®

Check for
updates

Semantically Sound Analysis of Content
Security Policies

Stefano Calzavara®™), Alvise Rabitti, and Michele Bugliesi

Universita Ca’ Foscari Venezia, Venice, [taly
{stefano.calzavara,alvise.rabitti,michele.bugliesi}@unive.it

Abstract. Content Security Policy (CSP) is a W3C standard designed
to prevent and mitigate the impact of content injection vulnerabilities
on websites. CSP is supported by all major web browsers and routinely
used by thousands of web developers in the world to improve the security
of their web applications. In this paper we review our formalization of
a core fragment of CSP, which we fruitfully employed to reason on the
security import of flawed CSP implementations and deployments, as well
as to perform a longitudinal analysis of how existing policies are evolving
as the result of maintenance operations.

Keywords: Content Security Policy - Formal methods + Web security

1 Introduction

Content injection is arguably one of the most severe threats on the Web. In a
content injection attack, a malicious user manages to craft an attack payload,
typically a script, which gets injected into a benign web application and becomes
indistinguishable from legitimate web contents, thus inheriting their privileges.
This way, the attack payload can steal confidential information from the web
application or redress the user interface to fool the victim into unknowingly
performing security-sensitive operations.

Content injection can be prevented by means of safe coding practices [4], yet
it is now widely acknowledged that this is difficult in practice and thus secu-
rity practitioners rely on a defense-in-depth approach against content injection,
where protection is achieved by implementing mitigation at several different lay-
ers. One such layer is Content Security Policy (CSP), which is now supported
by all major web browsers and routinely used by thousands of web developers in
the world to improve the security of their web applications. CSP has undergone
several authoritative studies as of now [2,5,6], with our article Semantics-Based
Analysis of Content Security Policy Deployment being the latest research work
on the topic [3]. The distinctive trait of our approach with respect to previous
studies is the use of formal methods techniques to tackle a rigorous investiga-
tion of CSP. Specifically, we defined the denotational semantics of a significant

© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

J. A. Pérez and N. Yoshida (Eds.): FORTE 2019, LNCS 11535, pp. 293-297, 2019.
https://doi.org/10.1007/978-3-030-21759-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21759-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-21759-4_18

294 S. Calzavara et al.

fragment of CSP, called CoreCSP, which we fruitfully employed to reason on the
security import of flawed CSP implementations and deployments, as well as to
perform a longitudinal analysis of how existing policies are evolving as the result
of maintenance operations.

2 Background on Content Security Policy

A content security policy is a list of directives, restricting content inclusion for
web pages by means of a white-listing mechanism. Directives bind content types
to lists of sources from which a CSP-protected web page is allowed to include
resources of that type. For instance, the directive img-src https://a.com spec-
ifies that the web page is allowed to load images just from the host a.com using
the HTTPS protocol. CSP is a client-server defense mechanism: content security
policies are sent from the server to the browser by means of HT'TP headers or
<meta> elements in HTML pages, while their enforcement is performed at the
browser side on a per-page basis. If a content security policy does not include an
explicit directive for a given content type, the default-src directive is applied
as a fallback. Allowed sources for content inclusion are defined using source
expressions, a sort of regular expressions used to express sets of web origins in a
convenient way. Content inclusion from a given URL is only allowed if the URL
matches any of the source expressions specified for the appropriate content type.
To exemplify how CSP works, we show a very simple policy below:

script-src https://www.unive.it;
img-src https://*.unive.it;
default-src https://*

The policy above states that scripts can only be loaded from www.unive.it,
images can be loaded from any sub-domain of unive.it and all the other con-
tents, e.g., style-sheets, can be loaded from everywhere; in all cases, the HTTPS
protocol must be used. Moreover, the policy automatically disables the execu-
tion of inline scripts, which are the most dangerous threats for content injection.
This default restriction can be voided by including the ‘unsafe-inline’ source
expression in the script-src directive.

3 Research Summary

We used our CoreCSP model of the CSP semantics to:

1. reveal a wrong implementation of the CSP specification in Microsoft Edge,
which was deemed dangerous and fixed after our report (CVE-2017-11863).
Moreover, we identified a subtle quirk in all browser implementations, which
deserved a careful security analysis using our semantics to be shown secure;

2. automatically analyze the security of existing content security policies against
script injection. Our analysis showed that 91.6% of the existing policies are
trivially bypassable and provide no protection at all;

Semantically Sound Analysis of Content Security Policies 295

3. automatically track which changes to deployed content security policies have
been performed in the name of security (more restrictive policies), to pre-
serve compatibility (more permissive policies) and for maintenance reasons
(unrelated policies). Our analysis showed that less than 3% of policies changes
were done to improve security, which confirms that CSP is failing as a security
mechanism against content injection.

In the next section, we provide an overview of our technical treatment.

4 Technical Overview

4.1 Syntax and Semantics of CoreCSP

We let str range over a denumerable set of strings. The syntax of policies is
shown in Table 1, where we use dots (...) to denote additional omitted elements
of a syntactic category. A policy p is either a single list of directives dy,...,d,
or the conjunction of two policies p; + p2, which requires both p; and ps to be
enforced. Directives, in turn, bind content types ¢ to directive values v; their
syntax includes a default directive, applied to all the contents not restricted by
other directives. Directive values are sets of source expressions {sey, ..., se,}.

Table 1. Syntax of CoreCSP (excerpt)

Content types t == script | img| ... (t # default)
Schemes sc = http | https | ...

Policies p u=di,...,dn | p+p (n € N)
Directives d ::=t-src v | default-src v

Directive values v = {sei,...,sen} (n e N)
Source expressions se ::= h | unsafe-inline

Hosts h == sc| he| (sc, he) (sc # inl)
Host expressions he ::= % | *.str | str

The formal semantics of CoreCSP is defined on top of three main entities:
locations | are uniquely identifiable sources of contents, e.g., URLs; subjects s
are HTTP(S) web pages enforcing the content security policy; and objects o are
contents available to subjects for inclusion, e.g., images hosted at a given URL.
The semantics follows the denotational style and is based on judgements like:

p|_8<_<t07

reading as: the policy p allows the subject s to include as content of type t the
set of objects O. It is possible to order policies using a subject-indexed binary
relation <, such that, for all policies p; and ps, we have p; <, po if and only if
p1 is no more permissive than p, when deployed at s. More formally, this means
that p; F s «<; O1 and po F s «<; O imply O; C Os for all the content types t.

296 S. Calzavara et al.

4.2 Applications of CoreCSP

Wrong Implementations of CSP. We empirically observed a few inaccurate
implementations of the CSP specification in major browsers by means of a set
of test cases we manually crafted. To formally reason on the security import of
such cases, we defined policy-to-policy compilations which embed the inaccurate
behaviors of the browsers directly in the CoreCSP semantics. For example, we
defined a compilation | - | which removes all the conjunctions (+) from policies,
which captures the incorrect CSP implementation provided by Microsoft Edge.
It is possible to prove that, for all policies p and subjects s, we have p <; |p|,
which formally shows that the CSP implementation of Microsoft Edge can only
make policies more permissive than intended (and it actually does).

Vulnerability to Script Injection. We defined syntactic conditions on poli-
cies which capture their vulnerability to script injection and proved that such
conditions are both sound and complete, i.e., they capture all and only the ways
script injection might happen when CSP is deployed. We used such conditions
to implement an automated security checker for existing content security poli-
cies, which we employed to show the insecurity of the very large majority of the
policies deployed in the wild (91.6%).

Policy Changes. Since p; <; p2 if and only p; is no more permissive than p
when deployed at s, we can use the <; relation to capture the nature of policy
changes in the wild, i.e., to understand whether observed policy changes lead to
more restrictive or more permissive policies. We automated such analysis and
performed it on a large scale, showing that only a tiny fraction of changes (less
than 3%) is intended to improve security by making policies more restrictive.

5 Conclusion

Formal methods hold promise to support a more principled and rigorous analysis
of the web platform, as shown by our analysis of the current CSP deployment.
We encourage interactions between the formal methods community and the web
security community on challenging research problems, which require both theo-
retical foundations and a practical point of view. We refer the interested readers
to an extensive survey on formal methods for web security [1].

References

1. Bugliesi, M., Calzavara, S., Focardi, R.: Formal methods for web security. J. Log.
Algebr. Method Program. 87, 110-126 (2017)

2. Calzavara, S., Rabitti, A., Bugliesi, M.: Content security problems? evaluating the
effectiveness of content security policy in the wild. In: CCS, pp. 1365-1375 (2016)

3. Calzavara, S., Rabitti, A., Bugliesi, M.: Semantics-based analysis of content security
policy deployment. TWEB 12(2), 10:1-10:36 (2018)

Semantically Sound Analysis of Content Security Policies 297

4. OWASP: XSS prevention cheat sheet (2017). https://www.owasp.org/index.php/
XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

5. Weichselbaum, L., Spagnuolo, M., Lekies, S., Janc, A.: CSP is dead, long live CSP!
on the insecurity of whitelists and the future of Content Security Policy. In: CCS,
pp. 1376-1387 (2016)

6. Weissbacher, M., Lauinger, T., Robertson, W.: Why is CSP failing? trends and
challenges in CSP adoption. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID
2014. LNCS, vol. 8688, pp. 212-233. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11379-1_11

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://doi.org/10.1007/978-3-319-11379-1_11
https://doi.org/10.1007/978-3-319-11379-1_11

	Semantically Sound Analysis of Content Security Policies
	1 Introduction
	2 Background on Content Security Policy
	3 Research Summary
	4 Technical Overview
	4.1 Syntax and Semantics of CoreCSP
	4.2 Applications of CoreCSP

	5 Conclusion
	References

