
Design of a Novel Web Utility that Provides
Multi-lingual Word Definitions for Child

E-Book Applications

Deeksha Adiani1, Daniel Lewis1, Vanessa Serao1, Kevin Barrett1,
Amelia Bennett1, Derick Hambly1, Martina Shenoda1, Samuel West1,
Garrett Coulter1, Sultan Shagal1, Toheeb Biala1, Medha Sarkar1,

Joshua Wade2(&), and Nilanjan Sarkar2

1 Computer Science, Middle Tennessee State University,
Murfreesboro, TN 37132, USA

2 Adaptive Technology Consulting, LLC, Murfreesboro, TN 37127, USA
josh@innovateatc.com

Abstract. The use of mobile computing devices to gain access to the Internet
and to interact with a range of applications has become ubiquitous, impacting on
education, entertainment, healthcare, and many other domains. Engaging
applications such as e-books used by children and their parents or educators
have also become increasingly common, especially in the context of childhood
education. An e-book that presents the reader with challenging words has the
potential to improve and expand vocabulary. However, the seamless combina-
tion of methods for definition-retrieval, word sense disambiguation, and multi-
lingual support are not currently available in a simple tool for the specific
application of children’s e-book reading. In this work, we present WordWeaver,
an open-source tool for use in child reading scenarios where context-sensitive,
multi-lingual definitions of unfamiliar words are determined and provided to the
user via a simple web API. Our proof-of-concept design includes support for
English, Spanish, and French language definitions. Preliminary results support
the feasibility of WordWeaver including excellent levels of usability based on
the System Usability Scale (i.e., mean SUS = 87.17). Future work will include
extending support to include additional languages, definition selection tailored
to individual reading skill level, and the ability to address more complicated
cases of word and part-of-speech disambiguation.

Keywords: Vocabulary acquisition � Dictionary � E-book � Multi-lingual �
Context-sensitive

1 Introduction

For children, an essential component of literacy development is vocabulary acquisition.
Evidence shows that the clarification of word meanings during reading training pro-
duces greater gains in vocabulary than training that does not provide this information

© Springer Nature Switzerland AG 2019
P. Zaphiris and A. Ioannou (Eds.): HCII 2019, LNCS 11591, pp. 3–12, 2019.
https://doi.org/10.1007/978-3-030-21817-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21817-1_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21817-1_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21817-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-21817-1_1

[1, 2]. E-book use by children and their parents and/or educators has become
increasingly common [3, 4] and may offer a unique opportunity to present readers with
challenging words that have the capacity to improve and expand vocabulary. A tool
that provides context-sensitive definitions for unfamiliar words would therefore be a
valuable component of an e-book application. Furthermore, support for a wide variety
of languages would facilitate broader adoption and impact.

In this work, we present WordWeaver, an open-source tool for use in child reading
scenarios where context-sensitive, multi-lingual definitions of unfamiliar words are
provided via a simple web protocol [5]. Our proof-of-concept design currently includes
support for English, Spanish, and French language definitions, but support for other
languages, including Arabic, is part of ongoing work. The proposed multi-lingual
dictionary utility is a web-based resource for an e-book application that provides
definitions for words according to both language and context. Unlike existing single-
language dictionary APIs, WordWeaver returns definitions tailored to the individual’s
preferred language, resulting in a more individualized e-book reading experience.
While resources like Webster’s Dictionary API are robust, they do not offer a one-stop
solution for word definition-retrieval, language translation, word sense disambiguation,
and other natural language processing functions. By unifying such functionality in a
single application, we believe that WordWeaver can serve to fill this gap and offer a
useful means by which to perform such functions, and, ultimately, to facilitate learning.

2 System Design

Given a specified word and surrounding text from which contextual information can be
inferred, WordWeaver, the novel utility, provides context-sensitive definitions to users
in a variety of languages. For proof-of-concept demonstration, the frontend consisted of
a simple application supporting word selection via double-click or -tap and was
implemented using the Unity game engine (www.unity3d.com). Client queries (i.e.,
requests for definition) are sent to a server application via HTTP POST requests
consisting of JavaScript Object Notation (JSON)-serialized objects, and the server
responds with a structured JSON object containing query results. The backend consists
of a Python application and utilizes a range of powerful resources including Natural
Language Toolkit (NLTK, version 3.3) [6], spaCy version 2.0 [7], Glosbe API [8], and
Pywsd [9] for context interpretation and translation functionalities.

2.1 Front End

The user interface was created using built-in User Interface (UI) tools and data
structures in the Unity game engine (version 2018.2) as well as TextMesh Pro [10], a
text-manipulation package supported by the game engine. All frontend scripting was
implemented in C♯. The proof-of-concept tool is composed of a simple story and
supports features such as text-selection, text-highlighting, requests for definitions, and
definition display (Fig. 1). While reading a story in the e-book, the reader may
encounter an unfamiliar word. The text-highlighting feature implemented using Text-
Mesh Pro allows the user to select the unfamiliar word by double-clicking on it—or

4 D. Adiani et al.

http://www.unity3d.com

tapping in the case of mobile device use—thus initiating a new definition request. The
selected word, the context in which the word is found, and the active story language are
transmitted to the server via Transmission Control Protocol (TCP) as a JSON-serialized
object, such as that shown in the following example:

{
“word”:“quick”,
“context”:“The quick brown fox jumped over the lazy
dog.”,
“language”:“English”

}

The server, after processing this information, returns the most appropriate definition of
the word, which can finally be presented to the user by the client in the manner
appropriate to the particular client application.

2.2 Backend

The backend of the tool is written entirely in Python (version 3.6) and consists of a
simple Flask server [11]. A word sense disambiguation module returns a context-
appropriate definition based on information contained in each JSON object. The JSON
object includes a language tag, a word to be defined, and a context in which the word
appears. The word is defined with respect to the context. In WordWeaver, this is
accomplished by performing word sense disambiguation based on the Lesk algorithm
[12]. This is accomplished through utilization of information from Wordnet [13] which
is a large lexical database of English words. Before this step occurs, WordWeaver first

Fig. 1. Simple UI developed in unity to test communication with WordWeaver.

Design of a Novel Web Utility that Provides Multi-lingual Word Definitions 5

checks whether the word is a stop word (high-frequency words like the, to and also;
[14]). Because our domain is specific to children’s literature, it is likely that stop words
will be used in the most common sense, and are, moreover, largely ignored by Wordnet
(i.e., they are not defined). We simply return the most common definition found in a
separate dictionary if a request is for a stop word.

Currently, if a request is not in English, then a translation to English must be
performed before the disambiguation step can be executed. This translation is per-
formed through a call to the Glosbe API [8]. Next, word sense disambiguation happens
in two main steps. First, two versions of the lesk algorithm from the Pywsd module are
used [9]; Pywsd shares an implementation and author with the built in Wordnet version
of the Lesk algorithms. A simple Lesk (shown in Fig. 2) and a cosine Lesk are
performed with the given context (i.e., the surrounding text), the word, and the part of
speech. The results from these two algorithms are compared by checking which def-
inition has the highest percentage of overlap with the context. Overlap is defined as the
set of words in common with the context. After this step is done, some checks are made
to ensure that the result is reasonable before returning result to the client. For instance,
given the domain of children’s literature, we can disregard rare and archaic uses of a
word as uses of these words imply a higher reading level. A simple check is made to
ensure that the definition returned is in the top four most common definitions for the
given word. If an error occurs at any point during this process, an error message is
returned and displayed to the user. WordWeaver’s step-by-step process is detailed in
Appendix A.

Fig. 2. A visualization of a simple lesk algorithm. In this instance definition A would be chosen.

6 D. Adiani et al.

3 Results and Discussion

The preliminary usability of WordWeaver was gauged using the System Usability Scale
(SUS), which is a widely used measure of the perceived ease of use of digital systems
[15]. N = 15 volunteers in an undergraduate program in the lead author’s university
interacted with the frontend application. Subjects were asked to progress through an
example story and to select words of their choosing for definition by the novel tool. The
mean cumulative SUS reported by participants was 87.17 (SD = 13.46), which is
interpreted as “excellent” usability based on benchmarks reported in the literature [16].
Detailed participant responses on the SUS are given in Table 1. In addition, Fig. 3
shows the results of WordWeaver for an example input word (“quick”) and context (“the
quick brown fox jumped over the lazy dog”) in English, Spanish, and French. Cumu-
latively, our preliminary results indicate that WordWeaver is capable of reliably
reporting user-requested definitions and that client-server interactions perform as
expected.

Table 1. Interpretation of SUS cumulative scores.

Adjective SUS cutoff % Respondents above cutoff

Worst Imaginable 12.5 0%
Awful 20.3 0%
Poor 35.7 0%
OK 50.9 13%
Good 71.4 20%
Excellent 85.5 20%
Best Imaginable 90 47%

SUS = System Usability Scale [15]. See [16] for interpretation
of scores.

Fig. 3. WordWeaver output for the word “quick” and context (“the quick brown fox jumped
over the lazy dog”) in English, Spanish, and French.

Design of a Novel Web Utility that Provides Multi-lingual Word Definitions 7

4 Conclusion

There are several opportunities for future development and improvement of Word-
Weaver. First, the use of the Glosbe API to translate non-English requests into English
has some key limitations. The most important is that many words simply do not translate
directly into another single word, and machine translation is often incorrect—the reader
has likely experienced this when interacting with commercial tools such as Siri, Amazon
Alexa, or Google Assistant. The versions of the Lesk algorithm we used rely on
Wordnet, and not every language’s version of Wordnet currently provides this func-
tionality. In the future, we hope to rectify this and fully realize the design equally across
languages rather than relying on an English translation, or perhaps by using other
methods such as cross referencing among the translated languages to disambiguate word
meaning. In the future, we hope to additionally provide definitions at the optimal reading
level of the child, but because the Lesk algorithm requires a definition and example
sentences in which the word is used, a simple children’s dictionary alone may not
provide the algorithm with enough information to permit such fine-tuning at this time.
Also, the availability of children’s dictionaries and example sentences is quite limited.
Another area of future work involves distinguishing proper nouns such as character
names from their literal meanings. For instance, if a character is named “Mrs. Red” and
the user taps on the word “Red”, then a definition should not necessarily be returned by
WordWeaver. One way to address cases such as these may be to have the client
application maintain a list of keywords that are unique to a particular story. Then, when
the user attempts to request a definition for an identified keyword from WordWeaver,
the client-side application could preempt the request and returns the appropriate defi-
nition locally. Such changes as those described are in fact part of ongoing development
with WordWeaver.

Appendix

Appendix A. Detailed Procedures for Returning a Definition
in WordWeaver

See Fig. 4.

8 D. Adiani et al.

Fig. 4. WordWeaver’s procedures for returning a context-sensitive and multi-lingual definition.

Design of a Novel Web Utility that Provides Multi-lingual Word Definitions 9

Appendix B. Instructions for Setting up and Utilizing the Open-
Source Project WordWeaver

In order to communicate with WordWeaver’s server-side application, clients must
submit queries via HTTP POST requests. A complete example is given in the code
listing below (C♯ console application), which utilizes the Json.NET implementation of
JSON (i.e., Newtonsoft.Json.dll) (Fig. 4).

using System;
using System.Net;
using System.Collections.Generic;
using System.Text;
using Newtonsoft.Json;

public static class TCP
{
public static void Main() {
string serverName = "https://0.0.0.0/"; //server name
WebClient webClient = new WebClient();
byte[] resByte;
byte[] reqByte;

var data = new Dictionary<string, string> {
{"word", "quick"},

{"context", "The quick brown fox jumped over
the lazy dog."},

{"language", "English"}
};

webClient.Headers["content-type"]="application/json";
reqByte = Encoding.Default.GetBytes(

JsonConvert.SerializeObject(
data,Formatting.Indented);

resByte = webClient.UploadData(serverName +
"get_def","post",reqByte);

Console.WriteLine(Encoding.Default.GetString(
resByte));

webClient.Dispose();
 }
}

WordWeaver was designed to be easily deployed as a lightweight server applica-
tion. WordWeaver can be setup on either a dedicated hosting service or locally using a

10 D. Adiani et al.

service such as ngrok (www.ngrok.com). In order to launch the server, users must
execute the file Server.py (see code listing below; source code available at [5]):

References

1. Elley, W.B.: Vocabulary acquisition from listening to stories. Read. Res. Q. 24, 174–187
(1989). https://doi.org/10.2307/747863

2. Biemiller, A., Boote, C.: An effective method for building meaning vocabulary in primary
grades. J. Educ. Psychol. 98(1), 44 (2006). https://doi.org/10.1037/0022-0663.98.1.44

3. Yuill, N., Martin, A.F.: Curling up with a good e-book: mother-child shared story reading on
screen or paper affects embodied interaction and warmth. Front. Psychol. 7, 1951 (2016).
https://doi.org/10.3389/fpsyg.2016.01951

4. Baron, N.S.: Words Onscreen: The Fate of Reading in a Digital World. Oxford University
Press, Oxford (2015)

5. WordWeaver (2018). https://github.com/danielyoureelewis/dictionary_group. Accessed 30
Jan 2019

6. Bird, S., Loper, E.: NLTK: the natural language toolkit. In: Proceedings of the ACL 2004 on
Interactive Poster and Demonstration Sessions, p. 31 (2004). https://doi.org/10.3115/
1219044.1219075

7. spaCy. https://spacy.io/usage/v2. Accessed 21 Jan 2019
8. Glosbe - the multilingual online dictionary. https://glosbe.com/. Accessed 30 Jan 2019
9. Tan, L.: Pywsd: python implementations of word sense disambiguation (WSD) technologies

(2014)
10. TextMesh Pro 1.2.2 (2018). https://assetstore.unity.com/packages/essentials/beta-projects/

textmesh-pro-84126. Accessed 30 Jan 2019
11. Ronacher, A.: Welcome—flask (a python microframework) (2010). https://flask.pocoo.org/.

Accessed 30 Jan 2019
12. Banerjee, S., Pedersen, T.: An adapted lesk algorithm for word sense disambiguation using

wordnet. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 136–145. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45715-1_11

from flask import Flask, request, jsonify
import json
from wsd import wsddef
app = Flask(__name__)

@app.route('/get_def', methods=['POST'])
def get_definition():

definition = wsddef.get_def(request.json)
return jsonify(definition)

if __name__ == '__main__':
app.run(host='0.0.0.0', port=4321, debug=True)

Design of a Novel Web Utility that Provides Multi-lingual Word Definitions 11

http://www.ngrok.com
http://dx.doi.org/10.2307/747863
http://dx.doi.org/10.1037/0022-0663.98.1.44
http://dx.doi.org/10.3389/fpsyg.2016.01951
https://github.com/danielyoureelewis/dictionary_group
http://dx.doi.org/10.3115/1219044.1219075
http://dx.doi.org/10.3115/1219044.1219075
https://spacy.io/usage/v2
https://glosbe.com/
https://assetstore.unity.com/packages/essentials/beta-projects/textmesh-pro-84126
https://assetstore.unity.com/packages/essentials/beta-projects/textmesh-pro-84126
https://flask.pocoo.org/
http://dx.doi.org/10.1007/3-540-45715-1_11

13. Miller, G.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998). https://
doi.org/10.1002/9781405198431.wbeal1285

14. Bird, S., Klein, E., Loper, E.: Natural language processing with python (2014). https://www.
nltk.org/book/ch02.html#stopwords_index_term. Accessed 30 Jan 2019

15. Brooke, J.: SUS-a quick and dirty usability scale. Usability Eval. Ind. 189(194), 4–7 (1996).
https://doi.org/10.1.1.232.5526

16. Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system usability scale.
Intl. J. Hum.-Comput. Interact. 24(6), 574–594 (2008). https://doi.org/10.1080/
10447310802205776

12 D. Adiani et al.

http://dx.doi.org/10.1002/9781405198431.wbeal1285
http://dx.doi.org/10.1002/9781405198431.wbeal1285
https://www.nltk.org/book/ch02.html#stopwords_index_term
https://www.nltk.org/book/ch02.html#stopwords_index_term
http://dx.doi.org/10.1.1.232.5526
http://dx.doi.org/10.1080/10447310802205776
http://dx.doi.org/10.1080/10447310802205776

	Design of a Novel Web Utility that Provides Multi-lingual Word Definitions for Child E-Book Applications
	Abstract
	1 Introduction
	2 System Design
	2.1 Front End
	2.2 Backend

	3 Results and Discussion
	4 Conclusion
	Appendix
	Appendix A. Detailed Procedures for Returning a Definition in WordWeaver
	Appendix B. Instructions for Setting up and Utilizing the Open-Source Project WordWeaver
	References

