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Abstract. The combination of universal hashing and encryption is a
fundamental paradigm for the construction of symmetric-key MACs, dat-
ing back to the seminal works by Wegman and Carter, Shoup, and
Bernstein. While fully sufficient for many practical applications, the
Wegman-Carter construction, however, is well-known to break if nonces
are ever repeated, and provides only birthday-bound security if instanti-
ated with a permutation. Those limitations inspired the community to
severals recent proposals that addressed them, initiated by Cogliati et
al.’s Encrypted Wegman-Carter Davies-Meyer (EWCDM) construction.

This work extends this line of research by studying two constructions
based on the sum of PRPs: (1) a stateless deterministic scheme that uses
two hash functions, and (2) a nonce-based scheme with one hash-function
call and a nonce. We show up to 2n/3-bit security for both of them if
the hash function is universal. Compared to the EWCDM construction,
our proposals avoid the fact that a single reuse of a nonce can lead to a
break.

Keywords: Symmetric-key cryptography · Authentication ·
Provable security · Permutation · Beyond-birthday security ·
Pseudorandom function · Universal hashing

1 Introduction

Message Authentication Codes (MACs) aim to guarantee the authenticity
and integrity of submitted messages. So, a receiver can successfully determine
with high probability whether a given pair (m, t) of message and tag has been
generated by the legitimate sender and has been transmitted correctly or not.
MACs can be stateless deterministic, randomized, stateful; in general, one also
distinguishes nonce-based constructions where the sender is responsible to supply
a unique nonce to each message to be authenticated. Since cryptographically
secure randomness can be expensive to obtain in various settings, our focus is
on stateless and nonce-based constructions, hereafter.
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While the primary goal of a MAC is unforgeability, indistinguishability from
random bits can be a valuable replacement goal to evaluate the security. If tags
are indistinguishable from random, they are also hard to forge.

The Wegman-Carter approach [34] is a popular and efficient paradigm
for constructing secure MACs. There, a given message is first compressed with
a universal hash function before the result is processed by a cryptographically
secure random function. The initial approach added the hash hk′(m) of a given
message m to a key stream k to create a tag: t = hk′(m) ⊕ k; in practice,
the key stream is supposed to be computed from some secure pseudorandom
function F (ν) from some nonce ν. In [33], Shoup replaced the function F with
a permutation, addressing the fact that there exist a number of standardized
and well-analyzed block ciphers. Bernstein later proved the security of Shoup’s
construction, e.g., [3]. Bernstein’s well-known bound still ensures that the advan-
tage for any adversary that asks 2n/2 authentication queries [2] is bounded by
1.7qv�/2n, where qv is the number of verification queries and � is the maximal
message length, usually in terms of elements of a ring or field used in h. Through-
out this work, we adopt the common way of referring to security bounds that
are negligible up to O(2n/2) blocks or queries as n/2 bits of security.

Despite its simplicity, there exist two interesting directions of extending the
Wegman-Carter construction. First, the nonce requirement is a well-known con-
siderable risk: if a single nonce is repeated, the security of the construction may
collapse completely since the hash-function key could leak. Secondly, even if
nonces never repeat, its security is inherently limited by Bernstein’s birthday-
type bound. Recent works showed that Bernstein’s bound is tight [21,27], which
means that the original construction cannot provide higher security.

An ongoing series of research aims to find constructions with higher
security guarantees that retained some security also under nonce reuse. As one
of the starting points, one could identify the proposal of the Encrypted Davies-
Meyer (EDM) and the Encrypted Wegman-Carter Davies-Meyer (EWCDM)
modes by Cogliati et al. [9]. While EDM is a PRP-to-PRF conversion method
and therefore restricted to inputs of n bits length, EWCDM supports nonce-
based authentication for variable-input-length messages as does the original
Wegman-Carter construction. In EWCDM, a nonce ν is first processed by the
Davies-Meyer construction under a permutation π1; its result is XORed with
the hash of a message m and the sum is encrypted under a second independent
permutation: π2(π1(ν) ⊕ ν ⊕ hk′(m)). EDM misses the hash and uses ν as the
only message input. Its authors showed that both constructions provide at least
2n/3-bit security. Recently, Cogliati and Seurin [10] showed that one can use the
same permutation twice in EDM while retaining 2n/3-bit security.

Mennink and Neves [23] improved on EWCDM. They proved almost full (i.e.,
n-bit) security for EDM and EWCDM and further showed full n-bit security
of proposed dual constructions EDMD and EWCDMD. As a side effect, they
made Patarin’s Mirror Theory [29–31] easier to grasp for a broader audience.
Although Nandi [26] pointed out a slip in [23], which meant that the security of
the nonce-based version of its dual, EWCDMD, is still limited by the birthday
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Fig. 1. Our proposed constructions. π1 and π2 represent two permutations over {0, 1}n,
h1 and h2 two universal hash functions, m a variable-length message, ν, ν1, and ν2

nonces of fixed length, and t the authentication tag.

bound, the work by Mennink and Neves opened the gates for a wider study of
possible constructions. At CRYPTO’18, Datta et al. [13] extended this direction
by the Decrypted Wegman-Carter Davies-Meyer construction (DWCDM), a
single-key variant of EWCDM that employs the permutation in both directions.
The maximal security of their construction was capped by 2n/3 bits by design.

An alternative approach has been taken by Cogliati et al. [8]. They proposed
four generic constructions based on the composition of universal hashing and
a block cipher: Hash-as-Tweak (HaT), Nonce-as-Tweak (NaT), Hash-as-Key
(HaK), and Nonce-as-Key (NaK). They proved n-bit security for all construc-
tions in the ideal-permutation model (assuming a universal hash function). How-
ever, the former two constructions require a tweakable primitive, whereas the
latter two require message-dependent rekeying.

We can identify four desiderata for interesting MACs based on permutations
and universal hashing. In terms of security, the adversary’s advantage should
remain negligible for �q � 2n/2. In terms of simplicity, the number of calls to
the primitive(s) should be minimized. For efficiency, their calls should be paral-
lelizable, and frequent rekeying should be avoided. Last but not least, they should
support variable-length messages. So, in spite of recent advances, it remains an
interesting question how one can generally achieve those aspects for stateless
deterministic and/or nonce-based constructions.

Contribution. This work analyzes two constructions based on permutations
and universal hashing using the Mirror Theory. Our first construction HPxNP is
nonce-based, whereas our second, HPxHP, is stateless deterministic. We name
them according to the fact whether they employ a universal hash function (HP)
or a nonce (NP) as inputs to the permutation. Figure 1 illustrates them schemati-
cally. We show that both modes provide O(2n/3) bits of security asymptotically.



134 A. Moch and E. List

Outline. Hereupon, we first cover briefly the necessary preliminaries used in
this work, including a brief recap of Patarin’s Mirror Theory. Thereupon, Sect. 3
proposes our three constructions whose security is then analyzed in the subse-
quent Sects. 4 and 5. Section 6 concludes.

Remark 1. We note that the HPxHP construction is clearly not novel, but an
abstraction of a variety of existing double-lane MACs, e.g., 3kf9 [37], GCM-

SIV-2 [18], or PMAC
+ [36]. However, in its abstract form, it has been studied

by Datta et al. [11] (the same authors already had studied the construction
in [12]) from a constructive view, or very recently by Leurent et al. [20] from an
attacking view. More precisely, Leurent et al. [20] proposed a forgery attack with
data complexity of O(23n/4) for such constructions. We also take the constructive
view, so that our derived security bound is also inherently limited by the result
by Leurent et al.; moreover, at the end of each analysis section, we further discuss
the effect of using 4-wise independent hash functions for our constructions, with
the positive result that the then-obtained security bounds render their result
inapplicable and lead to higher security.

2 Preliminaries

General Notations. We use calligraphic uppercase letters X ,Y for sets. We
write {0, 1}n for the set of bit strings of length n, and denote the concatenation
of binary strings x and y by x ‖ y and the result of their bitwise XOR by x ⊕ y.
We write x � X to mean that x is chosen uniformly at random from the set X .
We consider Func(X ,Y) to be the set of all deterministic maps F : X → Y and
Perm(X ) to be the set of all permutations over X . Given an event E, we denote
by Pr[E] the probability of E. For two integers n, k with n ≥ k ≥ 1, we denote
the falling factorial as (n)k

def=
∏k−1

i=0 (n − i).
A (complexity-theoretic) distinguisher A is an efficient adversary, i.e., an

efficient Turing machine that is given access to a number of oracles O which it
can interact with. The task of A is to distinguish between two worlds of oracles,
one of which is chosen at the beginning of the experiment uniformly at ran-
dom. After its interaction, A outputs a bit that represents a guess of the world
that A interacted with. The distinguishing advantage between a real world P
and an ideal world O is given by ΔA (P,O) def=

∣
∣Pr

[
AP ⇒ 1

] − Pr
[
AO ⇒ 1

]∣
∣.

Throughout this work, we consider information-theoretic distinguishers, i.e., dis-
tinguishers that are computationally unbounded, and that are limited only by
the number of queries they can ask to their available oracles. We assume that
distinguishers do not ask duplicate queries or queries to which they already can
compute the answer themselves from earlier queries, as is common. W.l.o.g.,
we limit our interest to deterministic distinguishers since for each probabilistic
distinguisher, there exists a deterministic one with equal advantage that fixed
a random tape beforehand (cf. [1,7]). We briefly recall the definitions for the
advantage of distinguishing a construction from a random function (PRF) and
a random permutation (PRP), respectively.
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Definition 1 (PRF Advantage). Let K, X , and Y be non-empty sets and let
F : K × X → Y and ρ � Func(X ,Y) and k � K. Then, the PRF advantage of
A w.r.t. F is defined as AdvPRF

F (A) def= ΔA (Fk, ρ).

A keyed permutation E : K × X → X is a family of permutations over X
indexed by a key K ∈ K.

Definition 2 (PRP Advantage). Let K and X be non-empty sets, E : K ×
X → X be a keyed permutation, and let π � Perm(X ) and k � K. Then, the
PRP advantage of A w.r.t. F is defined as AdvPRP

Ek
(A) def= ΔA (Ek, π).

To recall the necessary definitions for universal hashing, let X and Y denote
two non-empty sets, and H = {h : X → Y} be a family of hash functions h.

Definition 3 (Almost-Universal Hash Function [5]). We say that H is ε-
almost-universal (ε-AU) if, for all distinct x, x′ ∈ X , it holds that Prh�H[h(x) =
h(x′)] ≤ ε.

Almost-XOR-universal hash functions were introduced in [19]; the term, how-
ever, is due to Rogaway [32].

Definition 4 (Almost-XOR-Universal Hash Function [19,32]). Here, let
Y ⊆ {0, 1}n for some positive integer n. We say that H is ε-almost-XOR-
universal (ε-AXU) if, for all distinct x, x′ ∈ X and arbitrary Δ ∈ Y, it holds
that Prh�H[h(x) ⊕ h(x′) = Δ] ≤ ε.

Definition 5 (k-wise Independence [35]). We say that H is k-independent
if, for all pair-wise distinct x1, . . . xk ∈ X and all y1, . . . , yk ∈ Yk, it holds that
Prh�H[h(xi) = yi, for 1 ≤ i ≤ k] = 1/|Y|k.

2.1 H-Coefficient Technique

The H-coefficients technique is a proof method due to Patarin, where we consider
the variant by Chen and Steinberger [7,28]. The results of the interaction of
an adversary A with its oracles are collected in a transcript τ . The oracles can
sample randomness prior to the interaction (often a key or an ideal primitive that
is sampled beforehand), and are then deterministic throughout the experiment
[7]. The task of A is to distinguish the real world Oreal from the ideal world Oideal.
Let Θreal and Θideal denote the distribution of transcripts in the real and the ideal
world, respectively. A transcript τ is called attainable if the probability to obtain
τ in the ideal world – i.e. over Θideal – is non-zero. Then, the fundamental Lemma
of the H-coefficients technique, the proof to which is given in [7,28], states:

Lemma 1 (Fundamental Lemma of the H-coefficient Technique [28]).
Assume, the set of attainable transcripts can be partitioned into two disjoint
sets GoodT and BadT. Further assume that there exist ε1, ε2 ≥ 0 such that for
any transcript τ ∈ GoodT, it holds that

Pr [Θreal = τ ]
Pr [Θideal = τ ]

≥ 1 − ε1, and Pr [Θideal ∈ BadT] ≤ ε2.

Then, for all adversaries A, it holds that ΔA (Oreal,Oideal) ≤ ε1 + ε2.
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2.2 Mirror Theory

We will combine the H-coefficient technique with Patarin’s Mirror Theory, which
allows us to lower bound the amount of good transcripts. The ratio yields then
the probability for a good transcript. In the following, we recall the necessary
definitions of the Mirror Theory according to [23] that followed Patarin [29,30].

Remark 2. Mirror Theory became popular to a broader audience after its refor-
mulation by Mennink and Neves [23]. While the core ideas are not difficult to
understand, the proof by Patarin in [29] employed a recursive argument that
has been subject to intensive debates in the past, cf. [13,23]. The correctness of
the argument for the first recursion has been established, where Patarin showed
O(2n/3) bits of security for the sum of permutations [29]. Patarin’s proof had
to approximate the second recursion; a full proof would have to continue on
for many further recursions with an exponential number of cases, which seems
a highly sophisticated task. Clearly, it is out of scope of this work. Instead of
relying on the assumptions of the full Mirror Theory, we follow the line of e.g.,
[13,22] and consider it not for full n-bit security. In this work, we require only
up to O(2n/3) bits of security, thus, effectively relying only the first recursion.

Mirror theory evaluates the number of possible solutions to a system of affine
equations of the form Pai

⊕Pbi
= λi in a finite group. Let q ≥ 1 denote a number

of equations and r ≥ 1 a number of unknowns. Let P = {P1, . . . , Pr} represent
the set of r distinct unknowns and consider an equation system

E =
{
Pa1 ⊕ Pb1 = λ1, . . . , Paq

⊕ Pbq
= λq

}
,

where ai, bi for 1 ≤ i ≤ q are mapped to {1, . . . , r} by a surjective index map
ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}. Given a subset of equations I ⊆ {1, . . . , q},
the multiset MI is defined as MI =

⋃
i∈I{ϕ(ai), ϕ(bi)}.

Definition 6 (Circle-freeness). An equation system E is circle-free if there
exists no subset of indices I ⊆ {1, . . . , q} of equations s.t. MI has even multi-
plicity elements only.

So, no linear combination of equations is independent of the unknowns.

Definition 7 (Block-maximality). Let Q1, . . . ,Qs = {1, . . . , r} be a parti-
tioning of the r indices into s minimal so-called blocks s.t. for all equation indices
i ∈ {1, . . . , q}, there exists a single block index � ∈ {1, . . . , s} s.t. the unknowns
of the i-th equation are contained in only this block: {ϕ(ai), ϕ(bi)} ⊆ Q�. Then,
the system of equations E is called ξ-block-maximal for ξ ≥ 2 if there exists no
i ∈ {1, . . . , s} s.t. |Qi| > ξ.

So, the unknowns can be partitioned into blocks of size at most ξ + 1 if E is
ξ-block-maximal.

Definition 8 (Non-degeneracy). A system of equations E is non-degenerate
iff there is no I ⊆ {1, . . . , q} s.t. MI has exactly two odd multiplicity elements
and

⊕
i∈I λi = 0.
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So, an equation system is non-degenerate if there is no linear combination of
one or more equations that imply Pi = Pj for distinct i, j and Pi, Pj ∈ P. The
central theorem of Patarin’s mirror theorem is then Theorem 2 in [23], which
itself is a brief form of Theorem 6 in [29].

Theorem 1 (Mirror Theorem [23]). Let ξ ≥ 2. Let E be a system of equa-
tions over the unknowns P that is (i) circle-free, (ii) ξ-block-maximal, and (iii)
non-degenerate. Then, as long as (ξ − 1)2 · r ≤ 2n/67, the number of solutions
s.t. Pi �= Pj for all pairwise distinct i, j ∈ {1, . . . , r} is at least

(2n)r

(2n)q
.

A proof sketch is given in [23, Appendix A], and the details in [29]. An
updated proof had been given in [25].

Mennink and Neves described a relaxation wherein the condition that two
unknowns Pa and Pb must differ whenever a and b differ is released to the degree
that distinct unknowns must be pairwise distinct only inside their blocks. So, it
must hold for a �= b that Pa �= Pb when a, b ∈ Rj for some j ∈ {1, . . . , s} for a
given partitioning {1, . . . , r} =

⋃s
i=1 Ri.

Definition 9 (Relaxed Non-degeneracy). An equation system E is relaxed
non-degenerate w.r.t. the partitioning {1, . . . , r} =

⋃s
i=1 Ri iff there is no I ⊆

{1, . . . , q} s.t. MI has exactly two odd multiplicity elements and
⊕

i∈I λi = 0.

In their Theorem 3, [23] extended Theorem 1 to the following relaxed form:

Theorem 2 (Relaxed Mirror Theorem [23]). Let ξ ≥ 2 and E be a system
of equations over the unknowns P that is (i) circle-free, (ii) ξ-block-maximal,
and (iii) non-degenerate. Then, as long as (ξ − 1)2 · r ≤ 2n/67, the number of
solutions s.t. Pi �= Pj for all pairwise distinct i, j ∈ {1, . . . , r} is at least

NonEq(R1, . . . ,Rs; E)
(2n)q

,

where NonEq(R1, . . . ,Rs; E) is the number of solutions to P that satisfy Pa �= Pb

for all a, b ∈ Rj for all 1 ≤ j ≤ s as well as all inequalities by E .

Mennink and Neves stress that the relaxed Theorem 2 is equivalent to Theo-
rem 1 for s = 1, i.e., when the equation system consists of a single block. More-
over, the number of solutions that are covered in the term NonEq(R1, . . . ,Rs; E)
can be lower bounded by (2n)|R1| ·

∏s
i=2 (2n − (ξ − 1))|Ri| since every variable is

in exactly one block which imposes at most ξ − 1 additional inequalities to the
other unknowns in its block.

Remark 3. We consider PRF security in the information-theoretic setting, simi-
lar to [23]. The underlying permutations are secret and assumed to be drawn uni-
formly at random from Perm({0, 1}n). Our results generalize to the complexity-
theoretic setting where the permutations π1 and π2 will be instantiated with a
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block cipher E under independent random secret keys k1 and k2, Ek1 and Ek2 ,
respectively. The bounds from this paper can be easily adapted to the complexity-
theoretic setting by adding a term of 2 ·AdvPRP

Ek
(q). The term refers to twice the

maximal advantage for an adversary A′ to distinguish E : K×{0, 1}n → {0, 1}n

keyed with a random key k � K from a random permutation π, where A asks
at most q queries. Note that we employ only the forward direction of the permu-
tation; so, PRP security suffices.

3 Constructions

Let n ≥ 1 be a positive integer, and let K denote a non-empty set. Let π1, π2 �
Perm({0, 1}n) be independently uniformly at random sampled permutations over
n-bit strings. Let H = {h | h : {0, 1}∗ → {0, 1}n} be a family of ε1-AXU hash
functions; for HPxHP, we will define and use instead H1 = {h1 | h1 : {0, 1}∗ →
{0, 1}n} as a family of ε1-AU hash functions, and H2 = {h2 | h2 : {0, 1}∗ →
{0, 1}n} as a family of ε2-AU hash functions. We require the hash functions to
be sampled independently uniformly at random, which is usually realized by
sampling hash keys independently uniformly at random.

Our first, nonce-based construction, HPxNP, is illustrated in Fig. 1a.
It shares similarities with Minematsu’s Enhanced Hash-then-Mask construc-
tion [24] that had been analyzed further in [14,15]; however, Minematsu’s con-
struction used a function instead of a permutation and a per-message random
IV. In this construction, the message is hashed to an n-bit value h(m). For this
construction, we need H to be an ε-almost-XOR-universal family of hash func-
tions. An n-bit nonce ν is XORed to the hash u to obtain v := h(m) ⊕ ν; v and
ν serve as inputs to the two calls to a permutation π1 and π2, respectively, and
yield x := π1(v) and y := π2(ν). Finally, the outputs of the permutation calls
are XORed and released as authentication tag: t := x ⊕ y.

Our second construction, HPxHP, is illustrated in Fig. 1b. It consists of two
parallel invocations of the hash functions on the input message m ∈ {0, 1}∗ that
are hashed using h1 ∈ H1 and h2 ∈ H2, respectively, to two n-bit values u and v.
Those serve as inputs to the two calls to a permutation π1 and π2, respectively
and yield x := π1(u) and y := π2(v). Finally, the outputs of the permutation
calls are XORed and released as authentication tag: t := x ⊕ y.

In practice, the permutations π1 and π2 will be instantiated with a secure
block cipher E under two independent keys k1 and k2. An intuitive choice for
the hash function is, for example, polynomial hashing. Let F2n be the Galois
Field GF (2n) with a fixed primitive polynomial p(x). For n = 128, the GCM
polynomial p(x) = x128 + x7 + x2 + x+ 1 is a usual choice. The hash function is
instantiated by sampling a hash key k � F2n . Given k and a message m ∈ (F2n)�

of � blocks mi, 1 ≤ i ≤ �, polynomial hashing is then defined as the sum of

hk(m) def=
�∑

i=1

k�+1−i · mi,
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where additions and multiplications are in F2n . It is well-known that, for mes-
sages of at most � blocks (after padding), polynomial hashing is �/2n-AXU and
�/2n-AU. Note that polynomial hashing requires an injective padding to prevent
trivial hash collisions; a 10∗-padding works, but may extend messages by a block.

While the sum of a polynomial hash is sequential, computing the individ-
ual terms on a few cores in parallel is well-known at the cost of storing multiple
powers of the hash key. For instance, optimized instances of GCM parallelize the
computations of four (or eight) subsequent blocks k4 ·mi, k3 ·mi+1, k2 ·mi+2, and
k4 ·mi+3, before their results are summed, reduced by the modulus, and summed
to the sum of the previous blocks

∑i−1
j=1 kjmj [16,17]. Thus, several hash multi-

plications, or two hash-function calls, or hashing and computing a permutation
are efficiently parallelizable as long as the platform is not too resource-restricted.
Note that a number of related hash functions exist with similar security proper-
ties; pseudo-dot-product hashing, BRW hashing, or combined approaches such
as [6] can half the number of necessary multiplications, and provide similar par-
allelizability. We refer the interested reader to an overview by Bernstein [4].

4 Security Analysis of HPxNP

First, we consider the construction HPxNP. Patarin’s approach [29] allows us to
obtain a bound of O(2n/3) bits of security. At the end of this section, we discuss
the implications of considering ξaverage instead, as was also suggested ibidem.

Theorem 3. Let n ≥ 1, ξ ≥ 2 be integers, and H = {h |h : {0, 1}∗ → {0, 1}n}
be a family of ε-AXU hash functions with h � H. For any nonce-respecting PRF

distinguisher A that asks at most q ≤ 2n/(67ξ2) queries, it holds that

AdvPRF

HPxNP[h,π1,π2](A) ≤ 2q2 · ε

ξ2
+

(
q
2

) · ε

2n
+

q

2n
.

Note that in this case, the optimal choice of ξ to obtain the best bound is
2n/6, assuming that ε ∈ O(2−n). Then, the bound in Theorem 3 is dominated
by the first term of O(q2/24n/3 + q2/22n + q/2n), while the number of queries is
allowed to be q ≤ 22n/3. Other values for ξ reduce either the security bound or
the number of queries.

The remainder of this section is devoted to show Theorem 3. Here, A makes
q construction queries (νi,mi), for 1 ≤ i ≤ q, that are stored together with the
query results ti in a transcript τ = {(νi,m1, t1), . . . , (νq,mq, tq)}. In both worlds,
the oracle samples h at the start uniformly at random from all hash instances.
A sees the results ti after each query. We use a common method to alleviate
the proof: after the adversary finished its interaction with the oracle, but before
outputting its final decision bit, A is given the hash-function instance h so that
it can compute the values u1, . . . , uq itself. Clearly, this only makes the adversary
stronger, but spares a discussion of security internals of the hash function.
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Let 1 ≤ r ≤ 2q and consider the set P = {P1, . . ., Pr} of r unknowns. We
consider a system of q equations

E = {Pa1 ⊕ Pb1 = t1, Pa2 ⊕ Pb2 = t2, . . . , Paq
⊕ Pbq

= tq},

where Pai
:= xi = π1(h(mi) ⊕ νi) and Pbi

:= yi = π2(νi). We further define an
index mapping ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}. For all i, j ∈ {1, . . . , q}:

– ϕ(ai) �= ϕ(aj) ⇔ h1(mi) ⊕ νi �= h1(mj) ⊕ νj .
– ϕ(bi) �= ϕ(bj) since νi �= νj .
– ϕ(ai) �= ϕ(bj) since both permutations π1 and π2 are independent.

The index mapping ϕ has a range of size qx + qy, where qx = |{xi, . . . , xq}| ≤ q
and qy = |{ν1, . . . , νq}| = q.

4.1 Bad Transcripts

ϕ only exposes collisions of the form ϕ(ai) = ϕ(aj) or equivalently xi = xj . We
define the following bad events:

– bad1: there exist ξ distinct equation indices i1, i2, . . . , iξ ∈ {1, . . . , q} s.t. xi1 =
xi2 = . . . = xiξ

where ξ is the threshold given in Theorem 3.
– bad2: There exist query indices i �= j, i, j ∈ {1, . . . , q} s.t. (ui, ti) = (uj , tj).

Let us consider bad1 first. Since h is ε-AXU, the expected amount of collisions is
q2·ε. Unfortunately ε-AXU is not strong enough to allow for statements regarding
multicollisions, i.e. we cannot make a statement on the probability that three or
more input values collide. Considering the maximal block size ξ, the worst case
would be that all collisions occur in the same hash value. If there exists a block
of size (ξ + 1), this block contains ξ2 collisions. Let #Colls(q) be the random
variable that counts the collisions in h. By Markov’s Inequality, the probability
that there are more than

(
ξ
2

)
collisions in h is at most:

Pr
[

#Colls1(q) ≥
(

ξ

2

)]

≤ E(C)
(
ξ
2

) =

(
q
2

) · ε
(
ξ
2

) ≤ 2q2ε

ξ2
.

For bad2, recall that the ideal world samples the tags independently uniformly
at random. Since h is ε-AXU, it follows for some distinct pair i, j ∈ {1, . . . , q}:

Pr [ui = uj ∧ ti = tj ] ≤
(
q
2

) · ε

2n
.

It follows from the sum of both probability for bad1 and bad2 that

Pr [τ ∈ BadT |Θideal = τ ] ≤ 2q2 · ε

ξ2
+

(
q
2

) · ε

2n
.
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4.2 Ratio of Good Transcripts

Lemma 2. The system of equations is (i) circle-free, (ii) ξ-block-maximal and
(iii) relaxed non-degenerate with respect to the partitioning into R1 �R2, where
R1 =def {ϕ(a1), . . . , ϕ(aq)} and R2 =def {ϕ(b1), . . . , ϕ(bq)}.

Proof. The proof relies on the fact that ϕ(bi) �= ϕ(bj) and ϕ(ai) �= ϕ(bj) for any
i �= j. For any I ⊆ {1, . . . , q} the corresponding multiset MI has at least |I| odd
multiplicity elements and therefore the system of equations E is (i) circle-free.

(ii) If E were not ξ-block-maximal, then there must be an ordering I =
{i1, . . . , iξ} s.t. ϕ(ai1) = . . . = ϕ(aiξ

). This is equivalent to a ξ-fold collision
xi1 = . . . = xiξ

, which contradicts the assumption that τ is a good transcript.
(iii) Suppose that E would be relaxed degenerate. Then, there would exist

a minimal subset I ⊆ 1, . . . , q that has exactly two odd multiplicity elements
corresponding to the same oracle and s.t.

⊕
i∈I ti = 0. If |I| = 1, MI would

have two elements from different oracles. If |I| = 2 and ti1 = ti2 , then we would
know that xi1 �= xi2 since νi1 �= νi2 , i.e. yi1 �= yi2 . Therefore, we have four odd
multiplicity elements. If |I| ≥ 3, there would exist at least three odd multiplicity
elements. So, E cannot be relaxed degenerate, which concludes the proof. ��
Lemma 3. Let τ ∈ GoodT and q ≤ 2n/(67ξ2). Then, it holds that

Pr [Θreal = τ ]
Pr [Θideal = τ ]

≥ 1 − q

2n
.

Proof. The probability to obtain a good transcript τ consists of that for obtain-
ing the tags t1, . . . , tq, and the hash-function outputs h(mi). The probability to
obtain the latter is given in both worlds by |H|−1. The bound in Lemma 3 is
determined by the ratio of the respective probabilities. This term appears in the
real world as well as in the ideal world and cancels out eventually. Hence, we
ignore it for the remainder of the analysis. The probability of obtaining the rest
of the transcript, i.e., the tags ti, in the ideal world is then given by

Pr [ t1, . . . , tq| Θideal] =
1

(2n)q

since the outputs ti are sampled independently and uniformly at random from
{0, 1}n in the ideal world. In the real world, the probability is given by

Pr [Θreal = τ ] ≥
NonEQ(R1,R2;E)

2nq · (2n − qx)! · (2n − qy)!
(2n!)2

=
NonEQ(R1,R2; E)
2nq(2n)qx

(2n)qy

.

Remember that qy = q since all νi are distinct.To lower bound NonEQ
(R1,R2; E), note that we have (2n)qx

choices for {Pj | j ∈ R1} and at least
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(2n − 1)q possible choices for {Pj | j ∈ R2}, as every index in R2 is in a block
with exactly one unknown from R1. Thus

Pr [Θreal = τ ] ≥ (2n − 1)q(2n)qx

2nq(2n)q(2n)qx

=
1

2nq

(
1 − q

2n

)
.

Hence, we obtain the ratio as in Lemma 3. ��

4.3 Using ξaverage

In [29], Patarin suggests that one potentially can consider the average instead
of the maximal block size for the sum of permutations in Mirror Theory. More
precisely, Generalization 2 of [29, Sect. 6] suggests that:

“The theorem Pi ⊕ Pj is still true if we change the condition ξmaxα � 2n

by ξaverage � 2n.”

The bottleneck in our bound is the event bad1; bad2 as well as the good tran-
scripts do not consider ξ at all and the respective terms become significant for
q = 2n. Upper bounding the block size is necessary to ensure the condition
q ≤ 2n/(67ξ2max). Using a universal family of hash functions only allows for a
very crude upper bound of the maximal block size which limits us at a security
level of around 22n/3 queries.

If we could use the average block size as suggested by Patarin, we are limited
by the condition q ≤ 2n/(67ξ2average); then, bad1 would no longer be necessary
and would significantly improve the bound. The following theorem would yield
an upper bound on the expected average block size ξaverage.

Theorem 4. For any q ≤ 2n and ε ≤ 1, we expect that ξaverage ≤ (q − 1)ε + 2.

The proof is deferred to the full version of this work, but we will briefly sketch
the idea for ε = 2−n: For q � 2n, the expected amount of collisions q2/2n is in
O(q). For q = 2n, the expected amount of collisions is 2n−1. In the worst case
(regarding the average), the collisions are uniformly distributed, i.e. h(m1) =
h(m2), h(m3) = h(m4), . . . , h(m2n−1) = h(m2n). This pattern corresponds to
the case that every block were of size 3 and hence the average is 3 as well. Any
other pattern would not increase the average block size. The proof will consider
the more general case for ε. From Theorem 4, we obtain

q ≤ 2n

67((q − 1)ε + 2)2
.

We note that the use of ξaverage implies the need to employ the stronger form
of the Mirror Theory, that assumes that the iterated proof suggested by Patarin
holds. Both the stronger form of the Mirror Theory and the Generalization 2
[29] are subject to their own analysis.
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5 Security Analysis of HPxHP

The analysis of HPxHP shares many similarities with that of HPxNP, but
differs in certain key points. Regarding the maximum block size, a hash collision
(considering the hashes separately) may occur now on one of both sides, i.e., there
may be a collision in h1(m) = h1(m′) or in h2(m) = h2(m′), which increases the
block size and effectively doubles the probability of obtaining a hash collision.1

Further, since collisions may occur on both sides, it is possible to obtain a circle.
With a universal hash function, we can obtain security up to O(22n/3) queries,

matching the security bound of earlier analyses. With a stronger k-wise indepen-
dent hash function, it is possible to obtain security up to O(2

(n−1)k
k+1 ) queries.

Putting stronger requirements on the family of hash functions increases its size
and therefore the length of the key. We still find this result interesting since
recent results [20] provided attacks with a query complexity of O(23n/4). If we
demand stronger properties from the hash function, our security level exceeds
the complexity by the known attacks. Again, we provide an analysis with a uni-
versal hash function and ξmax first. Thereupon, we will argue about the necessary
proof changes to adapt to stronger hash-function families.

Theorem 5. Let n ≥ 1, ξ ≥ 2 be integers and H1 and H2 be ε1 and ε2-AU
families of hash functions, respectively, and let h1 � H1 and h2 � H2 be
sampled independently uniformly at random. Let ε =def max{ε1, ε2}. For any
PRF distinguisher A that asks at most q ≤ 2n/(67ξ2) queries, it holds that

AdvPRF

HPxHP[h1,h2,π1,π2](A) ≤ 4q2ε

ξ2
+ 3 · (qε)2 + q3ε2 +

ξ · q

2n − ξ
.

For ξ = 2n/6, and assuming an optimal ε = O(2−n), the bound in Theo-
rem 5 has the form of O(q2/24n/3 + q2/22n + q3/22n + q/25n/6) for q ∈ O(22n/3)
queries. So, it is dominated by the first term. The remainder of this section
contains the proof of Theorem 5. Consider a deterministic distinguisher A that
has access to either HPxHP[h1, h2, π1, π2] or ρ, which chooses the outputs given
to A uniformly at random. A makes q construction queries mi that are stored
together with the query results ti in a transcript τ = {(m1, t1), . . . , (mq, tq)}. In
both worlds, the oracle samples h1 and h2 at the beginning independently and
uniformly at random from their hash families. A sees the results ti after each
query. Again, we make the adversary stronger by defining that the hash keys
are revealed to the adversary after it finished its interaction with the oracle, but
before outputting its final decision bit.

Let 1 ≤ r ≤ 2q and consider the set P = {P1, . . ., Pr} of r unknowns. Again,
we consider a system of q equations

E = {Pa1 ⊕ Pb1 = t1, Pa2 ⊕ Pb2 = t2, . . . , Paq
⊕ Pbq

= tq},

1 Technically speaking, there is a total of q(q − 1)/2 of input pairs. When bounding
the probability of a collision we used q2 instead, ignoring the factor 1/2.
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where Pai
:= xi = π1(h1(mi)) and Pbi

:= yi = π2(h2(mi)). We further define an
index mapping ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}; ϕ maps equal permutation
outputs xi = xj that occur for any i �= j (from equal hash values ui = uj) to the
same unknown Pk; similarly, ϕ maps equal permutation outputs yi = yj that
occur for any i �= j (from equal hash values vi = vj) to the same unknown P�.
For all i, j ∈ {1, . . . , q}, it holds that

– ϕ(ai) �= ϕ(aj) ⇔ h1(mi) �= h1(mj).
– ϕ(bi) �= ϕ(bj) ⇔ h2(mi) �= h2(mj).
– ϕ(ai) �= ϕ(bj) since both permutations π1 and π2 are independent.

In the real world, the transcript has collisions in the values xi = xj or yi = yj for
i �= j, when the corresponding hash values ui = uj or vi = vj collide. A collision
in xi and xj corresponds to a collision in ϕ(ai) and ϕ(aj) and a collision in yi

and yj corresponds to a collision in ϕ(bi) and ϕ(bj). Multi-collisions in the range
values of π1 and π2 correspond to blocks in the mirror theory. To upper bound
the size of the largest block Qk, we need to consider a special type of collision
between two queries i and j. In this setting, we say that two queries i and j
collide if h1(mi) = h1(mj) and/or2 h2(mi) = h2(mj). The probability for such
a collision to happen is ε1 + ε2 ≤ 2ε.

We define an event bad1 if there exists a ξ-multi-collision in any subset of
queries {i1, . . . , iξ+1} ⊆ {1, . . . , q}, where ξ is the threshold in Theorem 5. We
need to consider four more events that render a transcript to be bad:

– bad1: There exists a subset I ⊆ {1, . . . , q} of size |I| = ξ, s.t. for each pair of
distinct indices i, j ∈ I, it holds that ϕ(ai) = ϕ(aj) and/or ϕ(bi) = ϕ(bj); ξ
is the threshold in Theorem 5.

– bad2: There exist i �= j, i, j ∈ {1, . . . , q} s.t. (ui, vi) = (uj , vj) and ti �= tj .
– bad3: There exist i �= j, i, j ∈ {1, . . . , q} s.t. (ui, ti) = (uj , tj) and vi �= vj .
– bad4: There exist i �= j, i, j ∈ {1, . . . , q} s.t. (vi, ti) = (vj , tj) and ui �= uj .
– bad5: There exists a subset I ⊆ {1, . . . , q} s.t. MI contains only elements of

even multiplicity.

If an attainable transcript τ is not bad, we define τ as good. We denote by GoodT
and BadT the sets of good and bad transcripts, respectively. In the H-coefficient
technique, the probability that a transcript is bad is analyzed solely for the ideal
world. The bound in Theorem 5 follows then from Lemma 1 and Lemmas 4, 5
and 6.

5.1 Bad Transcripts

Lemma 4. Let ξ ≥ 1 denote the threshold from Theorem 5. It holds that

Pr [τ ∈ BadT| Θideal = τ ] ≤ 4q2ε

ξ2
+ 3 · (qε)2 + q3ε2.

2 To avoid confusion, by ‘and/or’ we actually mean the logical ‘or’.
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Proof. In the following, we upper bound the probability that a transcript is bad.
Most of the time, we can upper bound the probabilities of the individual bad
events to occur and simply take the sum of their probabilities. We will postpone
the discussion of the first bad event and begin with the second bad event.

For bad2, it holds that h1 and h2 are both ε-AU and independent. We drop
the condition ti �= tj since it only decreases the probability and an upper bound
suffices for our purpose. The probability that both hash values collide simulta-
neously for two queries is at most

Pr [bad2] ≤
(

q

2

)

ε2 ≤ q2ε2

2
.

For the third and fourth bad events, the probabilities can be formulated similarly.
To upper bound bad3, the probability that ui = uj is again at most ε for a fixed
pair of distinct query indices i �= j. Since the outputs ti and tj are sampled
uniformly at random and independently from the hash values, we can again
neglect the requirement vi �= vj and obtain the same upper bound for bad3 as
for bad2, when we use ε ≥ 2−n. A similar argument holds for bad4.

When upper bounding the probability of bad5, we are limited by the hash
function. We consider all 3-tuples (ma,mb,mc) such that h1(ma) = h1(mb) and
h2(mb) = h2(mc). This event can be bounded by

(
q
3

)
ε2, which also excludes the

occurrence of circles. Thus, it holds that Pr [bad5] ≤ q3ε2. Double-collisions that
are small circles by themselves are excluded by bad2.

Now, we consider bad1. Again, we upper bound the maximal block size for the
individual hash functions. Then, we condition bad1 on ¬bad5 to ensure that no
collisions in h1 are connected to collisions in h2. Both hash functions are ε-almost-
universal. Again, the worst case w.r.t. block maximality is that all collisions
occur in the same block of size ξ +1. Such a block would have

(
ξ
2

)
collisions. Let

#Colls1(q) be a random variable for the number of collisions between h1(mi) =
h1(mj) for 1 ≤ i, j ≤ q and i �= j. Using Markov’s Inequality, we obtain

Pr
[

#Colls1(q) ≥
(

ξ

2

)]

≤ E [#Colls1(q)](
ξ
2

) ≤ 2q2ε

ξ2
.

We can derive a similar argument using a random variable #Colls2(q) for the
number of collisions between collisions h2(mi) = h2(mj), So, the probability to
obtain a block of size ξ is upper bounded by

Pr [bad1|¬bad5] ≤ 4q2ε

ξ2
.

Our bound in Lemma 4 follows from summing up the obtained terms. ��

5.2 Good Transcripts

It remains to upper bound the ratio of probabilities for a good transcript in both
worlds. For the real world, we will use the Relaxed Mirror Theory. We show that
a good transcript fulfills all properties needed by the Relaxed Mirror Theorem.
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Lemma 5. Let τ ∈ GoodT. Let E be the system of q equations corresponding
to (ϕτ ,m1, . . . ,mq). Then, E is (i) circle-free, (ii) ξ-block-maximal, and (iii)
relaxed non-degenerate w.r.t. the partitioning {1, . . . , r} = R1∪R2, where R1 =
{ϕ(ai), . . . , ϕ(aq)} and R2 = {ϕ(bi), . . . , ϕ(bq)}.

Proof. We defined τ to be a good transcript; hence, no bad event has occurred,
which implies that the transcript is (i) circle-free since we excluded bad5 here.

(ii) If E were not ξ-block-maximal, there would exist a minimal subset Q ⊆
{1, . . . , r} with |Q| ≥ ξ + 1 so that there exists some i ∈ {1, . . . , q} for which
either {ϕ(ai), ϕ(bi)} ⊆ Q or {ϕ(ai), ϕ(bi)} ∩ Q = ∅. The latter event does not
violate the block-maximality, so we can focus on the former statement.

Assuming that E were not ξ-block-maximal, we can define a subset of indices
I ⊂ {1, . . . , q} for which it holds that {ϕ(ai), ϕ(bi)} ⊆ Q for all i ∈ I. Then,
we can define an ordered sequence of the indices in I to i1, . . . , iξ s.t. it would
have to hold for all pairs of subsequent indices ij , ij+1, for 1 ≤ j < ξ that
ϕ(ai) = ϕ(aj) and/or ϕ(bi) = ϕ(bj). This is equivalent to our definition of bad1
and would therefore violate our assumption that τ is good. Hence, every good
transcript τ is ξ-block-maximal.

(iii) Assume that τ would be relaxed degenerate. This would imply there
exists a subset I ⊆ {1, . . . , q} such that the multiset MI has exactly two odd
multiplicity elements from a single set R1 or R2 and the tags of the elements
corresponding to I sum up to zero, i.e.

⊕

i∈I
ti =

⊕

i∈I
π1(h1(mi)) ⊕ π2(h2(mi)) = 0.

Recall that ϕ(ai) �= ϕ(aj) if and only if h1(mi) �= h1(mj), ϕ(bi) �= ϕ(bj) if and
only if h2(mi) �= h2(mj) and ϕ(ai) �= ϕ(bj) for any choice of i and j. An element
ϕ(ai) has even multiplicity in MI if there is an even amount of inputs that collide
in h1(mi). And similarly an element ϕ(bi) has even multiplicity in MI if there
is an even amount of inputs that collide in h2(mi). If there is an even amount of
queries that collide in a hash value, one can easily see that these elements will
cancel out in the above sum.

For simplicity, assume, there exists a subset I ⊆ {1, . . . , q} with exactly two
odd multiplicity elements from R1 and even multiplicity elements only from R2.
All elements from R2 cancel out in the sum above. and all even multiplicity
elements from R1 cancel out as well. Let the two odd multiplicity elements from
R1 have multiplicity 2n1+1 and 2n2+1, where n1, n2 ≥ 0. In total, 2n1 and 2n2

terms will cancel out and what remains is π1(h1(mi)) ⊕ π1(h1(mj)) = 0 where
ϕ(ai) �= ϕ(aj). However, this event cannot occur since ϕ(ai) �= ϕ(aj) implies
that h1(mi) �= h1(mj); thus the system cannot be relaxed degenerate. ��
Lemma 6. Let τ ∈ GoodT and q ≤ 2n/(67ξ2). Then, it holds that

Pr [Θreal = τ ]
Pr [Θideal = τ ]

≥ 1 − ξ · q

2n − ξ
.



Parallelizable MACs Based on the Sum of PRPs 147

Proof. The probability to obtain a good transcript τ consists of that for obtain-
ing the tags t1, . . . , tq, and the hash-function outputs ui and vi. The probability
to obtain the latter is given in both worlds by Pr [(h1, h2) | (h1, h2) � H1 × H2].
The bound in Lemma 6 is determined by the ratio of the respective probabilities.
This term appears in the real world as well as in the ideal world and cancels out
eventually. Hence, we ignore it for the remainder of the analysis. The probability
for the tags ti in the ideal world is then given by Pr[t1, . . . , tq|Θideal] = 1/(2n)q

since the outputs ti are sampled independently and uniformly at random from
{0, 1}n in the ideal world.

In the real world, the situation is more complex and a little more work is
necessary. We denote by qx := |{π1(h1(mi)) | i ∈ {1, . . . , q}}| the amount of
distinct values for π1 and similarly we denote by qy := |{π2(h2(mi)) | i ∈
{1, . . . , q}}| the amount of distinct values for π2. The number of solutions to the
qx +qy unknowns is at least NonEQ(R1,R2; E)/2nq. There are (2n −qx)! possible
choices for the remaining output values of π1 and (2n − qy)! possible choices for
the remaining output values of π2. Thus, we can lower bound

Pr [Θreal = τ ] ≥
NonEQ(R1,R2;E)

2nq · (2n − qx)! · (2n − qy)!
(2n!)2

=
NonEQ(R1,R2; E)
2nq(2n)qx

(2n)qy

.

We will use the obvious lower bound for NonEQ(R1,R2; E) and we obtain

Pr [Θreal = τ ] ≥ (2n)qx
(2n − ξ)qy

2nq(2n)qx
(2n)qy

=
1

2nq
· (2n − ξ)qy

(2n)qy

.

We can immediately see that

Pr [Θreal = τ ]
Pr [Θideal = τ ]

≥ (2n − ξ)qy

(2n)qy

.

We can further reformulate the expression (2n − ξ)qy
/(2n)qy

to

(2n − qy)(2n − qy − 1) · · · (2n − qy − (ξ − 1))
(2n)(2n − 1)(2n − 2) · · · (2n − (ξ − 1))

=
ξ−1∏

i=0

2n − i − qy

2n − i
.

This can be reformed to and upper bounded by

ξ−1∏

i=0

(

1 − qy

2n − i

)

≥
(

1 − q

2n − ξ

)ξ

≥ 1 − ξ · q

2n − ξ
,

where the final inequality is Bernoulli’s. ��

5.3 Using k-Wise Independent Hash Functions

In contrast to the analysis of HPxNP, for HPxHP, we find ξ not only in the
analysis of bad1, but also in that of bad5 plus in the bound for the good tran-
scripts. For the same reasons as in HPxNP, bad1 and bad5 cap the bound
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at around q = 22n/3. Using the average block size would not work here since
it would not affect the bound of bad5. However, we can increase the security
bound of HPxHP with stronger, k-wise independent hash functions. For even
k, this allows to obtain a bound of q = 2kn/(k+1) since such hash functions
yield better bounds for circles of sizes ≥k. Since circles always contain an even
amount of queries, there would be no benefit of an uneven values k. Leurent et al.
required a 4-circle that is expected after 23n/4 queries for their attack. Using a
4-independent hash function, the first 4-circle occurs after 2n queries on average.
So, we can obtain a security bound that exceeds the complexity of Leurent et
al.’s attack. For simplicity, we will consider 4-wise independent hash functions
first and illustrate the changes to the security bound of HPxHP. Thereupon,
we extend our analysis to larger values of k. For space limitations, we defer the
proofs of Lemmas 7 and 8 to the full version of this work.

Lemma 7. Let H1 and H2 be independent 4-wise independent hash functions.
Let ξ ≥ 7. Then

Pr [bad1|¬bad2] ≤ 2
(
q
4

)

23n
(
ξ
4

) +
16q5

24n
.

We find two interesting points here: (1) Raising the requirement of the hash
functions to 4-wise independence yields a 4-circle after 2n queries on average
instead of after 23n/4 queries as in the attack by Leurent et al. Thus, a security
level of 24n/5 can be obtained. (2) We cannot show yet if it is possible to consider
ξaverage instead of ξmax. If we can consider the average block size instead of the
maximum block size, the upper bound of circles is the bottleneck. Vice versa, it
seems that attacks on the HPxHP-type of MACs must exploit the occurrence of
circles. We can formulate the following lemma to bound the probability of bad5.

Lemma 8. Let H1 and H2 be independent 4-wise independent hash functions.
Then Pr [bad5|¬bad2 ∧ ¬bad1] ≤ q4/24n.

6 Conclusion

We presented two MAC constructions that are provably secure to up to O(22n/3)
queries; HPxHP avoids nonces at the price of two independent hash-function
evaluations; HPxNP trades one hash-function call for the use of a nonce.

Our results add to the works that demonstrate the usefulness of Patarin’s
Mirror Theory for such constructions. We indicated that considering the average
instead of the maximal block size in the Mirror Theory would greatly increase
the security of one of our constructions. A proof is deferred to the full version of
this work. Though, a deeper study of Patarin’s theory is required to derive the
consequences of this replacement, which is out of the scope of this work.

Leurent et al.’s generic distinguisher on constructions similar to HPxHP with
a data complexity of O(23n/4) queries exploited the occurrence of circles in the
underlying hash functions. So, there is still a gap between the best security bound
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and their attack. We studied that stronger, k-wise independent hash functions
decreased the probability of circles in the full version of this work where we
indicate that it can raise the security level above the bound of O(23n/4).

We can imagine that the security level of our constructions is higher than
2n/3 bits. For example, the bottleneck in our proof of HPxNP is the bound for
the maximal block size as long as the hash function family is “only” universal. A
stronger hash function helps here; plus, it may as well be possible to consider the
average block size and obtain O(2n) security. However, this needs to be verified.

Acknowledgments. We would like to thank the anonymous reviewers for their helpful
comments.

References

1. Andreeva, E., Daemen, J., Mennink, B., Van Assche, G.: Security of keyed sponge
constructions using a modular proof approach. In: Leander, G. (ed.) FSE 2015.
LNCS, vol. 9054, pp. 364–384. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48116-5 18

2. Bernstein, D.J.: Stronger security bounds for wegman-carter-shoup authenticators.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 164–180. Springer,
Heidelberg (2005). https://doi.org/10.1007/11426639 10

3. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005). https://doi.org/10.1007/11502760 3

4. Bernstein, D.J.: Polynomial evaluation and message authentication, February 2007.
https://cr.yp.to/antiforgery/pema-20071022.pdf

5. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)

6. Chakraborty, D., Ghosh, S., Sarkar, P.: A fast single-key two-level universal hash
function. IACR Trans. Symmetric Cryptol. 2017(1), 106–128 (2017)

7. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 19

8. Cogliati, B., Lee, J., Seurin, Y.: New constructions of MACs from (tweakable) block
ciphers. IACR Trans. Symmetric Cryptol. 2017(2), 27–58 (2017)

9. Cogliati, B., Seurin, Y.: EWCDM: an efficient, beyond-birthday secure, nonce-
misuse resistant MAC. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 121–149. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 5

10. Cogliati, B., Seurin, Y.: Analysis of the single-permutation encrypted Davies-Meyer
construction. Des. Codes Crypt. 86(12), 2703–2723 (2018)

11. Datta, N., Dutta, A., Nandi, M., Paul, G.: Double-block hash-then-sum: a
paradigm for constructing BBB secure PRF. IACR Trans. Symmetric Cryptol.
2018(3), 36–92 (2018). Full updated version at https://eprint.iacr.org/2018/804

12. Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Building single-key beyond
birthday bound message authentication code. Cryptology ePrint Archive, Report
2015/958 (2015). Version: 20160211:123920

https://doi.org/10.1007/978-3-662-48116-5_18
https://doi.org/10.1007/978-3-662-48116-5_18
https://doi.org/10.1007/11426639_10
https://doi.org/10.1007/11502760_3
https://cr.yp.to/antiforgery/pema-20071022.pdf
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-662-53018-4_5
https://doi.org/10.1007/978-3-662-53018-4_5
https://eprint.iacr.org/2018/804


150 A. Moch and E. List

13. Datta, N., Dutta, A., Nandi, M., Yasuda, K.: Encrypt or decrypt? To make a
single-key beyond birthday secure nonce-based MAC. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 631–661. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96884-1 21

14. Dutta, A., Jha, A., Nandi, M.: Exact security analysis of hash-then-mask type prob-
abilistic MAC constructions. IACR Cryptology ePrint Archive 2016/ 983 (2016)

15. Dutta, A., Jha, A., Nandi, M.: Tight security analysis of EHtM MAC. IACR Trans.
Symmetric Cryptol. 2017(3), 130–150 (2017)

16. Gueron, S., Kounavis, M.E.: Intel carry-less multiplication instruction and its usage
for computing the GCM mode - rev 2.02. Intel White Paper. Technical report, Intel
corporation, 20 April 2014

17. Gueron, S., Lindell, Y.: GCM-SIV: full nonce misuse-resistant authenticated
encryption at under one cycle per byte. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS, pp. 109–119. ACM (2015)

18. Iwata, T., Minematsu, K.: Stronger security variants of GCM-SIV. IACR Trans.
Symmetric Cryptol. 2016(1), 134–157 (2016)

19. Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-48658-5 15

20. Leurent, G., Nandi, M., Sibleyras, F.: Generic attacks against beyond-birthday-
bound MACs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 306–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 11

21. Luykx, A., Preneel, B.: Optimal forgeries against polynomial-based MACs and
GCM. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820,
pp. 445–467. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-
9 17

22. Mennink, B.: Towards tight security of cascaded LRW2. In: Beimel, A., Dziem-
bowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 192–222. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03810-6 8

23. Mennink, B., Neves, S.: Encrypted davies-meyer and its dual: towards optimal secu-
rity using mirror theory. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10403, pp. 556–583. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63697-9 19

24. Minematsu, K.: How to thwart birthday attacks against MACs via small ran-
domness. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 230–249.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4 13

25. Nachef, V., Patarin, J., Volte, E.: Feistel Ciphers: Security Proofs and Cryptanal-
ysis. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49530-9

26. Nandi, M.: Birthday attack on dual EWCDM. IACR Cryptology ePrint Archive
2017/579 (2017)

27. Nandi, M.: Bernstein bound on WCS is tight. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 213–238. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 8

28. Patarin, J.: The “coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

29. Patarin, J.: Introduction to mirror theory: analysis of systems of linear equali-
ties and linear non equalities for cryptography. IACR Cryptology ePrint Archive
2010/287 (2010)

https://doi.org/10.1007/978-3-319-96884-1_21
https://doi.org/10.1007/3-540-48658-5_15
https://doi.org/10.1007/3-540-48658-5_15
https://doi.org/10.1007/978-3-319-96884-1_11
https://doi.org/10.1007/978-3-319-96884-1_11
https://doi.org/10.1007/978-3-319-78381-9_17
https://doi.org/10.1007/978-3-319-78381-9_17
https://doi.org/10.1007/978-3-030-03810-6_8
https://doi.org/10.1007/978-3-319-63697-9_19
https://doi.org/10.1007/978-3-319-63697-9_19
https://doi.org/10.1007/978-3-642-13858-4_13
https://doi.org/10.1007/978-3-319-49530-9
https://doi.org/10.1007/978-3-319-96881-0_8
https://doi.org/10.1007/978-3-319-96881-0_8
https://doi.org/10.1007/978-3-642-04159-4_21


Parallelizable MACs Based on the Sum of PRPs 151

30. Patarin, J.: Mirror theory and cryptography. IACR Cryptology ePrint Archive
2016/702 (2016)

31. Patarin, J.: Mirror theory and cryptography. Appl. Algebra Eng. Commun. Com-
put. 28(4), 321–338 (2017)

32. Rogaway, P.: Bucket hashing and its application to fast message authentication.
In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 29–42. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4 3

33. Shoup, V.: On fast and provably secure message authentication based on univer-
sal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 24

34. Wegman, M.N., Carter, L.: New classes and applications of hash functions. In:
FOCS, pp. 175–182. IEEE Computer Society (1979)

35. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

36. Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596–609. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 34

37. Zhang, L., Wu, W., Sui, H., Wang, P.: 3kf9: enhancing 3GPP-MAC beyond the
birthday bound. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 296–312. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 19

https://doi.org/10.1007/3-540-44750-4_3
https://doi.org/10.1007/3-540-68697-5_24
https://doi.org/10.1007/978-3-642-22792-9_34
https://doi.org/10.1007/978-3-642-34961-4_19
https://doi.org/10.1007/978-3-642-34961-4_19

	Parallelizable MACs Based on the Sum of PRPs with Security Beyond the Birthday Bound
	1 Introduction
	2 Preliminaries
	2.1 H-Coefficient Technique
	2.2 Mirror Theory

	3 Constructions
	4 Security Analysis of HPxNP
	4.1 Bad Transcripts
	4.2 Ratio of Good Transcripts
	4.3 Using average

	5 Security Analysis of HPxHP
	5.1 Bad Transcripts
	5.2 Good Transcripts
	5.3 Using k-Wise Independent Hash Functions

	6 Conclusion
	References




