaires designed by researchers (e.g., for fuzzy
cognitive maps). The wide availability of social media data and advances
in natural language processing raise the possibility of developing models
from qualitative data naturally produced by users. This is of particular
interest for public health surveillance and policymaking, as social media
provide the opinions of constituents. In this paper, we contrast a model
produced by social media with one produced via expert reports. We use
the same process to derive a model in each case, thus focusing our analy-
sis on the impact of source selection. We found that three expert reports
were sufficient to touch on more aspects of a complex problem (mea-
sured by the number of relationships) than several million tweets. Con-
sequently, developing a model exclusively from social media may lead
to oversimplifying a problem. This may be avoided by complementing
social media with expert reports. Alternatively, future research should
explore whether a much larger volume of tweets would be needed, which
also calls for improvements in scalable methods to transform qualitative
data into models.

Keywords: Conceptual modeling · Network analysis ·
Social web mining · Theme mining · Twitter mining

1 Introduction

Overweight and obesity is now a global phenomenon, found in economically
developed or developing countries (e.g., United States [1], European countries [2],
South Africa [3], China [4]) as well as in regions that experience a double bur-
den with the concomitant problem of malnutrition [5]. While there are ongoing
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debates on a possible plateau or even decrease of overweight and obesity in the
next generation, updated prevalence data for children suggests that severe obe-
sity is on the rise [6]. There is a plethora of interventions to prevent overweight
and obesity in both children [7] and adults [8], and an equally impressive number
of interventions for treatment [9,10]. Yet, individual struggles to achieve a health
weight over a sustained period of time. For example, a review of weight manage-
ment interventions found a weight loss over two years of 1.54 kg [11], which is
far from the 5% weight loss recommended to produce health benefits [12]. These
challenges have led to the realization that a simple solution would not suffice [13]:
the health system needs to cope with the complexity of obesity [14–16].

The notion of complexity covers multiple characteristics, such as the vast
individual differences (or heterogeneity) between weight-related factors [17,18],
or the nonlinear ways in which factors interact to form a system. The obesity
system has been the subject of numerous studies [19–22]. This system involves
factors from a broad array of sectors (e.g., built environment, eating disorders,
weight stigma [23,24]), with interactions within as well as across sectors. Accu-
rately modeling this system facilitates the development of integrated policies
building on cross-sectoral efforts [25,26]. If policies are developed separately
along traditional themes (e.g., public planning works on the environment, doc-
tors work on diseases and physiology, mental health experts work on psychology),
then we have a heavily fragmented approach to obesity (Fig. 1a). Efforts such
as the Foresight Obesity Map [20,27], or the Public Health Services Authority’s
series of maps [24,28,29] thus support the development of synergistic policies
working on integrated thematic clusters (Fig. 1b).

Given the importance of developing accurate models of the obesity system,
the modeling process often seeks to be comprehensive by including experts and
community members [19,24,30–34]. While many qualitative modeling processes
can produce models in the form of maps [35] (e.g., cognitive/concept mapping,
causal loop diagrams), they are generally conducted with a facilitator. Some
of the limitations (e.g., costs, trained facilitator) may be addressed through
emerging technologies [36]. However, one limitation remains: participants may
not openly express their beliefs (e.g., weight discrimination) when perceiving that
they may not be well received by a facilitator or the research team. In contrast,
the naturally occurring exchange of perspectives in social media provides an
unobtrusive approach to collecting beliefs on causes and consequences of obesity.
Mining social media may thus provide the views of community members [37–40].

While obtaining a model via social media can inform policymakers about
popular support for possible policies [41], the model may stand in stark contrast
with an expert-based model [34]. Identifying and reconciling these differences
is an important step to integrate social computing (and specifically social web
mining) with policy making. In this paper, we contrast how mining social media
instead of expert reports affects the validation of a large conceptual model of
obesity. This overarching goal is achieved through three consecutive steps. First,
we assemble a social media dataset (consisting of several million tweets) and sev-
eral expert reports (totaling hundred of pages). Second, we employ an innovative
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Fig. 1. The Public Health Services Authority’s series of maps [24,28,29] suggests that
typical categories lead to fragmented approaches (a) whereas themes specific to over-
weight and obesity can support more integrated options (b). These maps are conceptual
maps as they articulate how concepts (labeled circles) are related (curves).
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multi-step process to examine a conceptual model using both the social media
dataset and the expert reports. Finally, we contrast the structure of these models
using network methods.

The remainder of this paper is organized as follows. In Sect. 2, we provide
background information on the application of social web mining to health, and
on the use of conceptual models in obesity research. In Sect. 3, we briefly explain
our approach to validate a conceptual model from text. In Sect. 4, we perform
this inference on both expert reports and tweets, and we examine how the con-
ceptual models differ. Finally, these differences are discussed and contextualized
in Sect. 5.

2 Background

2.1 Social Web Mining for Health

The social media of interest in this paper is Twitter, in which users post and
interact through short messages known as ‘tweets’. Twitter has been used for
many studies on obesity and weight-related behaviors. For instance, Harris and
colleagues collected 1,110 tweets and read them to understand how childhood
obesity was discussed [42], while Lydecker et al. read 529 tweets to identify the
main themes related to fatness [43]. Similarly, So and colleagues analyzed the
common features of 120 tweets that were most frequently shared (i.e., retweets)
to understand what information individuals preferred to relay when it came to
obesity [37]. Reading the tweets to identify themes (i.e., content analysis) is a
typical task to understand the arguments that a specific population uses on a
subject of interest. Broader examples in health include the content analysis of
700 tweets [44] and 625 tweets [45] to examine the type of claims that health
professionals make online, or an examination of 8,934 tweets documenting cyber-
incivility among nurses and nursing students [46]. While such content analyses
make a valuable contribution to the body of knowledge on arguments in public
health1, they do not employ computational methods to automate (parts of) the
analysis and thus scale it to a larger dataset. Automation can be as simple as
counting how many times keywords of interest appear across tweets. Turner-
McGrievy and Beets used Hashtagify.me to automatically count keywords in
tens of thousands of tweets on weight loss, health, diet, and fitness. By dividing
the analysis across time periods, they were able to examine if there are times of
the year when individuals would be likely to consider weight loss, thus contribut-
ing to the timing of interventions [48]. Similarly, Sui et al. used the intensity of
topics on Twitter as part of an effort to identify the public interest in intensive
obesity treatment [49]. Such studies illustrate the important shift from having

1 While our focus is on analyzing the text provided by tweets, studies on Twitter
that are primarily human- rather than computer-based are not exclusively content
analyses. In the study of May and colleagues, the researchers created twitter accounts
for fictional obese and non-obese characters. They evaluated whether the weight
status mediated how other users would interact with them [47].
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humans read and code all tweets to relying on a machine to handle most of
a (much larger) dataset. The latter is the focus of data mining applied to the
‘social web’ (i.e. social web mining) which includes social networking sites such
as Twitter but also encompasses blogs and micro-blogging. As Twitter has been
the social platform of interest for many studies, the term of ‘Twitter mining’
has also emerged to refer specifically to the application of social web mining to
Twitter [50].

Social web mining started to garner attention in the late 2000’s to early
2010’s. The application of social web mining to health was discussed in 2010 by
Boulos et al. [51] and in 2011 by Paul and Dredze [52], showing how a broad
range of public health applications could benefit from mining Twitter. Studies
have been able to mine a staggering volume of data, going well over what a
team of humans could handle. For example, Eichstaedt et al. mapped 148 mil-
lion tweets to counties in an effort to relate language patterns to county-level
heart disease mortality [53]. At an even larger scale, Ediger and colleagues used a
Cray computer to approximate centrality within two hours on a dataset of inter-
actions between Twitter users comprising 1.47 billion edges [54]. While these
cases are noteworthy by their volume of data, studies employing social web min-
ing for obesity research typically involve millions of tweets2. Using 2.2 million
tweets, Chou and colleagues found that tweets (as well as Facebook posts) often
stigmatized individuals living with overweight and obesity [38]. In two studies
on obesity and weight-related factors, Karami analyzed 6 million [39] and 4.5
million tweets [40]. In a study of health-related statistics, Culotta mined 4.3
million tweets and found that the data was correlated with obesity [56]. Given
that obesity is driven by many factors (e.g., eating behaviors, physical activity
behaviors), there is also a wealth of large-scale studies on such factors, such as
the work of Abbar et al. on 503 million tweets regarding food [57]. Finally, the
value proposition of several new platforms is not the analysis of one particular
dataset, but rather the ongoing ability to monitor diet or physical activity. This
is particularly the case for the Lexicocalorimeter, which measures calories in
each US state via Twitter [58], and to a lesser extent for the National Neigh-
borhood Dataset of Zhang et al. which tracks diet and physical activity through
Twitter [59].

Several commentaries [60] and reviews [61–63] have explored whether this
abundance of studies has contributed to public health. Findings depend on what
specific aspect of health is concerned. Social media has yet to impact practices
in public health surveillance [62], but a review centered on chronic disease found
a benefit on clinical outcomes in almost half of the studies [61], and a review
specific to obesity highlighted a modest impact on weight [63].

2 There are several exceptions of studies employing smaller dataset. However, their
objectives may not be to identify themes (which necessitates a large volume of
tweets), thus they can accomplish their goals with a smaller dataset. A case in
point is the work of Tiggemann and colleagues, who used 3,289 tweets to exam-
ine interactions between Twitter communities that promoted either a ‘thin ideal’ or
health and fitness [55].
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2.2 Conceptual Models in Obesity Research

Although our work will involve the identification of themes, we have a very dif-
ferent endeavor from studies reviewed in the previous section, which focused on
identifying themes and their variations across time, places, or communities of
users. Our objective is to contrast conceptual models that have been automati-
cally extracted from tweets and expert reports. As evoked in the introduction,
models of complex systems such as obesity support several important policy-
making and analytical tasks. In this section, we briefly review the features that
models often seek to capture when it comes to complex health systems, and how
models are used in obesity research specifically. Penn detailed key characteris-
tics of complex health systems that justify the development of models (emphases
added):

“Many problems that society wishes to address in population health are
clearly problems of managing complex adaptive systems. They involve
making interventions in systems with multiple interacting causal connec-
tions, which span domains from physiological to economic. Additionally,
of course, the individuals whose health we ultimately wish to improve
adapt and change their behavior in response to medical or policy interven-
tions.” [64]

Several of these points were echoed by Silverman in justifying the use of
systems-based simulation for population health research [65]. Modeling changes
in the heterogeneous health behaviors of individuals often uses the simulation
technique of Agent-Based Modeling, and has been done in obesity research on
multiple occasions [66–70]. Such models can be very detailed and use widely
different architectures to capture the cognitive processes of the agents. Validat-
ing them using text is thus an arduous task. Modeling interacting causes across
domains has been achieved in obesity research through a variety of techniques.
System Dynamics (SD) allows to represent nonlinear interactions between weigh-
related factors over different time scales and at different strengths [71,72]. How-
ever, much like agent-based modeling, the great level of details supported by SD
makes it difficult to derive or validate such models from text. Fuzzy Cognitive
Maps (FCM) are a simpler alternative that eliminates the notion of time to focus
on the different strengths of causal relations [34,73–75]. Such models can be com-
pared [34], but validating them from text still requires a trained analyst [76]. An
even greater simplification is to use conceptual rather than simulation models.
Conceptual models cannot run scenarios or what-if questions, and cannot ‘gen-
erate’ numbers. Instead, their focus is to capture relevant factors and whether
they are connected [77]. Conceptual models can be compared [78] and validated
using text as shown in our previous work [77].

There are several types of conceptual models [35]. We recently detailed the
differences between causal maps, mind maps, and concept maps [36]. In short,
this paper focuses on concept maps (Fig. 1), which are undirected networks repre-
senting concepts as nodes and relationships as edges. Similarly to the other forms
of conceptual models aforementioned, a concept map supports policy-oriented
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Fig. 2. Our process in seven steps to validate a conceptual model using textual data.
The high-definition figure can be zoomed in for details.

tasks such as identifying clusters [27] (e.g., to coordinate actors across domains
on one problem such as food) or finding feedback loops [24,28,29] (e.g., to use
as leverage points in an intervention).

3 Validating a Conceptual Model from Text

The process starts with a conceptual model that we seek to validate, and the
text corpus is used to validate. Intuitively, our process uses the concepts’ names
to find relevant parts of the corpus and find which concepts tend to co-occur.
Technical aspects include handling variations in language (as we cannot rigidly
assume that a concept’s name will appear as such), identifying themes, and
mapping themes from the corpus back to concepts in the conceptual model. Our
process uses seven steps, illustrated on a theoretical example in Fig. 2. The first
two steps are performed for each concept node:

(1.a) We replace all concepts’ names and words from the corpus with their base
form (i.e., lemma). This is accomplished through lemmatization, which
uses a morphological analysis to remove inflectional endings. This step
ensures that minor variations of a term are all mapped to the same one
(e.g., ‘flooding’ and ‘floods’ are all mapped to ‘flood’).
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(1.b) Each lemmatized concept names is expanded with derivationally related
forms. For instance, instead of only searching for ‘flood’ in the corpus, we
will also accept words such as ‘deluge’.

(2) For each concept (i.e., the expanded lemma), we retrieve all parts of the
corpus that contain it. For instance, the concept ‘flooding’ will lead to
retrieving all tweets include the lemmas ‘flood’ or ‘deluge’.

Upon completion of step 2, we have related a portion of the corpus to each
concept node. We then find the themes in each portion of the corpus using three
parameters:

(3) We apply the Latent Dirichlet Accuracy (LDA) model to find prevalent
themes. The two parameters for this step are the number of themes and
number of words per theme.

(4) We gather words across themes into a single set of words. This set is cleaned
by removing words that are already present in the set of derivationally
related form of the node. In other words, we only look for concepts that
the node could be associated with but not equivalent to.

(5) Since concepts’ names are entities, a concept can only be associated with an
entity. Consequently, we remove all non-entities from the words.

(6) At this step, we have a set of entities that a concept node could be associated
with. However, some of the entities may be noise rather than meaningful
associations. We thus sort the entities by tf-idf (term-frequency inverse-
document-frequency) computed over the set of tweets in which each word
appears. We use a threshold parameter to identify which entities have a
sufficient tf-idf to be selected.

Upon completion of step 2, we found entities that a concept node could be
associated with. The final step goes back to the conceptual model to see if the
association exists:

(7) For each node, we compare its associated entities with its connected nodes
and derivationally related forms. If there is a match, then the text corpus has
confirmed an association between the two concepts. If no match is found, the
association is not confirmed. Note that associated entities that do not match
any connected nodes suggest additional connections, which is a different from
validation as we seek to confirm existing connections.

This process is also depicted in Fig. 3, listing the libraries that can be used
for each step. The specific versions of the libraries used in our experiments are
included in Sect. 4.
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Fig. 3. Alternative view of our process, including libraries and APIs.

4 Comparing Conceptual Models from
Twitter and Expert Reports

4.1 Datasets and Pre-processing

The conceptual model that we seek to validate was developed with the Provincial
Health Services Authority (PHSA) of British Columbia to explore the interrela-
tionships involved in obesity and well-being. The model was presented in 2015 at
the Canadian Obesity Summit [24] and tested with policy makers in 2016 [29].
The model is now part of the ActionableSystems tool [28] can be downloaded
at https://osf.io/7ztwu/ within ‘Sample maps’ (file Drasic et al (edges).csv).
The model consists of 98 nodes and 177 edges. From here on, we will refer to it
as ‘the PHSA map’.

To validate the PHSA map, we used two datasets. Our first dataset (‘the
twitter dataset’) consists of 6,633,625 tweets in the English language on obesity
collected from Oct. 2, 2018 to Oct. 4, 2018. The number of tweets was chosen to
be in line with comparable studies at the interface of natural language processing
and obesity research [38–40]. The keywords to collect the tweets included each
of the 98 concept names in the PHSA map as well as their synonyms automat-
ically retrieved through WordNet. For instance, we used not only ‘obesity’ but
also words such as ‘fatness’, ‘corpulent’, ‘embonpoint’ and ‘fleshiness’. Similarly,
physical activity was expanded to include many forms such as calisthenics, iso-
metrics, jogging, jump rope, and so on. The rationale is that the map contains
abstract concepts, but individuals may speak of specific instances or use a vari-

https://osf.io/7ztwu/
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ety of words to describe the same abstraction. After collecting a large number
of tweets, natural language applications require extensive pre-processing. The
impact of each options (and their interactions) on results obtained from Twitter
has been extensively described when performing sentiment analysis [79–81] and
in more generic tasks such as classification [82]. Some of these options are summa-
rized in Fig. 4 and include the removal of parts deemed unnecessary for analysis
(e.g., hashtags, URLs, numbers, non English words) or the mapping of data into
forms that can be more conveniently processed (e.g., expanding acronyms and
abbreviations, replacing emojis, spell checking). The pre-processing options used
for our dataset are depicted in Fig. 5. These options are chosen specifically for
our research question: for instance, we remove stop words because they cannot
be meaningful concept names in a model, but other analyses (e.g., attributing
tweets to specific writers) may have kept such words. The order of the steps also
matters: for instance, we cannot perform part-of-speech tagging and lemmati-
zation (step 5) before ensuring that all the words have been corrected (step 3).
After pre-processing, our dataset included 1,791,333 tweets.

Fig. 4. Typical pre-processing techniques applied to tweets.

Fig. 5. Pre-processing techniques applied to our tweeter dataset in a specific order. We
used a Spell Checker library in step 3, the Natural Language Toolkit (NLTK) for steps
1–4, and the Stanford coreNLP library for step 5.

The second dataset is formed of three reports on obesity: the 2010 report
from the white house task force on childhood obesity [83], the 2013 report to the
Provincial Health Services Authority [84] and its 2015 update (whose findings
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Fig. 6. Average number of edges confirmed (out of 177 in the PHSA map) for each
combination of parameter values over ten experiments.
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are published in [24]). We combined the three reports with the PyPDF2 library,
leading to 310 pages, and we kept 247 pages after removing those that were
either blank or only contained images. Pages were then transformed into raw
text using the pdftotext library and divded into 4,302 sentences using the full
point (‘.’). Pre-processing was finally applied, using the same script as for tweets
while noting that several options such as removing emojis would not be triggered.
The resulting dataset had 3447 sentences.

4.2 Validating the Model for Each Dataset

The methods introduced in Sect. 3 are implemented in Python, relying on
libraries as listed in Table 1. While our implementation was able to cope with
millions of tweets, we note that a larger volume of data may also require a
distributed database architecture and an efficient search engine such as Elastic-
search [85].

Table 1. Libraries used in each step (Sect. 3) of our experiments.

Step Library Used for

NetworkX Conceptual model (accessing
node labels and edges)

1a Stanford coreNLP Lemmatization

1b WordNet Derivationally related forms

3 [86] Parallel, multi-core Latent
Dirichlet Allocation (LDA)
model for big data

5 Google Cloud Natural
language API

Entity identification

6 scikit-learn (CountVectorizer,
TfidfTransformer)

Sorting words by tf-idf

Our approach has three parameters: number of themes, number of words
per theme, and tf-idf threshold to eliminate noise. Hyperparameter optimization
was thus necessary to use each dataset most efficiently, and fairly compare their
potential in validating a model. To optimize performances with expert reports,
we performed a grid search by varying the number of topics and words per
topic from 5 to 50 in increments of 5, and we varied the tf-idf from 2 to 9 by
increments of 1. This resulted in 800 combinations of parameter values. As there
is randomness in the LDA model, we performed ten experiments per combination
of parameter values, leading to a total of 8,000 experiments. At most, our process
validated an average of 136.5 edges (77.11% of the map) using 50 topics, 50 words
per topic, and a td-idf threshold of 8 (Fig. 6).

A grid search was also performed on the Twitter dataset. However, our cur-
rent implementation takes approximately five days to compute the results for
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one combination of parameter values (single experiment), using a server-grade
workstation (Dual Xeon Gold 6140). Given this limitation, we used single exper-
iments and a coarser grid. At most, our process validated 101 edges (57.06%)
using 50 topics, 50 words per topic, and a tf-idf threshold of 9.

5 Discussion

A focus group with a few participants may only discuss some of the interrelation-
ships at work in overweight and obesity, and may avoid sharing opinions that
are potentially disapproved by others. In contrast, social media such as Twitter
provide access to a massive number of participants who can use conditions of
anonymity to share opinions more freely. Social web mining applied to Twiter
thus comes with the potential to explore many interrelationships in an unob-
trusive fashion. In particular, crowdsourcing over Twitter holds the promise of
easily building large conceptual models, under the assumption that at least some
groups of users will touch on each part of the model. Our study questions this
potential and promises by analyzing whether millions of tweets are more useful
to develop a conceptual model of obesity than a handful of reports.

Although conceptual models can be automatically compared [78], developing
a model from each dataset (tweets vs. reports) and comparing them would not be
able to tell us which one is ‘better’. Our study question thus requires a referential.
We use a previously developed conceptual model of obesity and well-being to
serve as referential, and we establish how much of this model would have been
obtained if we used either tweets or reports. In other words, we measured the
percentage of the model’s structure that is confirmed with each dataset.

While both datasets were able to cover over half of the model, we note that it
only took three expert reports compared to using millions of tweets. In addition,
despite the abundance of tweets, the three expert reports touched on more rela-
tionships. Within our application context, these results suggest that an exclu-
sive reliance on social media may result in oversimplifying a complex system,
thus limiting the potential to automatically develop models using such a source.
We note that a comprehensive analysis across subjects and using a variety of
maps would be needed to assess whether our results produced on one model (the
Provincial Health Services Authority map) and one application subject (obesity)
can be generalized to other models and subjects.

There are several limitations to this study, which we intend to address in our
future research. First, one of the premises of big data research is that a large
volume may compensate for many imperfections in the individual data points.
Although we used a similar number of tweets to other studies at the interface
of natural language processing and obesity research [38–40], it is possible that
some of the interrelationships of the model we seek to validate are rare and
thus only detectable in even larger datasets. Repeating this study with signifi-
cantly larger datasets could elucidate this question. However, we then run into
the second issue: our process to validate a causal map against textual data is
very computational intensive. The search space to optimize the result is defined
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by three parameters which involve randomness, thus requiring several experi-
ments for each combination of parameter values. On a server-grade workstation,
a single combination with a CPU-based implementation requires in the order of
days. Optimizing results and using larger datasets will thus require implementa-
tions that scale, with a particularly promising option consisting of a GPU-based
implementation. Alternatively, we may reduce the search space if we can better
characterize the impact that parameters generally have on the results and then
devise more computational efficient processes. For instance, the tf-idf threshold
plays an essential role in driving performances (Fig. 6) but may be replaced by
additional pre-processing steps preventing the inclusion of noise, such as classi-
fiers removing unwanted documents [87].

6 Conclusion

Both social media data and expert reports may be used to take into account
popular perspectives and expert opinions when creating large conceptual models.
In the case of obesity, we found that three expert reports discussed 77% of all
possibilities while millions of tweets on obesity and its cognates covered fewer
interrelationships. Creating models using social media only may thus result in
an oversimplification of complex problems.
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